热传导,热辐射,热对流..

合集下载

简述三种传热基本方式及其传热基本原理

简述三种传热基本方式及其传热基本原理

简述三种传热基本方式及其传热基本原理
三种传热基本方式及其传热基本原理如下:
一、热传导。

热传导是介质内无宏观运动时的传热现象,其在固体、液体和气体中均可发生,但严格而言,只有在固体中才是纯粹的热传导,而流体即使处于静止状态,其中也会由于温度梯度所造成的密度差而产生自然对流,因此,在流体中热对流与热传导同时发生。

二、热辐射。

热辐射,物体由于具有温度而辐射电磁波的现象。

热量传递的3种方式之一。

一切温度高于绝对零度的物体都能产生热辐射,温度愈高,辐射出的总能量就愈大,短波成分也愈多。

热辐射的光谱是连续谱,波长覆盖范围理论上可从0直至∞,一般的热辐射主要靠波长较长的可见光和红外线传播。

由于电磁波的传播无需任何介质,所以热辐射是在真空中唯一的传热方式。

三、热对流。

热对流是热传递的重要形式,它是影响火灾发展的主要因素:
1、高温热气流能加热在它流经途中的可燃物,引起新的燃烧。

2、热气流能够往任何方向传递热量,特别是向上传播,能引起上层楼板、天花板燃烧。

3、通过通风口进行热对流,使新鲜空气不断流进燃烧区,供应持续燃烧。

了解热传导对流和辐射

了解热传导对流和辐射

了解热传导对流和辐射热传导、对流和辐射是热量传递的三种基本方式。

了解热传导、对流和辐射的特点和应用场景,可以帮助我们更好地理解能量传递和热力学的相关概念。

一、热传导热传导是指热量通过物质内部的分子碰撞和传递来传导热量的方式。

在固体中,热传导是主要的热传递方式。

热传导的基本原理是高温区域的分子能量会传递给低温区域的分子,以达到热量平衡。

热传导的特点是传递速度较慢,传导距离受到限制。

固体的热传导取决于物质的热导率和物质的形态结构。

金属、玻璃等导热性能较好的物质能够快速传递热量,而木材、塑料等导热性能较差的物质传热速度较慢。

热传导广泛应用于许多领域,如绝缘材料中的隔热层、散热器、热工业中的传热设备等。

了解热传导的特点和机制,可以帮助我们设计更加高效的传热装置和材料。

二、对流对流是通过流体的流动来传递热量的方式。

对流传热主要发生在液体和气体中,涉及到流体的传热和传质过程。

对流传热的基本原理是通过流体的流动和热量的对流传递,使高温区域的流体带走热量,供给低温区域。

对流的特点是传递速度较快,传递距离较远。

对流传热受到流体性质、流速、流体接触面积等因素的影响。

例如,风扇散热器利用风扇的吹风和对流作用,加速散热,提高散热效果。

对流广泛应用于许多领域,如空调、散热器、自然界中的大气环流等。

了解对流的特点和机制,可以帮助我们更好地设计流体传热设备和改善环境热流动。

三、辐射辐射是热量通过电磁波的辐射传递的方式。

辐射传热不需要物质介质,可以在真空中传递热量,因此被广泛应用于真空环境和太空技术中。

辐射传热的基本原理是高温物体会发射热辐射能量,低温物体会吸收热辐射能量。

辐射的特点是传递速度最快,传递距离最远。

辐射传热的强度与物体的温度和波长有关,黑体辐射是研究辐射传热的理想模型。

辐射广泛应用于许多领域,如太阳能利用、辐射加热设备、红外线传感器等。

了解辐射的特点和机制,可以帮助我们更好地利用辐射能源和开发辐射传热技术。

在实际应用中,热传导、对流和辐射经常同时存在,相互作用。

传热学知识整理1-4章

传热学知识整理1-4章

绪 论一、概念1.传热学:研究热量传递规律的科学。

2.热量传递的基本方式:热传导、热对流、热辐射。

3.热传导(导热):物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。

(纯粹的导热只能发生在不透明的固体之中。

)4.热流密度:通过单位面积的热流量(W /m 2)。

5.热对流:由于流体各部分之间发生相对位移而产生的热量传递现象。

热对流只发生在流体之中,并伴随有导热现象。

6.自然对流:由于流体密度差引起的相对运功c7.强制对流:出于机械作用或其他压差作用引起的相对运动。

8.对流换热:流体流过固体壁面时,由于对流和导热的联合作用,使流体与固体壁面间产生热量传递的过程。

9.辐射:物体通过电磁波传播能量的方式。

10.热辐射:由于热的原因,物体的内能转变成电磁波的能量而进行的辐射过程。

11.辐射换热:不直接接触的物体之间,出于各自辐射与吸收的综合结果所产生的热量传递现象。

12.传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。

