2012年初中数学教师业务考试模拟试题2

合集下载

2012数学中考模拟试卷2.

2012数学中考模拟试卷2.

2012中考数学模拟试卷2考生须知:本科目试卷分试题卷和答题卷两部分 满分 分 考试时间 分钟答题前 必须在答题卷的密封区内填写姓名与准考证号所有答案都必须做在答题卷标定的位置上 务必注意试题序号和答题序号相对应考试结束后 只需上交答题卷试 题 卷一.仔细选一选☎本题有 个小题,每小题 分,共 分✆下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. .4-的算术平方根是 ☎ ✆ ✌ -   .下列运算正确是( )✌.222()a b a b +=+ .325a a a ⋅=.632a a a ÷= .235a b ab += .把2y x =的图象向右平移两个单位,再向下平移一个单位得到的函数关系式是( )✌.2(2)1y x =+- .2(2)1y x =-- .2(2)1y x =++ .2(2)1y x =-+.若一个图形绕着一个定点旋转一个角α(0180α<≤)后能够与原来的图形重合,那 么这个图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转 (如图),能够与原来的等边三角形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,旋转对称图形的个数是( )输入x 2x ≤输出y22y x =-5y x=是 否第 题✌. . . ..如图,是一条高速公路隧道的横截面,若它的形状是以 为圆心的圆的一部分,圆的半径 ✌ 米,高  米,则路面宽✌ ( ) ✌. 米 . 米 . 米 . 米.如图是某几何体的三视图及相关数据,则下列判断正 确的是( )✌.a c > .b c >.2224a b c += .222a b c += .如图,将一个 ♦ ✌形状的楔子从木桩的底端点沿水平方向打入木桩底下,使木桩向上运动 已知楔子斜面的倾斜角为 ,若楔子沿水平方向前进 ♍❍(如箭头所示),则木桩上升了( )♍❍✌. ♦♓⏹ . ♍☐♦. ♦♋⏹ .5tan 20 如图,要使输入的x 值与输出的y 值相等,则这样的x 值有( ) ✌. 个 . 个 . 个 . 个 .如图, ☜是 ✌的中位线,☞是 ☜的中点, ☞的延长线交✌ 于点☝,则✌☝:☝等于( )✌. . .  . 第 题✌第 题第 题✌♌♍主视图左视图第 题俯视图1B3A2B4A3B4BO✌第 题.如图,✌, , , 为圆 的四等分点,动点 从圆心 出发,沿 路线作匀速运动,设运动时间为⌧(♦). ✌ ⍓( ),右图函数图象表示⍓与⌧之间函数关系,则点 的横坐标应为( )✌.   .2π.12π+二.认真填一填☎本题有 个小题 每小题 分 共 分✆要注意认真看清题目的条件和要填写的内容 尽量完整地填写答案.甲、乙两人进行射击比赛,在相同条件下各射击 次,他们的平均成绩均为环, 次射击成绩的方差分别是:2 1.5S =甲,21.2S =乙,那么,射击成绩较为稳定的是 .(填❽甲❾或❽乙❾)如图,直线12l l ∥,AB CD ⊥,135∠=,那么2∠的 度数是 ..一只口袋中有 只红球和 个白球,它们除颜色外,无其它差 别 现从袋中任意摸出一个球,则摸到红球的概率是.有一个二次函数的图象,三位学生分别说出了它的一些特点。

教师考试数学试题

教师考试数学试题

2012年教师业务考试试卷初 中 数 学时间:120分钟 满分:120分一、选择题(本大题共10题,每小题3分,共计30分.)1.《中华人民共和国教师法》明确规定:教师进行教育教学活动,开展教育教学改革和实验,从事科学研究,是每个教师的 ( )A .权利B .义务C .责任D .使命2.中小学校贯彻教育方针,实施素质教育,实现培养人的教育目的的最基本途径是( ) A .德育工作 B .教学工作 C .课外活动 D .学校管理3.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .324.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为 ( )5.下列命题正确的是( ) A .两个等边三角形全等B .各有一个角是40°的两个等腰三角形全等C .对角线互相垂直平分的四边形是菱形D .对角线互相垂直且相等的四边形是正方形6.如图a 是长方形纸带,︒=∠20DEF ,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是 ( ) A .110° B .120° C .140° D .150°图a 图b图c1 3 21 A . B .C .D .7.已知⊙O 1与⊙O 2相切,⊙O 1的半径为3cm ,⊙O 2的半径为2cm ,则O 1O 2的长是( ) A .1 cm B .5 cm C .1 cm 或5 cmD .0.5cm 或2.5cm8.如图,A 、B 是第二象限内双曲线xky =上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =9.则k 的值为 ( ). A 6 B. -6 C. 4 D. -49.二次函数122-++=a x ax y 的图像可能是 (10.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =,BC =,CD =,则AD 边的长为( ). (A ) (B )(C )(D )二、填空题(本大题共6小题,每小题3分,共计18分.)11.教学设计主要包括以下几方面的内容 __________,__________ ,__________,__________ ,__________ 。

