高中平面几何讲义

合集下载

高二数学竞赛班二试平面几何讲义.第七讲-----三角形的五心(一)7

高二数学竞赛班二试平面几何讲义.第七讲-----三角形的五心(一)7

高二数学竞赛班二试平面几何讲义第七讲三角形的五心(一)班级姓名一、知识要点:1.三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.2.外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.3.重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题.4.蒙日定理(根心定理):平面上任意三个圆,若这三个圆圆心不共线,则三条根轴相交于一点,这个点叫它们的根心;若三圆圆心共线,则三条根轴互相平行。

注:在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴。

另一角度也可以称两不同心圆的等幂点的轨迹为根轴,或者称作等幂轴。

(1)平面上任意两圆的根轴垂直于它们的连心线;(2)若两圆相交,则两圆的根轴为公共弦所在的直线;(3)若两圆相切,则两圆的根轴为它们的内公切线;5.莱莫恩(Lemoine)定理:过△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB所在直线交于P、Q、R,则P、Q、R三点共线。

直线PQR称为△ABC的莱莫恩线。

证明:由弦切角定理可以得到:sin∠ACR=sin∠ABC ,sin∠BCR=sin∠BACsin∠BAP=sin∠BCA,sin∠CAP=sin∠ABCsin∠CBQ=sin∠BAC sin∠ABQ=sin∠BCA所以,我们可以得到:(sin∠ACR/sin∠BCR)*(sin∠BAP/sin∠CAP)*(sin∠CBQ/sin∠ABQ)=1,这是角元形式的梅涅劳斯定理,所以,由此,得到△ABC被直线PQR所截,即P、Q、R共线。