13.传热系数:表征传热过程强烈程度的标尺,数值上等于冷热流体温差1时所产生的热流密度)/(2k m W ⋅。

14.单位面积上的传热热阻:k R k 1=单位面积上的导热热阻:λδλ=R 。

单位面积上的对流换热热阻:h R 1=λ 对比串联热阻大小就可以找到强化传热的主要环节。

15.导热系数λ是表征材料导热性能优劣的系数,是一种物性参数,不同材料的导热系数的数值不同,即使是同一种材料,其值还与温度等参数有关。

对于各向异性的材料,还与方向有关。

常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。

16.表面换热系数h不是物性参数,它与流体物性参数、流动状态、换热表面的形状、大小和布置等因素都有关。

17.稳态传热过程(定常过程):物体中各点温度不随时间而变。

热辐射和热传导和热对流的传热效率

热辐射和热传导和热对流的传热效率

热辐射和热传导和热对流的传热效率
热辐射、热传导和热对流是三种常见的传热方式。

它们在自然界和工业生产中都有着广泛的应用。

然而,它们在传热效率方面有着巨大的差异。

首先来看热辐射。

热辐射是指物体由于其温度而发出的电磁辐射。

在热辐射传热过程中,传热介质是光,它不需要物质介质传递热量。

热辐射的传热效率取决于物体表面温度和表面的辐射特性。

当物体表面温度越高,辐射功率就越大,传热效率也越高。

另外,物体表面的辐射特性也对传热效率有影响。

表面的辐射特性可以通过表面发射率来描述,发射率越高,传热效率越高。

其次是热传导。

热传导是指热量从高温物体传递到低温物体的过程。

在热传导传热过程中,传热介质是物质,热量通过物质的分子间碰撞传递。

热传导的传热效率取决于物质的热导率、传热的面积和传热的距离。

物质的热导率越高,传热效率越高。

传热的面积越大,传热效率也越高。

传热的距离越小,传热效率也越高。

最后是热对流。

热对流是指热量通过流体传递的过程。

在热对流传热过程中,传热介质是流体,热量通过流体的对流传递。

热对流的传热效率取决于流体的对流传热系数、传热的面积和流体的流速。

流体的对流传热系数越大,传热效率越高。

传热的面积越大,传热效率也越高。

流体的流速越大,传热效率也越高。

综上所述,热辐射、热传导和热对流在传热效率方面各有优劣。

在不同的应用场景下,可以选择合适的传热方式来实现高效的传热。

传热学知识点总结(填空)

传热学知识点总结(填空)

1.热量传递的三种基本方式为热传导、热对流、热辐射。

2.热流量是指单位时间内所传递的热量,单位是W。

热流密度是指单位传热面上的热流量,单位W/m2。

3.总传热过程是指热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,它的强烈程度用总传热系数来衡量。

4.总传热系数是指传热温差为1K时,单位传热面积在单位时间内的传热量,单位是W /(m2·K)。

(传热温差为1K时,单位传热面积在单位时间内的传热量,W/(m2·K))5.导热系数的单位是W/(m·K);对流传热系数的单位是W/(m2·K);传热系数的单位是W/(m2·K)6.复合传热是指对流传热与辐射传热之和,复合传热系数等于对流传热系数与辐射传热系数之和,单位是W/(m2·K)。

7.单位面积热阻r t的单位是m2·K/W;总面积热阻R t的单位是K/W。

8.单位面积导热热阻的表达式为δ/λ9.单位面积对流传热热阻的表达式为1/h。

10.总传热系数K与单位面积传热热阻r t的关系为r t=1/K。

11.总传热系数K与总面积A的传热热阻R t的关系为R t=1/KA。

12.稳态传热过程是指物体中各点温度不随时间而改变的热量传递过程。

13.非稳态传热过程是指物体中各点温度随时间而改变的热量传递过程。

14.某燃煤电站过热器中,烟气向管壁传热的辐射传热系数为30W/(m2.K),对流传热系数为70W/(m2.K),其复合传热系数为100 W/(m2.K)15.由炉膛火焰向水冷壁传热的主要方式是热辐射。

16.由烟气向空气预热器传热的主要方式是热对流。

17.已知一传热过程的热阻为0.035K/W,温压为70℃,则其热流量为2kW。

18.一大平壁传热过程的传热系数为100W/(m2.K),热流体侧的传热系数为200W/(m2.K),冷流体侧的传热系数为250W/(m2.K),平壁的厚度为5mm,则该平壁的导热系数为5 W/(m.K),导热热阻为0.001(m2.K)/W。

物理教案:热传导、热对流、热辐射 (2)

物理教案:热传导、热对流、热辐射 (2)