人教版版2012年中考数学模拟题(二)含答案

人教版版2012年中考数学模拟题(二)含答案

新世纪教育网精选资料版权全部@新世纪教育网2012 年中考数学模拟试题(二)含答案(满分 120 分钟,考试时间120 分钟 )一.选择题(每题 4 分,共 40 分)1. 不等式2- x>1 的解集是()A. x>1B. x<1C. x>-1D. x<-12. 如图,在△ ABC中,∠ C=90° ,AC=8cm, AB 的垂直均分线MN 交 AC于 D,连接 BD,若,则 BC的长是()A.4cmB.6cmC.8cmD.10cm3. 如图,设 M ,N 分别是直角梯形 ABCD 两腰 AD ,CB 的中点,DE上 AB 于点 E,将△ADE 沿 DE翻折, M 与 N恰巧重合,则 AE : BE 等于()A.2: 1B.1: 2C.3: 2D.2: 34. 对于 x 的一元二次方程kx2+2x-1=0有两个不相等的实数根 , 则 k 的取值范围是()A. k>- 1B. k>1C. k≠0D. k>- 1 且k≠05. 使用同一种规格的以下地砖,不可以密铺的是()A. 正六边形地砖B. 正五边形地砖C. 正方形地砖D. 正三角形地砖6.以下各图中,既是轴对称图形又是中心对称图形的是7.灯塔 A 在察看站 C 的北偏东 40°,灯塔 B 在察看站 C 的南偏东 60°,且两灯塔与察看站 C 的距离相等,则灯塔 A 在灯塔 B 的()A. 北偏西 10°B.北偏西20°C.南偏东10°D.南偏东20°8. 以下命题中错误的选项是()A. 平行四边形的对角相等B. 两条对角线相等的平行四边形是矩形C.等腰梯形的对角线相等D. 对角线相互垂直的四边形是菱形9.小华拿一个矩形木框在阳光下玩,矩形木框在地面上喜爱那形成的投影不行能...是)A B C D10. 已知:对于x 的一元二次方程x2-( +)x+2= 0 无实数根,此中、分别是⊙1、R r d R r O⊙O2的半径, d 为此两圆的圆心距,则⊙O1,⊙ O2的地点关系为()A. 外离B. 相切C.订交D. 内含二 .填空题(每题 3 分,共 24 分 )11. 把一个边长为 2 ㎝的立方体截成八个边长为 1 ㎝的小立方体 ,起码需截________次12. 假如梯形的上底长1cm,中位线长2 cm ,那么梯形的下底长是cm13. 一斜坡的坡度i =1∶, 假如在斜坡上行进了300 米,那么上涨高度等于米14.在△ ABC 中,点 D、E 分别在 AB、AC 边上,假如DE// BC,AD=1,AB=3,DE=2,那么BC =____________ .15.假如两个相像三角形的周长的比1∶3,那么他们的面积比是16.点 E, F 分别是矩形 ABCD的边 AB、AC的中点,连接 CE, BF,设 CE、BF交于点 G(如图).假如矩形 ABCD的面积是12,那么四边形 AEGF的面积是17.相切两圆的公切线条数为18.写出一个图象不经过第一象限的一次函数:________________.三.解答题(共 56 分 )19. 察看下边的等式 :2×2=4, 2+2=4×3=4,+3=4×4=5,+4=5×5=6,+5=6小明概括上边各式得出一个猜想:“两个有理数的积等于这两个有理数的和”,小明的猜想正确吗?为何?请你察看上边各式的构造特色,概括出一个猜想,并证明你的猜想。

2012年教师业务考试初中数学试题

2012年教师业务考试初中数学试题

2012年教师业务考试初中数学试题 (考试时间:90分钟 满分:100分)一、单项选择题:(本大题满分24分,每小题2分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.2011年4月28日,国家统计局公布了第六次全国人口普查结果,总人口为 1 339 000 000人,将1 339 000 000用科学记数法表示为( ) A .81.33910⨯B .813.3910⨯C .91.33910⨯D .101.33910⨯2.下面几何体的主视图是( )3、在1,2,3,-4这四个数中,任选两个数的积作为k 的值,使反比例函数x ky =的图象在第二、四象限的概率是( )A .41B .21C .32D .834.反比例函数y =-1-a 2x(a 是常数)的图象分布在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 5、如图,等腰梯形ABCD 中,AD ∥BC ,AB =DC =1,BD 平分∠ABC ,BD ⊥CD , 则AD+BC 等于( )A .2B .3C .4D .56、如图,正方形ABCD 的边长为2,点E 是BC 边的中点,过点B 作BG ⊥AE ,垂足为G ,延长BG 交AC 于点F ,则CF = .23210.已知:11+=x a (x ≠0且x ≠-1),)(1211a a -÷=,)(2311a a -÷=,…,)(1n n 11--÷=a a ,则2011a 等于( ). A.x B. x +1 C.x1- D.1+x x17.甲、乙俩射击运动员进行10次射击,甲的成绩 是7,7,8,9,8,9,10,9,9,9,乙的成绩 如图所示.则甲、乙射击成绩的方差之间关系是甲2S ______乙2S (填“<”,“=”,“>”).17.<;1 2 3 4 5 6 7 8 9 10- 次环78 9 10 第17题图18.如图,△ABC 中,∠ACB =90°,∠A =30°,将△ABC 绕C 点按逆时针方向旋转α角(0°<α<90°)得到△DEC 设CD 交AB 于F ,连接AD ,当旋转角α度数为_______,△ADF 是等腰三角形。