二、例题精析:例1.在△ABC的边AB,BC,CA上分别取点P,Q,S.证明以△APS,△BQP,△CSQ的外心为顶点的三角形与△ABC相似.(B·波拉索洛夫《中学数学奥林匹克》)AB C KP O OO .. ..S123例2. AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△P AD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和.(第26届莫斯科数学奥林匹克)例3. △ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心. 证明OE 丄CD . (加拿大数学奥林匹克训练题)AA 'F F 'G EE 'D 'C 'PCBDABC DE FOKG例4. (2003年联赛)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B , 所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ= ∠PBC . 求证:∠DBQ=∠P AC .三、精选习题:1.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)2.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)OQ CDBAP3..AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.5.如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE=∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等.ABCE MNF四、拓展提高:6.在ΔABC 中,∠BAC=60︒,AB >AC ,点O 为ΔABC 的外心,两条高BE 、CF 的交于点H ,点M 、N 分别在线段BH 与HF 上,且满足BM=CN . 求MH +HNOH 的值.7.(2004年联赛)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K .已知25BC =,20BD =,7BE =,求AK 的长.高二数学竞赛班二试平面几何讲义第七讲 三角形的五心(一)例1. 分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外 心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K )BABCK PO O O ....S123=21(∠O 2O 1S +∠PO 1O 2) =21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .另法:△APS ,△BQP ,△CSQ 的外接圆交于一点(密克点) 例2. 分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′.易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △P AD +S △PCF . 例3. 分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设 CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证:DG :GK =31DC :(3121-)DC =2:1.∴DG :GK =DE :EF ⇒GE ∥MF . ∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心. 易证OE 丄CD .例4. 分析:由∠PBC=∠CDB ,若∠DBQ=∠P AC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立. 而要证∆BDQ ∽∆DAQ , 只要证BD AD =DQAQ 即可. 证明:连AB .∵ ∆PBC ∽∆PDB ,∴ BD BC =PD PB ,同理,AD AC =PD P A .A A 'FF 'G EE 'D 'C 'PCBDABCDE FOKG OQ CDBAP∵ P A=PB ,∴ BD AD =BCAC .∵ ∠BAC=∠PBC=∠DAQ ,∠ABC=∠ADQ . ∴ ∆ABC ∽∆ADQ . ∴ BC AC =DQ AQ .∴ BD AD =DQ AQ . ∵ ∠DAQ=∠PBC=∠BDQ . ∴ ∆ADQ ∽∆DBQ .∴ ∠DBQ=∠ADQ=∠P AC .证毕.4.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF . (1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有CF =2222221c b a -+,BE =2222221b a c -+, AD =2222221a cb -+. 将a 2+c 2=2b 2,分别代入以上三式,得CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c . 故有△∽△′. (2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴∆∆S S '=(a CF )2.据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43. ∴22a CF =43⇒3a 2=4CF 2=2a 2+b 2-c 2 ⇒a 2+c 2=2b 2.结论:O 为外心,G 为重心,则a 2,b 2,c 2成等差数列⇔OG BG ⊥ 5.证明:连MN ,则由FM ⊥AM ,FN ⊥AN 知A 、M 、F 、N 四点共圆,且该圆的直径为AF .又∠AMN=∠AFN ,但∠F AN=∠MAD ,故∠MAD +∠AMN=∠F AN +∠AFN=90︒.∴MN ⊥AD ,且由正弦定理知,AMNMN=AF sin A .∴S AMDN =12 AD ·MN=12 AD ·AF sin A .连BD ,由∠ADB=∠ACF ,∠DAB=∠CAF ,得⊿ABD ∽⊿AFC . ∴ AD ∶AB=AC ∶AF ,即AD ·AF=AB ·AC . ∴ S AMDN =12 AD ·AF sin A=12 AB ·AC sin A=S ABC .6.解:记∠ACB=α,连OB 、OC ,则∠BOC=∠BHC=120︒,∴ B 、O 、H 、C 四点共圆.设此圆的半径为R ', 则2R '=BC sin120︒ =BCsin60︒=2R .HM +NH=(BH -BM )+(CN -CH )=BH -CH . 在ΔBCH 中,∠CBH=90︒-α. ∠HCB=90︒-(120︒-α)=α-30︒,∴HM +NH=BH -CH=2R (sin(α-30︒)-sin(90︒-α))=2R (sin αcos30︒-cos αsin30︒-cos α)=2 3 R sin(α-60︒).在ΔOCH 中,OH=2R sin ∠HCO=2R sin(α-30︒-30︒)=2R sin(α-60︒). ∴MH +HNOH = 3 .法2:由托勒密定理,OH BC OB HC OC BH ⋅+⋅=⋅7.在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC=25,BD=20,BE=7,求AK 的长.解:∵ BC=25,BD=20,BE=7, ∴ CE=24,CD=15.∵ AC ·BD=CE ·AB ,⇒ AC=65AB , ①24252015CD GHP∵BD⊥AC,CE⊥AB,⇒B、E、D、C共圆,⇒AC(AC-15)=AB(AB-7),⇒65AB(65AB-15)=AB(AB-18),∴AB=25,AC=30.⇒AE=18,AD=15.∴DE=12AC=15.延长AH交BC于P,则AP⊥BC.∴AP·BC=AC·BD,⇒AP=24.连DF,则DF⊥AB,∵AD=DC,DF⊥AB.⇒AF=12AE=9.∵D、E、F、G共圆,⇒∠AFG=∠ADE=∠ABC,⇒∆AFG∽∆ABC,∴AKAP=AFAB,⇒AK=9⨯2425=21625.法2:由托勒密定理,算15DE=11。

高一数学立体几何讲义

高一数学立体几何讲义

I. 基础知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将空间分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线——共面有且仅有一个公共点;平行直线——共面没有公共点;异面直线——不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) 12方向相同12方向不相同③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P OA a P αβ推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形......②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥: [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 侧面积公式S 直棱柱侧=ch ( c -底面周长,h -高 )S 正棱锥侧=1/2 ch ( c -底面周长,h -斜高 )S 正棱台侧=1/2 (c +c')h (c ,c'-上、下底面周长,h -斜高)S 圆柱侧=cl =2πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆锥侧=1/2cl =πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆台侧=1/2(c +c')l =π(r +r')l(c ,c' -上、下底面周长,r ,r -上、下底面半径)体积公式V 柱体=Sh ( S -底面积,h -高 )V 椎体=1/3Sh ( S -底面积,h -高 )()h ss s s V '31'++=台体 (S ,S -上下底面积,h -高 ) 3R 34π=球V (R 为球的半径) 24R S π=球。