物理教案:热传导、热对流、热辐射一热传导:物质的热传递方式之一热传导是物体内部由高温区向低温区传递热能的过程,它是固体和液体中热量传递的主要方式。

热传导的机制基于物质内部的分子振动和碰撞,通过传递能量的方式实现热量的传递。

热传导可以通过以下几个方面进行理解和描述。

1. 导热率和导热性导热率是衡量物体导热能力的物理量。

导热率高的物质传热速度快,相反,导热率低的物质传热速度慢。

不同物质的导热率存在较大差别,例如金属导热率高,而绝缘材料导热率较低。

导热性在设计教学实验时需要考虑,以便更好地展示热传导的原理。

2. 热传导方程和热传导路径热传导可以通过热传导方程进行描述。

热传导方程考虑了温度梯度、导热率和物体的几何形状等因素,可以分析物体内部热量传递的规律。

在教学中,可以通过热传导方程的推导来加深学生对热传导过程的理解。

热传导的路径是热量传递的路径。

在固体中,热量的传递往往耗时较长,因为固体的分子之间的相对位置不易改变。

同时,固体材料中的热传导路径通常是由连续的颗粒或晶体构成的。

教学中可以通过实验示范来说明孔隙材料或密度不均匀材料的热传导特点。

二热对流:流体传热的重要方式热对流是一种通过流体传递热能的方式。

不同于热传导,热对流依赖于流体的流动,通过流体分子的运动实现了热量的传递。

热对流的特点和应用在教学中有重要的意义。

1. 对流传热的条件和机理热对流的产生需要存在温差和流体的运动。

温差使流体产生密度差异,从而形成对流。

流体的运动则极大地加速了热量在流体中的传递。

通过对流传热的机理的讲解,可以使学生了解到流体运动和热传递之间的密切关系。

2. 自然对流和强迫对流自然对流是指由温差驱动的自然流体流动,例如热水的升温与下沉。

自然对流的传热速度较慢,受到流体自身性质的限制。

强迫对流是通过外部力的作用使流体发生流动,例如风扇引起的空气流动。

强迫对流在工程领域有广泛的应用,例如散热器的设计中。

三热辐射:热能的电磁辐射传递热辐射是一种基于热能电磁辐射的热传递方式。

热传导,热辐射,热对流

热传导,热辐射,热对流

dr
y θ x 2.1.3 球形坐标系的微分方程式 参见教材
2.2. 稳态热传导(steady-state conduction) 2.2.1. 一维(one dimension) 2.2.1.1平板 T1 T2
T 2T 2 x
d T 0 稳态时 2 dx
x
积分通式:
2
L
T c1x c2
煤仓
空气 脱氮
脱硫

煤燃烧发电工厂流程图
传热学的近代发展
研究问题的空间尺度增大,涉及的学科领域增多 计算机的应用
三种传热方式: T1>T2 Ts > T∞ T∞ T1>T2 T1
T1
T2
Ts T2
Conduction
Convection
Radiation
1.4.1 传导 傅立叶定律(Fourier law)
dT A dx
式中
Φ,热流量(J/s or W);
λ,热传导系数(J.m-1.K-1.s-1)
A,传热面积(m2) dT/dx,温度梯度(K.m-1) 热流量或热流密度 newton(N): m.kg.s-2; Joule(J): N.m; q = Φ /A pascal(Pa): N.m-2; watt(W): J.s-1
意义: 日常生活 → 各种工业生产(能源动力、冶金化工、 机械材料、电信交通、建筑、航天等) → 农业林业 工业革命:化石能源的利用(煤、石油和天然气)带来 了人类活动革命性的变化
大量消费化石能源造成的问题 能源利用的发展趋向:节能型、环保型、能源可再生型
燃烧炉
脱飞灰 烟囱
汽轮机 水蒸汽
发电机
V
1. 绪论 1.1 热的科学认识史

传热学知识点

传热学知识点

传热学主要知识点1. 热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5.牛顿冷却公式的基本表达式及其中各物理量的定义。

h 是对流换热系数单位 w/(m 2 k) q ''是热流密度(导热速率),单位(W/m 2) φ是导热量W6. 热辐射的特点。

a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

(w))(∞-=''t t h q w 2/)(m w t t Ah A q w ∞-=''=φ第一章 导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。

傅立叶定律(导热基本定律):dx dT k q x ∂∂-='' )(zT y T x T k T k q ∂∂+∂∂+∂∂-=∇-=''k j i T(x,y,z)为标量温度场nT k q n ∂∂-='' 圆筒壁表面的导热速率drdT rL k dr dT kA q r )2(π-=-= 垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热传导是热量从高温物体传向低温物体,或从物体的高温部分传至低温部分的过程,遵循傅立叶定律。热辐射则是物体以电磁波的形式向外发射热量的过程,无需介质即可进行,其辐射传热流量与物体的绝对温度的四次方成正比。二者均为热传递的重要方式,但机制不同。热传导依赖物体内部的温度梯度和往往同时存在,共同影响物体的热量传递过程。通过比较二者的定义、原理和特性,可以更好地理解它们在热传递中的作用和差异,为相关的工程应用提供理论支持。
相关文档
最新文档