2012年中考数学模拟试卷(2)及答案.doc

2012年中考数学模拟试卷(2)及答案.doc

OABC112题图2012年中考数学模拟试卷二一、选择题(本题有10小题,每小题3分,共30分)1. 3的倒数是( )A .13B .— 13C .3D .—32.如图所示的物体的主视图是( )3.下列计算正确的是( )A .2a +3b =5abB .x 2·x 3=x 6C .123=-a aD .()632a a=4.浙江在线杭州2012年1月8日讯:预计今年整个春运期间铁路杭州站将发送旅客342.78万人,与2011年春运同比增长4.7%。

用科学记数法表示342.78万正确的是( ) A .3.4278×107 B .3.4278×106 C .3.4278×105 D .3.4278×104 5.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( ) A.相交B.内切C.外切D.内含6.如图,直线l 1//l 2,则α为( )A .150°B .140°C .130°D .120° 7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是( )A .79,85B .80,79C .85,80D .85,858.浙江省庆元县与著名的武夷山风景区之间的直线距离约为105公里,在一张比例尺为1:2000000的旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 9.抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1) 10.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x 和y 2=4x的图像交于点A 和点B.若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( )A .1B .2C .3D .4二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:ma+mb = . 12.如图,O 为直线AB 上一点,∠COB=30°,则∠1= . 13.如图,AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠AOD =50°,AD ∥OC ,则∠BOC = 度.14.三张完全相同的卡片上分别写有函数x y 2=、xy 3=、2x y =,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y 随x 的增大而增大的概率是 .15.如图,已知梯形ABCD 中,AD ∥BC ,BD 是对角线.添加下列条件之一:①AB =DC ;②BD 平分∠ABC ;③∠ABC =∠C ;④∠A +∠C =180°,能推得梯形ABCD 是等腰梯形的是 (填编号).16.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .BA图1 图2 图3三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)计算:()0|tan 45|122012π+-+o(2)当2x =-时,求22111x x x x ++++的值.18.(本题6分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:3≈1.732)l 1l 2 50° 70° α 24y x = 12y x= ACD(第15题)19.(本题6分)已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;20.(本题6分)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆¼ACB的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.21.(本题8分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(本题10分)产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销类别生产1千克成品茶叶所需鲜茶叶(千克)销售1千克成品茶叶所获利润(元)炒青 4 40毛尖 5 120(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”千克,采鲜茶叶“毛尖”千克.(2)若某天该茶厂工生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?23.(本题10分)定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S n.①若△DEF的面积为1000,当n为何值时,3<S n<4?(请用计算器进行探索,要求至少写出二次的尝试估算过程)②当n>1时,请写出一个反映S n-1,S n,S n+1之间关系的等式(不必证明)BC A图甲24.(本题12分)已知:在矩形A0BC 中,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.E 是边AC 上的一个动点(不与A ,C 重合),过E 点的反比例函数(0)ky k x=>的图象与BC 边交于点F .(1)若△OAE 、△OBF 的面积分别为S 1、S 2且S 1+S 2=2,求k 的值;(2)若OB=4,OA=3,记OEF ECF S S S =-△△问当点E 运动到什么位置时,S 有最大值,其最大值为多少?(3)请探索:是否存在这样的点E ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出点E 的坐标;若不存在,请说明理由.2012年中考数学模拟试卷二参考答案题次 12345678 9 10 答案A C DB B DCACA二、填空题(本题有6小题,每小题4分,共24分) 11. m(a+b);12. 150°;13. 65;14.23;15. ①③④;16. 1+2 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)原式=1+23-1=23(2)解:原式=2221(1)111x x x x x x +++==+++ 当2x =-时,原式1211x =+=-+=- (说明:直接代入求得正确结果的给满分) 18.(本题6分)解:∵灯罩BC 长为30cm ,光线最佳时灯罩BC 与水平线所成的角为30°, ∴sin30°=30CM BC CM =,∴CM=15cm .∵sin60°=BA BF ,∴23=40BF,解得BF=203,∴CE =2+15+203≈51.6cm .答:此时灯罩顶端C 到桌面的高度CE 是51.6cm .19.(本题6分)解:(1)y =x 2+2x +m=(x +1)2+m ﹣1,对称轴为x =﹣1,∵与x 轴有且只有一个公共点,∴顶点的纵坐标为0,∴C 1的顶点坐标为(﹣1,0);(2)设C2的函数关系式为y=(x+1)2+k,把A(﹣3,0)代入上式得(﹣3+1)2+k=0,得k=﹣4,∴C2的函数关系式为y=(x+1)2﹣4.∵抛物线的对称轴为x=﹣1,与x轴的一个交点为A(﹣3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0);20.(本题6分)(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,∴PB⊥AB.∴∠OPB+∠POB=90°.∵OP⊥BC,∴∠ABC+∠POB=90°.∴∠ABC=∠OPB.又∠AEC=∠ABC,∴∠OPB=∠AEC.(2)解:四边形AOEC是菱形.∵OP⊥弦BC于点D且交⊙O于点E,∴»CE=»BE.∵C为半圆ACB¯的三等分点,∴»AC=»CE=»BE.∴∠ABC=∠ECB.∴AB∥CE.∵AB是⊙O的直径,∴AC⊥BC.又OP⊥弦BC于点D且交⊙O于点E,∴AC∥OE.∴四边形AOEC是平行四边形.又OA=OE,∴四边形AOEC是菱形.21.(本题8分)解:(1)20, 2 ,1;(2)如图(3)选取情况如下:∴所选两位同学恰好是一位男同学和一位女同学的概率2163==P22.(本题10分)解:(1)设安排x人采“炒青”,20x;5(30-x).(2)设安排x人采“炒青”,y人采“毛尖”则30205(30)10245x yx x+=⎧⎪-⎨+=⎪⎩,解得:1812xy=⎧⎨=⎩,即安排18人采“炒青”,12人采“毛尖”.(3)设安排x人采“炒青”,205(30)11045205(30)10045x xx x-⎧+≤⎪⎪⎨-⎪+≥⎪⎩解得:17.5≤x≤20①18人采“炒青”,12人采“毛尖”.②19采“炒青”,11人采“毛尖”.③20采“炒青”,10人采“毛尖”.所以有3种方案.计算可得第(1)种方案获得最大利润.18×204×40+12×55×120=5040元最大利润是5040元.23.(本题10分)解:(1)正确画出分割线CD(如图,过点C作CD⊥AB,垂足为D,CD即是满足要求的分割线,若画成直线不扣分)理由:∵∠B = ∠B,∠CDB=∠ACB=90°∴△BCD ∽△ACB(2)①△DEF 经N阶分割所得的小三角形的个数为n41∴S =n41000,当n =3时,S3 =31000S≈15.62当n = 4时,S4 =41000S≈3.91 ∴当n= 4时,3 <S4<4②S 2 = S 1-n × S 1+n ,S 1-n = 4 S, S= 4 S 1+n 24.(本题12分)解:(1)∵点E 、F 在函数ky x=(k >0)的图象上, ∴设E (x 1,1k x ),F (x 2,2kx ),x 1>0,x 2>0, ∴111122k K S x x ==,S 2= 22122k K x x = , ∵S 1+S 2=2,∴22K K+=2,∴k =2; (2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴1111432234ECF S EC CF k k ⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭g △, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形 ∴11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△ ∴2112S k k =-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.此时,点E 坐标为(2,3),即点E 运动到AC 中点.(3)解:设存在这样的点E ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=o Q ,∴EMN MFB ∠=∠.又90ENM MBF ∠=∠=oQ ,∴ENM MBF △∽△.∴EN EM MB MF=,∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭, ∴94MB =. 222MB BF MF +=Q ,∴222913444k k ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.∴25438k EM EC ==-=,故AE=78. ∴存在符合条件的点E ,它的坐标为(78,3).。