高中平面几何讲义

高中平面几何讲义

高中平面几何(上海教育出版社叶中豪)知识要点三角形的特殊点重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard 点,垂聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线特殊直线、圆Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆,Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆特殊三角形中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形,第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形相关直线及相关三角形Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形重心坐标和三线坐标四边形和四点形质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线完全四边形Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理重要轨迹平方差,平方和,Apollonius圆三角形和四边形中的共轭关系等角共轭点,等角共轭线,等截共轭点,等截共轭线几何变换及相似理论平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心Miquel定理内接三角形,外接三角形,Miquel点根轴圆幂,根轴,共轴圆系,极限点反演反演,分式线性变换(正定向和反定向)配极极点与极线,共轭点对,三线极线及三线极点,垂极点射影几何点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 定理,Brianchon定理著名定理三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli 问题,Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley 定理,Mannheim定理例题和习题1.以△ABC的AB、AC两边向形外作正方形ABEP和ACFQ,AD是BC边上的高。

数学名师叶中豪整理高中数学竞赛平面几何讲义(完整版)

数学名师叶中豪整理高中数学竞赛平面几何讲义(完整版)

完全四边形与Miquel点
垂足三角形与等角共轭
反演与配极,调和四边形
射影几何
复数法及重心坐标方法
例题和习题
1.四边形ABCD中,AB=BC,DE⊥AB,CD⊥BC,EF⊥BC,且。求证: 2EF=DE+DC。(10081902.gsp)
2.已知相交两圆O和O'交于A、B两点,且O'恰在圆O上,P为圆O的AO'B弧 段上任意一点。∠APB的平分线交圆O'于Q点。求证:PQ2=PA×PB。 (10092401-1. gsp)
(09022301.gsp)
31.已知半圆圆心为O,直径为AB,一直线交半圆于C、D,交AB延长线于 P,设M是△AOC与△BOD外接圆除O点外的另一交点。求证: OM⊥MP。(10091001.gsp)
32.凸四边形ABCD内接于圆O,两组对边所在直线分别交于点E、F,对角 线AC、BD交于G,作GH⊥EF于H,圆O的弦MN经过G点。求证:GH 与圆O交点恰是△HMN的内心。(10092103-2.gsp)
实用标准文档高中平面几何学习要点几何问题的转化ptolemy定理及应用几何变换及相似理论位似及其应用完全四边形与miquel垂足三角形与等角共轭反演与配极调和四边形射影几何复数法及重心坐标方法例题和习题1
高中平面几何
学习要点
几何问题的转化
叶中豪圆幂与根轴Biblioteka P’tolemy定理及应用
几何变换及相似理论
位似及其应用
53.已知:AD是高,O、H是外心和垂心,过D作OD垂线,交AC 于E。求证:∠DHE=∠C。(09022202.gsp)
54.△ABC中,AD为边BC上的中线,E、F、G分别为AB、AC、AD上

平面几何的26个定理

平面几何的26个定理

高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级 姓名一、知识点金1. 梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立(用同一法证明)2. 塞瓦定理: 设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD 内接于圆时,等式成立。

AB AE AC ADBC ED AC AD==⇒又4. 西姆松定理:若从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。

西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。

若,,D E F 三点共线,则点P 在ABC ∆的外接圆上。

5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。

证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,,OY ,OM ,SM ,MT 。

∴AM/CM=AD/BC∵AS=1/2AD,BT=1/2BC ∴AM/CM=AS/CT又∵∠A=∠C ∴△AMS∽△CMT∴∠MSX=∠MTY∴∠OMX+∠OSX=180°∴O,S ,X ,M同理,O ,T ,∴∠MTY=∠MOY,∠MSX=∠MOX∴∠MOX=∠MOY , ∵OM⊥PQ ∴XM=YM注:把圆换成椭圆、抛物线、双曲线蝴蝶定理也成立6. 坎迪定理:设AB 是已知圆的弦,M 是AB 上一点,弦,CD EF 过点M ,连结,CF ED ,分别交AB 于,L N ,则1111LM MN AM MB-=-。

高中平面几何讲义

高中平面几何讲义

高中平面几何(上海教育出版社叶中豪)知识要点三角形的特殊点重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard 点,垂聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线特殊直线、圆Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆,Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆特殊三角形中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形,第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形相关直线及相关三角形Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形重心坐标和三线坐标四边形和四点形质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线完全四边形Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理重要轨迹平方差,平方和,Apollonius圆三角形和四边形中的共轭关系等角共轭点,等角共轭线,等截共轭点,等截共轭线几何变换及相似理论平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心Miquel定理内接三角形,外接三角形,Miquel点根轴圆幂,根轴,共轴圆系,极限点反演反演,分式线性变换(正定向和反定向)配极极点与极线,共轭点对,三线极线及三线极点,垂极点射影几何点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 定理,Brianchon定理著名定理三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli 问题,Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley 定理,Mannheim定理例题和习题1.以△ABC的AB、AC两边向形外作正方形ABEP和ACFQ,AD是BC边上的高。

高中数学竞赛-平面几何讲义(很详细)

高中数学竞赛-平面几何讲义(很详细)

HBC
(5)H 关于三边的对称点在△ABC 的外接圆上,关于三边中
点的对称点在△ABC 的外接圆上
(6)三角形任一顶点到垂心的距离
A
等于外心到对边的距离的 2 倍。 (7)设△ABC 的垂心为 H,外接圆
F
B'
半径为 R,
OH E
则 HA HB HC 2R B | cos A | | cos B | | cosC |
A
M
N
B
EF
C
D
证明:设∠BAE=∠CAF= ,∠EAF=

S AMDN

1 2
AM

AD sin

1 2
AD
AN sin(

)
= 1 AD[AF cos( )sin AF cos sin( )
2
= 1 AD AF sin(2 ) AF AD BC
从而 AB A' F = AC A' E ,又∠AFE=∠AEF

S△ABA’=
1 2
sin
AFE

AB

A'
F
=
1 2
s
in
A
EF

A
C

A'
E
=S△ACA’
由此式可知直线 AA’必平分 BC 边,即 AA’必过△
ABC 的重心
同理 BB’,CC‘必过△ABC 的重心,故结论成立。
例 3.设△ABC 的三条高线为 AD,BE,CF,自 A, B,C 分别作 AK EF 于 K,BL DF 于 L, CN ED 于 N,证明:直线 AK,BL,CN 相 交于一点。

第1讲平面及其基本性质讲义

第1讲平面及其基本性质讲义

平面及其基本性质知识点1 平面的概念平面是没有厚薄的,可以无限延伸,这是平面最基本的属性常见的桌面,黑板面,平静的水面等都是平面的局部形象指出: 平面的两个特征:①无限延展②平的(没有厚度)。

平面的表示:一般用一个希腊字母α、β、γ……来表示,还可用平行四边形对角顶点的字母来表示。

平面的画法:在立体几何中,通常画平行四边形来表示平面。

一个平面,通常画成水平放置,通常把平行四边形的锐角画成45 ,横边画成邻边的2倍长。

两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。

集合中“∈”的符号只能用于点与直线,点与平面的关系,“⊂”和“ ”的符号只能用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。

知识点2 公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂.知识点3 公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:符号语言:P ∈α,且P ∈β⇒α∩β=l ,且P ∈l .知识点4 公理3 经过不在同一条直线上的三点,有且只有一个平面指出:符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 一条直线和直线外的一点确定一个平面.(证明见课本)指出:推论1的符号语言:A a ∉⇒有且只有一个平面α,使得A α∈,l α⊂推论2 两条相交直线确定一个平面推论3 两条平行直线有且只有一个平面三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 求证:两两相交而不通过同一点的四条直线必在同一平面内。