2012年历年初三数学中考模拟复习考试题二及答案

2012年历年初三数学中考模拟复习考试题二及答案

AB OxyC D12cm13cm一.选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的。

)1. 9的算术平方根是 ( ▲ ) A .3 B .±3 C . 3 D .± 32. 下列运算中,结果正确的是 ( ▲ ) A .a 6÷a 3=a 2 B .(2ab 2)2=2a 2b 4 C . a ·a 2=a 3 D .(a+b)2=a 2+b 23. 函数y =1-x 中自变量x 的取值范围是 ( ▲ ) A. x ≥1 B. x ≥ -1 C. x ≤1 D. x ≤ -14.下列图形中,既是轴对称图形,又是中心对称图形的是 ( ▲ )5. 下列命题是假命题...的是 ( ▲ ) A .三角形的内角和是180 ° B .多边形的外角和都等于360° C .五边形的内角和是900° D .三角形的一个外角等于和它不相邻的两个内角的和6. 已知⊙O 1和⊙O 2的半径分别为2cm 和3cm ,两圆的圆心距为5cm ,则两圆的位置关系是( ▲ )A .外切B .外离C .相交D .内切 7. 在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,除了知道自己的成绩以外,还需要知道全部成绩的 ( ▲ ) A .平均数 B .众数 C .方差 D .中位数8. 如图是一个圆锥形冰淇淋,已知它的母线长是13cm ,高是12cm ,则这个圆锥形冰淇淋的底面面积是 ( ▲ ) A .π10cm 2 B .π25cm 2 C .π60cm 2 D .π65cm 29.如图,已知双曲线xy 3-=经过R t △OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .则△AOC 的面积为 ( ▲ ) A .9 B .6 C . 4.5 D .3 10.如图,四边形ABCD 中,DC ∥AB ,BC =1,AB =AC =AD =2,则BD 的长为( ▲ ) A .14 B .15 C .3 2 D .2 3BDAC(第10题图)(第9题图) (第16题图)(第8题图)第17题图二.填空题(本大题共8小题,每小题2分,共16分,不需写出解答过程,只需把答案直接填写在答题卡上相应的位置。