例3 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.例4 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行.求证:l 1、l 2、l 3相交于一点.基础练习:一、选择题:1.下面给出四个命题: ①一个平面长4m, 宽2m; ②2个平面重叠在一起比一个平面厚; ③一个平面的面积是25m 2; ④一条直线的长度比一个平面的长度大, 其中正确命题的个数是( )A. 0B.1C.2D.32.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作( ) A、N α∈∈a B、N α⊂∈a C、N α⊂⊂a D、N α∈⊂a3.A,B,C表示不同的点,a, 表示不同的直线,βα,表示不同的平面,下列推理错误的是( ) A.A ααα⊂⇒∈∈∈∈ B B A ,;,B.βαβαβα⋂⇒∈∈∈∈B B A A ,;,=ABC.αα∉⇒∈⊄A A ,D.A,B,C α∈,A,B,C β∈且A ,B ,C 不共线α⇒与β重合4. 空间不共线的四点,可以确定平面的个数为( )A.0 B.1 C.1或4 D. 无法确定5. 空间 四点A ,B ,C ,D 共面但不共线,则下面结论成立的是( )A. 四点中必有三点共线 B. 四点中必有三点不共线C. AB ,BC ,CD ,DA 四条直线中总有两条平行D. 直线AB 与CD 必相交6. 空间不重合的三个平面可以把空间分成( )A. 4或6或7个部分B. 4或6或7或8个部分C. 4或7或8个部分D. 6或7或8个部分7.下列说法正确的是( )①一条直线上有一个点在平面内, 则这条直线上所有的点在这平面内; ②一条直线上有两点在一个平面内, 则这条直线在这个平面内; ③若线段AB α⊂, 则线段AB 延长线上的任何一点一点必在平面α内; ④一条射线上有两点在一个平面内, 则这条射线上所有的点都在这个平面内.A. ①②③B. ②③④C. ③④D. ②③8.空间三条直线交于同一点,它们确定平面的个数为n ,则n 的可能取值为( )A. 1B.1或3C. 1或2或3D.1或 4二、填空题:9.水平放置的平面用平行四边形表示时,通常把横边画成邻边的___________倍.10.设平面α与平面β交于直线 , A αα∈∈B ,, 且直线AB C =⋂ ,则直线AB β⋂=_____________.11.设平面α与平面β交于直线 , 直线α⊂a , 直线β⊂b ,M b a =⋂, 则M_______ .12.直线AB 、AD α⊂,直线CB 、CD β⊂,点E ∈AB ,点F ∈BC ,点G ∈CD ,点H ∈DA ,若直线HE ⋂直线FG=M ,则点M 必在直线___________上.三、解答题:13.判断下列说法是否正确?并说明理由.(1)平行四边形是一个平面; (2)任何一个平面图形都是一个平面;(3)空间图形中先画的线是实线,后画的线是虚线.14.如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG交于点O. 求证:B、D、O三点共线.15.证明梯形是平面图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中平面几何(上海教育出版社叶中豪)知识要点三角形的特殊点重心,外心,垂心,内心,旁心,类似重心,九点圆心,Spieker点,Gergonne点,Nagel点,等力点,Fermat点, Napoleon点, Brocard点,聚点,切聚点,X点,Tarry点,Steiner点,Soddy点,Kiepert双曲线特殊直线、圆Euler线,Lemoine线,极轴,Brocard轴,九点圆,Spieker圆,Brocard圆,Neuberg圆,McCay圆,Apollonius圆,Schoute圆系,第一Lemoine圆,第二Lemoine圆,Taylor圆,Fuhrmann圆特殊三角形中点三角形,垂三角形,切点三角形,切线三角形,旁心三角形,弧中点三角形,反弧中点三角形,第一Brocard三角形,第二Brocard三角形,D-三角形,协共轭中线三角形相关直线及相关三角形Simson线,垂足三角形,Ceva三角形,反垂足三角形,反Ceva三角形重心坐标和三线坐标四边形和四点形质点重心,边框重心,面积重心,Newton线,四点形的核心,四点形的九点曲线完全四边形Miquel点,Newton线,垂心线,外心圆,Gauss-Bodenmiller定理重要轨迹平方差,平方和,Apollonius圆三角形和四边形中的共轭关系等角共轭点,等角共轭线,等截共轭点,等截共轭线几何变换及相似理论平移,旋转(中心对称),对称,相似和位似,相似不动点,逆相似轴,两圆外位似中心及内位似中心Miquel定理内接三角形,外接三角形,Miquel点根轴圆幂,根轴,共轴圆系,极限点反演反演,分式线性变换(正定向和反定向)配极极点与极线,共轭点对,三线极线及三线极点,垂极点射影几何点列的交比,线束的交比,射影几何基本定理,调和点列与调和线束,完全四边形及完全四点形的调和性, Pappus定理,Desargues定理,Pascal 理,Brianchon定理著名定理三大作图问题,勾股定理,黄金分割,鞋匠的刀,P’tolemy定理,Menelaus定理,Ceva定理,Stewart定理,Euler线,Fermat- Torricelli问题Fagnano- Schwarz问题,Newton线,Miquel定理,Simson线, Steiner定理,九点圆,Feuerbach定理,Napoleon定理,蝴蝶定理,Morley定理Mannheim定理例题和习题1.以△ABC的AB、AC两边向形外作正方形ABEP和ACFQ,AD是BC边上的高。

求证:直线AD、BF CE三线共点。

2.以△ABC的AB、AC两边为直角边,向两侧作等腰直角三角形ABD和ACE,使∠ABD=∠ACE=90°求证线段DE的中点的位置与顶点A的位置无关。

3.已知梯形ABCD中,AD∥BC。

分别以两腰AB、CD为边向外侧作正方形ABGE和正方形DCHF。

连接EF,设线段EF的中点为M。

求证:MA=MD。

4.△ABC中,AM是中线,H是垂心,N是AH中点,过A作外接圆切线,交对边于D点。

求证:ND⊥AM (06061602.gsp)5.△ABC中,D是BC边上一点,设O、O1、O2分别是△ABC、△ABD、△ACD的外心,求证:A、O、O1、O2四点共圆。

(Salmon定理)6.△ABC中,D是BC边上一点,设O、O1、O2分别是△ABC、△ABD、△ACD的外心,O′是A、O、O1、O2四点所共圆(Salmon圆)的圆心。

求证:(1)O′D⊥BC的充要条件是:AD恰好经过△ABC的九点圆心!B C(2)记△ABC的九点圆心为N i 。

作O′E⊥BC,垂足为E。

则N i E∥AD!(06051705.gsp) (06052901.gsp)B C7.四边形ABCD中,P点满足∠PAB=∠CAD,∠PCB=∠ACD,O1、O2分别是△ABC、△ADC的外心。

求证:△PO1B∽△PO2D。

(06060301.gsp)D8.设I是圆外切四边形ABCD的内心,求证:△IAB,△IBC,△ICD,△IDA的垂心共线。

9.已知凸四边形ABCD满足:AB+AD=BC+CD,延长BA,CD交于E点,延长BC,AD交于F点。

求证:EB+ED=FB+FD(或EA+EC=FA+FC)。

(05123102.gsp)E10.(06.8.9)设A、B、C、D是椭圆22221x ya b+=上四点。

若直线AB、CD的斜率之积22AB CDbk ka=,则直线AC、BC或直线AD、BC的斜率之积也必等于22ba。

(注:这时经过A、B、C、D四点的任意二次曲线的离心率必不小于椭圆22221x ya b+=的离心率──ca。

)(06080901.gsp)(06081201.gsp)1.在△ABC中,D是BC边上一点,设O1、O2分别是△ABD、△ACD的外心,O′是经过A、O1、O2三点的圆之圆心。

求证:O′D⊥BC的充要条件是:AD恰好经过△ABC的九点圆心。

B C【证明】取△ABC的外心O,则熟知A、O、O1、O2四点共圆(Salmon圆)。

易知△AO1O2∽△ABC,且O1O2是AD的垂直平分线。

作顶点A关于BC边的对称点A′,易看出△AO′D∽△AOA′。

设BC边高的垂足为G,再取AO连线的中点L,则LG 是△AOA′的中位线,进而知△AO′D∽△ALG。

得∠O′DA=∠LGA。

……………①再作外心O关于BC的对称点O′,由AH=2OM=OO′知A O′经过九点圆心Ni。

(注:△AHNi≌△O′ONi)由LM∥A O′知∠ADC=∠LMG;在直角梯形AOMG中,得∠LMG=∠LGM。

故∠ADC=∠LGM。

……………②而∠LGM+∠LGA=90°。

将①、②代入得∠O′DA+∠ADC=90°。

∴ O ′D ⊥BC 。

2.在△ABC 中,D 是BC 边上一点,设O 1、O 2分别是△ABD 、△ACD 的外心,O ′是经过A 、O 1、O 2三点的圆之圆心。

记△ABC 的九点圆心为N i 。

作O ′E ⊥BC ,垂足为E 。

则N i E ∥AD 。

(叶中豪提供)B C【证明】作LK ⊥AH 。

由AH =2OM ,Ni F =(OM +HG )/2易知AK =Ni F 。

……………① 又因O ′L 在BC 上的射影是EF ,而AL 在AG 上的射影是AK ,且两者夹角相等(都等于12B C ∠-∠),故O L ALEF AK'=。