浙江省三门县教研室中小学教师命题评比2012年中考数学模拟考试试题2 浙教版

2012年学业水平测试适应性考试试卷九年级数学考生须知:1.全卷分试卷Ⅰ(选择题)、试卷Ⅱ(非选择题)和答题卡三部分.全卷满分150分,考试时间120分钟.试卷共10页,第Ⅰ卷1至2页,第Ⅱ卷3至10页.2.答题前,先用钢笔或圆珠笔在试卷Ⅱ规定位置上填写学校、某某、某某号;在答题卡规定栏中写上某某和某某号,然后用铅笔把答题卡上某某号和学科名称对应的括号或方框涂黑、涂满.3.答题时,将试卷ⅠⅡ的答案或解答过程直接做在试卷上.参考公式:二次函数c bx ax y ++=2(0≠a )图象的顶点坐标是)44,2(2ab ac a b --. 温馨提示:细心审题,认真答题,相信你定有出色表现!千万不要使用计算器哟!试卷I(选择题,共40分)一.选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)1、有理数12的相反数是( ) A . 12B .12-C .2 D .2-2. 下列运算正确的是 ( )(A)22x x x =⋅ (B)22)(xy xy = (C)632)(x x = (D)422x x x =+3.温家宝总理3月5日的政府工作报告中指出:“十一五”期间,我国.用科学记数法表示为()A .×1012B .×1014C .×10138×1014个一元一次不等式组的解集在数轴上的表示如下图,则该不等式组的解集是( )A .3x <B .13x -<≤C .1x ≥-D .13x -≤<5、如图2,是一个物体的俯视图,它所对应的物体是( ) )6、已知两圆的半径分别为3cm ,5 cm ,且其圆心距为7cm ,则这两圆的位置关系是( )(A )外切(B )相交(C )内切(D )相离7.下列说法正确的是( )(A )有效数字(B )方差越大,数据波动也越大(C )58°的余角是42°(D )投掷一枚硬币10次,“正面向上”一定出现 5次8.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为 () A .25° B .30° C .40° D .50°9、抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中错误的是( )A .抛物线与x 轴的一个交点为(3, 0)B .在对称轴左侧,y 随x 增大而增大C .抛物线的对称轴是直线12x = D .函数2y ax bx c =++的最大值为610、如图,正方形ABCD 中,连接BD .点E 在边BC 上,且CE=2BE .连接AE 交BD 于F ;连接DE ,取BD 的中点O ;取DE 的中点G ,连接OG .下列结论: ①BF=OF ;②OG ⊥CD ;③AB=5 OG ;④sin ∠AFD=552;⑤31=∆∆ABF ODG S S其中正确结论的个数是 ( )A . 2B . 3C . 4D . 52012年学业水平测试适应性考试试卷九年级数学试卷Ⅱ(非选择题,共110分)(第8题)ABO CD OABCFDE第10题图G请将答案或解答过程用蓝、黑色墨水的钢笔或圆珠笔写在本卷上. 二、填空题(本大题有6小题,每小题5分,共30分.) 11、函数21y x =-中自变量x 的取值X 围是____________m m 43- = ______________ .13. 亲爱的同学们,我们在教材中已经学习了:①等腰三角形;②等边三角形;③等腰梯形;④平行四边形;⑤正方形;⑥圆.在以上六种几何图形中,既是轴对称图形,又是中心对称图形的是.(只需填序号)14. 一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为_________________________(写出一个即可) 15.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都相等,如果直角梯形ABCD 的三个顶点在平行直线上,90=∠ABC 且AB=2AD , 则αtan =.16.如果一个数等于它的不包括自身的所有因数之和,那么这个数 就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n-是质数,那么)12(21--n n 是一个完全数,请你根据这个结论写出6之后的下两个完全数是三.解答题(本大题有8小题,第17~20小题每小题8分,第2l 小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程.)17.计算:(1)(1)233260tan ---+ (2)解分式方程:2235x x +-- 4 = 0αA BCD第15题图2l 1l3l 4l18、阅读材料:如果21x x 、是一元二次方程)0(02≠=++a c bx ax 的两根,那么,ab x x -=+21, acx x =21。

2012年南宁中考数学模拟试卷及答案(二)

2012年南宁中考数学模拟试卷及答案(二)姓名一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.“比a 的45大2的数”用代数式表示是( ) A. 45a +2 B. 54a +2 C. 49a +2 D. 45a -22.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .2,3,4B .5,5,6C .8,15,17D .9,12,133.计算tan 60452cos30︒-︒的结果是( )A .2B .C .1D4.已知⊙O 1的半径r 为8cm ,⊙O 2的半径R 为2cm ,两圆的圆心距O 1O 2为6cm ,则这两圆的位置关系是( )A .相交 B.内含 C.内切 D.外切5.甲、乙两人参加植树活动,两人共植树20棵,已知甲植树数是乙的1.5倍.如果设甲植树x 棵,乙植树y 棵,那么可以列方程组( ).A.⎩⎨⎧==+y x y x 5.2,20 B.⎩⎨⎧=+=y x y x 5.1,20 C.⎩⎨⎧==+y x y x 5.1,20 D.⎩⎨⎧+==+5.1,20y x y x6.如图△AOB 中,∠AOB =120°,BD ,AC 是两条高,连接CD ,若AB =4,则DC 的长为( )A .3B .2C .233 D .433 7. 若3a+2b=2,则直线y=kx+b一定经过点( ) A .(0,2) B .(3,2) C .(-32,2) D .(32,1)8. 若函数y =222x x x c--+ 的自变量x 的取值范围是全体实数,则c 的取值范围是A .c <1B .c =1C .c >1D .c≤1 二、填空题(每小题3分,共24分)9.若85b -互为相反数,则5()2ab-=___________。