……………② 由①、②知Rt △AO ′L ∽Rt △Ni EF 。

得∠AO ′L =∠Ni EF 。

……………③ME B C而由下图,又易知∠AO ′L =∠ADC 。

……………④ 由③、④得∠Ni EC =∠ADC , ∴ Ni E ∥AD 。

B C3.△ABC 中,AH 是BC 边上的高,D 是直线BC 上任一点。

O 、O 1、O 2分别是△ABC 、△ABD 、△ACD 的外心,N 、N 1、N 2分别是△ABC 、△ABD 、△ACD 的九点圆心。

设O ′是A 、O 、O 1、O 2所共圆(Salmon 圆)的圆心,作O ′E ⊥BC ,垂足为E 。

则H 、E 、N 、N 1、N 2五点共圆。

(闵飞提供)【证明】引理△ABC 中,记外心O 关于BC 边的对称点为O ′,则九点圆心Ni 是A O ′的中点。

(证略)O'C如下图,作A 、O 、O 1、O 2诸点关于BC 边的对称点,这些对称点仍构成共圆四边形。

再以A 点为位似中心,作1/2的位似变换,即可知所得到点H 、N 、N 1、N 2一定共圆。

(且顺便得知所共圆的大小恰是Salmon 圆的一半!)再在Salmon 圆上取A ″,使AA ″∥BC 。

因此O ′E 所在直线是AA ″的中垂线。

作A ″关于BC 边的对称点A ″′。

易知AA ″′的中点恰是E ,于是E 也在上述位似后的圆上。

5.四边形ABCD中,P点满足∠PAB=∠CAD,∠PCB=∠ACD,O1、O2分别是△ABC、△ADC的外心。

求证:△PO1B∽△PO2D。

(叶中豪提供)D【证法1】(田廷彦提供)B如上图,延长CP 交△ABC 的外接圆于Q 。

连接QA 、QB 、QO 1、AO 2。

在等腰△O 1BQ 和等腰△O 2AD 中,由于∠BO 1Q =2∠BCQ =2∠ACD =∠AO 2D ,故△O 1BQ ∽△O 2AD 。

………① 又在△PAQ 中,由正弦定理()()()()2112sin sin sin sin sin sin sin sin sin 180/sin sin sin /PAB BAQ DAC BCQ DAC DCA PQ PAQ PA PQA CBA CBA CBA CDA AC R R CDA CBACBA AC R R ∠+∠∠+∠∠+∠∠====∠∠∠∠-∠∠====∠∠其中R 1、R 2分别是△BAC 和△DAC 的外接圆半径。

而12sin BQ R BCQ =∠,22sin DA R ACD =∠, 故12R BQ DA R =。

由此PQ BQ PA DA=, 又∠BQP =∠BAC =∠PAD ,∴ △PQB ∽△PAD 。

………②由①、②,即可知O 1、O 2是相似三角形PQB 和PAD 中的对应点,从而得△PBO 1∽△PDO 2。

证毕。

【证法2】(柳智宇提供)柳智宇证法如下图,延长AP 、CP 分别交△ACD 的外接圆于C ′、A ′。

首先证明△DA ′C ′∽△BAC ,而O 1、O 2分别是这两个三角形的外心。

然后说明P 是这对相似三角形中的自对应点,从而△PBO 1∽△PDO 2(具体过程略)。

【证法3】(邓煜提供)见下图,在AB 上取点Q ,使得△APQ ∽△ADC (具体过程略)。

C邓煜证法重心坐标{}123::μμμ其余三点的坐标分别为:{}123::μμμ-,{}123::μμμ-,{}123::μμμ-。

直线d ,d 1,d 2,d 3的坐标分别为:123111::μμμ⎡⎤⎢⎥⎣⎦,123111::μμμ⎡⎤-⎢⎥⎣⎦,123111::μμμ⎡⎤-⎢⎥⎣⎦,123111::μμμ⎡⎤-⎢⎥⎣⎦。

易算出Newton 线d 0的坐标为:222123111::μμμ⎡⎤⎢⎥⎣⎦。

相关文档
最新文档