10.以长为8,宽为6的矩形各边中点为顶点的四边形的周长为_________.11.一项工程,甲独做需12小时完成,若甲、乙合做需4小时完成,则乙独做需 小时完成。

2012年河北省中考数学模拟试卷二(含答案)

2012年河北省中考数学模拟试卷卷Ⅰ(此卷不交,把答案写在答题纸上)一、选择题(共12小题,每小题2分,满分24分) 1、3的相反数是( ) A 、3 B 、13 C 、13- D 、-3 2、下列图形中,能肯定∠1>∠2的是( )3、2011年我市小商品成交额首次突破450亿元大关,请将450 亿元用科学记数法表示(单位:元)( )A 、4.05×102B 、0.45×103C 、4.5×1010D 、4.5×10114、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠2的度数是---------------------------------------------------------------------------------------( )A .60°B .30°C .25°D .65°5、抛物线()223y x =-+-的顶点坐标是( ) A 、()2,3 - B 、()2,3- C 、()2,3 D 、()2,3- -6、如图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是( )7、下列计算正确的是( )A 、236a a a = B 、()()22222a b a b a b +-=- C 、()2326aba b = D 、523a a -=8、某市为处理污水,需要铺设一条长为4000m 的管道.为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设10m ,结果提前20天 完成任务.设原计划每天铺设管道xm ,则可得方程( )4题图9、根据如图的程序计算,若输入的x值为1,则输出的y值为()A、-2B、10C、12D、2610、如图,将边长为2的正方形ABCD各边四等分,把一长度为34的绳子一端固定在点A处,并沿逆时针方向缠绕正方形ABCD,则另一端点E将落在下列哪条线段上()A、CR1B、R1R2C、R2R3D、R3D11、如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()12、如图,已知点A的坐标为(3,3),AB⊥x轴,垂足为B,连接OA,反比例函数y=kx(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA 的54长为半径作圆,则该圆与x轴的位置关系是填“相离”、“相切”或“相交”).二、填空题(共6小题,每小题3分,满分18分)13、因式分解:ab2-25a= .14、函数:11yx=+中,自变量x的取值范围是.15、如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠P=50°,那么∠ACB等于度16、如图,矩形OABC的顶点坐标分别是(0,0),(4,0),(4,1),(0,1),在矩形OABC的内部任取一点(x,y),则x<y的概率是.10题图11题图12题图17、如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的 倍.18.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C 和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形A 2A 1B 2M ,对角线A 1M 1和A 2B 2交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3M 2,对角线A 1M 2和A 3B 3交于点M 3;…,依次类推,这样作的第n 个正方形对角线交点的坐标为M n .15题图16题图17题图18题图2012年河北省中考数学模拟试卷卷Ⅱ一、选择题(本大题共12个小题;每题2分,共24分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、选择题(本大题共6个小题;每题3分,共18分)13. ;14. ; 15. ;16. ;17. ;18. ; 三、解答题(本大题共8个小题;共76分) 19、计算:201202313(1)(3)27()2π--+-⨯--+20、如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上). (1)把△ABC 沿BA 方向平移后,点A 移到点A 1,在网格中画出平移后得到的△A 1B 1C 1; (2)把△A 1B 1C 1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A 1B 2C 2; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.21、某校开展了以“人生观、价值观“为主题的班队活动.活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调査(要求每位同学只选自己最认可的一项观点),并制成了如右扇形统计图.(1)该班学生选择“和谐”观点的有人,在扇形统计图中,“和谐“观点所在扇形区域的圆心角是°.(2)如果该校有1500名初三学生.利用样本估计选择“感恩”观点的初三学生约有人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查.求恰好选到“和谐“和“感恩“观点的概率(用树状图或列表法分析解答).22、杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?23、如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.24、理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.(1)如图1:当点M与B重合时,S△DCM= ;(2)如图2,当点M与B与A均不重合时,S△DCM= ;(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM= ;拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.25、为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a= ;b= ;m= ;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?26、如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.备用图参考答案及评分标准 一、选择(1-10每小题2分,11-12每小题3分,共26分)二、填空(每小题3分,共18分)13. ()()55a b b +- 14. 1x ≠- 15. 65︒ 16. 1817.()103 18. 121,22n n n -⎛⎫ ⎪⎝⎭19. 520.(1)(2)图略(3)2222π+21.(1)5、36︒(2)420 (3)图略. 概率为11022.(1)600 (2)200 23.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D CCCDACDBDAB24.25.26.。

2012年中考数学模拟试卷(二)及答案

2012年中考数学模拟试卷二态度决定一切,细节决定成败!一、选择题(本题共10小题,每小题3分,共30分) 1.-3的相反数是( ▲ )A .3B . -3C .31D .31-2.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ▲ )A.30°B. 40°C. 60°D. 70°3.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( ▲ )4.若反比例函数ky x=的图象经过点(1,3),则此反比例函数的图象在( ▲ ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限5.计算2(2)3a a -⋅的结果是( ▲ )A. 26a - B. 36a - C. 312a D. 36a6.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 5 6 人 数25431则这15名同学每天使用零花钱的众数和中位数分别是( ▲ )元A .3,3B .2,3C .2,2D .3,5 7.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2. 5米,底面半径为2米,则做这把遮阳伞需用布料的面积是( ▲ )平方米(接缝不计) A . π3 B .π4 C .π5 D .π4258.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( ▲ )A .2(1)y x =- B . 2(1)y x =+ C .21y x =- D .21y x =+ 9.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒AC BD E(第2题图)(第9题图)10.如图,在直角梯形ABCD中,AD∥BC,90C∠= ,cmBC10=,6cmCD=,2cmAD=,动点P、Q同时从点B出发,点P沿BA、AD、DC运动到点C停止,点Q沿BC运动到C点停止,两点运动时的速度都是1cm/s,而当点P到达点A时,点Q正好到达点C.设P点运动的时间为(s)t,BPQ△的面积为y2(cm).下图中能正确表示整个运动中y关于t的函数关系的大致图象是(▲)A. B. C. D.二、填空题(本题共6小题,每小题4分,共24分)11.比较大小:1-▲31(填“>”、“=”或“<”).12.若二次根式12-x有意义,则x的取值范围是▲.13.一元二次方程(3)0x x+=的解为▲.14.已知CBA,,是⊙O上不同的三个点,︒=∠60AOB,则=∠ACB▲15.已知双曲线2yx=,kyx=的部分图象如图所示,P是y轴正半轴上过点P作AB∥x轴,分别交两个图象于点,A B.若2PB PA=,则=k▲.16.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是▲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年初中数学教师业务考试模拟试题本卷满分150分,考试时间120分钟。

一、选择题(每小题5分,共40分,请将唯一正确的答案代号填在第3页的答题卷上)1. 使分式2x x xx ++的值为零的x 的一个值可以是 (A )-3 (B )-1 (C )0 (D )12. 如右图是初三(2)班同学的一次体检中每分钟心跳次数的频率分布直方图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察右图,指出下列说法中错误..的是( ) (A ) 数据75落在第2小组 (B ) 数据75一定是中位数(C ) 心跳为每分钟75次的人数占该班体检人数的112(D ) 第4小组的频率为0.1.3. 如右图三个半圆的半径均为R ,它们的圆心A 、B 、C 在一条直线上,且每一个半圆的圆心都在另一个半圆的圆周上,⊙D 与这三个半圆均相切,设⊙D 的半径为r ,则R :r 的值为(A )15:4 (B )11:3 (C )4:1 (D )3:14. 22x y ≠是x y ≠的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既非充分条件又非必要条件5. 某旅馆底层客房比二层客房少5间,某旅游团有48人,若全部安排住底层,每间住4人,房间不够;每间住5人,有的房间住不满.又若全部安排住二层,每间住3人,房间不够;每间住4人,有的房间没有住满.则这家旅馆的底层共有房间数为(A )9 (B )10 (C )11 (D )126. 已知线段AB=10,点P 在线段AB 上运动(不包括A 、B 两个端点),在线段AB 的同侧分别以AP 和PB 为边作正∆APC 和正∆BPD ,则CD 的长度的最小值为 (A )4 (B )5 (C )6 (D)51)7. 已知a 、b 是不全为零的实数,则关于x 的方程222()0x a b x a b ++++=的根的情况为 (A )有两个负根 (B )有两个正根 (C )有两个异号的实根 (D )无实根8. 已知点C 在一次函数2+-=x y 的图象上,若点C 与点A (-1,0)、B (1,0)构成Rt ΔABC ,则这样的点C 的个数为(A )1 (B )2 (C )3 (D )4次数人数59.5 69.5 79.5 89.5 99.5第2题图二、填空题(共5小题,每小题5分,共25分,将答案直接填在第三页的答题卷上)9. 多项式82422++-+y x y x 的最小值为 * . 10. 方程2233937x x x x +-=+-的全体实数根之积为 * .11. 如右图,已知点P 为正方形ABCD 内一点,且PA=PB=5cm ,点P 到边CD的距离也为5cm ,则正方形ABCD 的面积为 * cm 2.12. 如右图,已知半圆O 的直径AB=6,点C 、D 是半圆的两个三等份点,则弦BC 、BD 和弧 CD围成的图形的面积为 * .(结果可含有π)13. 若0=++c b a ,且c b a >>,则ac的取值范围为 * .22012年初中数学教师业务考试模拟试题答卷9. 10. 11. 12. 13.三、解答题(共7小题,满分85分.解答应写出必要文字说明、演算步骤和证明过程)14. (本题满分10分)设实数a 、b 满足0682=+-a a 及26810b b -+=,求1ab ab+的值.15. (本题满分10分)某制糖厂2003年制糖5万吨,如果平均每年的产量比上一年增加10%,那么从2003年起,约几年内可使总产量达到30万吨?(结果保留到个位,可使用计算器,没带计算器的老师可参考如下数据:46.11.14≈,61.11.15≈,772.11.16≈)(本题满分12分)已知O 为ΔABC 的外心,I 为ΔABC 的内心,若∠A+∠BIC+∠BOC=3980,求∠A 、∠BIC 和∠BOC 的大小.16. (本题满分12分)某企业投资100万元引进一条农产品加工线,若不计维修、保养费用,预计投产后每年可创利33万元,该生产线投产后,从第1年到第x 年的维修、保养费用累计为y 万元,且2y ax bx =+,若第1年的维修、保养费为2万元,第2年的为4万元 (1) 求二次函数y 的解析式.(2) 投产后,这个企业在第几年就能收回投资并开始赢利.PDCBA17.(本题满分13分)已知⊙O1和⊙O2外切于A(如图1),BC是它们的一条外公切线,B、C分别为切点,连接AB、AC,(1)求证:AB⊥AC(2)将两圆外公切线BC变为⊙O1的切线,且为⊙O2的割线BCD(如图2),其它条件不变,猜想∠BAC+∠BAD的大小,并加以证明.(3)将两圆外切变为两圆相交于A、D(如图3),其它条件不变,猜想:∠BAC+∠BDC的大小?并加以证明.18. (本题满分14分)如图,已知⊙O 的半径为1,AB 、CD 都是它的直径,∠AOD=600,点P 在劣弧 DB上运动变化, (1) 问∠APC 的大小随点P 的变化而变化?若不变化,说明理由,若变化,求出其变化范围. (2) 线段PA+PC 的长度大小随点P 的变化而变化?若不变化,说明理由,若变化,求出其变化范围.19. (本题满分14分)已知两个二次函数2y x bx a =++和2y x ax b =++(0)a b ≥>图象分别与x 轴都有两个交点,且这四个交点中每相邻的两点间的距离都相等,求实数a ,b 的值.2012年初中数学教师业务考试模拟试题参考答案二、共6小题,每小题5分,共30分) 9.3 10. 60 11. 64 12.32π 13. 212-<<-a c 三、解答题14. 解: 由于26810b b -+=,则0b ≠,则211()860bb-⨯+=(1分) 当1a b ≠时,,则a ,1b 为方程0682=+-x x 的两个根(3分),不妨设1x a =,21x b=, 则128x x +=,126x x =,(5分),所以21212122112()2164122663x x x x x x ab ab x x x x +--+=+===(7分) 当1a b =时,即1=ab ,因此1ab ab+=2.(10分)综上:当1a b ≠时,1ab ab + =326; 当1a b =时, 1ab ab+=2(10分) 注:没有综述但其它均正确者不扣分.另直接求出a,b 的值再计算也可以15. 解:设n a 表示制糖厂第n 年的制糖量(1分),则51=a ,1.152⨯=a ,231.15⨯=a ,…11.15-⨯=n n a (5分),显然{}n a 是公比为1.1的等比数列(7分),设n 年内的总产量达到30万吨,则301.11)1.11(5=--n (9分),则6.11.1=n,所以5=n (11分),答:经过5年可使总产量达到30万吨.(12分)16. 解: 当∠A 090≤时,显然∠BOC=2∠A,(1分) ∠BIC=1800-∠IBC -∠ICB=1800-21(∠ABC+∠ACB)= 1800-21(1800-∠A)=900+21∠A (2分) 由于∠A+∠BIC+∠BOC=3980,则∠A+900+21∠A+2∠A=3980 (3分) 解之得∠A=880 (4分)∴∠BOC=2∠A=1760(5分) ∠BIC=900+21∠A=1340 (6分)当∠A 为钝角时,∠BOC=2(1800-∠A )=3600-2∠A(7分),∠BIC=900+21∠A (8分),则∠A+900+21∠A+3600-2∠A=3980,解得∠A=1040(9分),∠BOC=3600-2∠A=1520(10分),∠BIC=900+21∠A=1420(11分)故∠A=880,∠BOC=1760, ∠BIC=1340或∠A=1040,∠BOC=1520, ∠BIC=1420(12分)注:只有一个正确结果者扣6分. 17.解: (1) 依题意得⎩⎨⎧+=+=+24242b a b a ,(2分)解之得⎩⎨⎧==11b a (4分)即函数解析式为2y x x =+(6分).(2)当10033≥-y x 时方能收回投资并开始赢利(8分),即2321000x x -+≤(8分),显然3=x 不是不等式的解,而4=x 是不等式的解(11分),因此投产后,这个企业在第4年就能收回投资并开始赢利.(12分)18.(1) 证明:过A 作两圆的内公切线,交BC 于D,则由切线的性质知DB=DA=DC ,则三角形ABC 为直角三角形.即AB ⊥AC (3分)(2)猜想:∠BAC+ ∠BAD=1800(4分)证明:过点A 作两圆的内公切线,交BC 于E ,由切线的性质得, ∠BAC=∠BAE+∠EAC=∠ABC+∠ADC (7分),因此 ∠BAC+∠BAD=∠ABC+∠ADC+∠BAD=1800(8分)(3)猜想:∠BAC+ ∠BDC=1800(9分),连结AD ,由于BC 是它们的一条外公切线,由切线的性质得,则∠BAC=∠BAD+∠DAC=∠DBC+∠DCB (12分),所以∠BAC+∠BDC=∠DBC+∠DC B+∠BDC =1800(13分).19.解:(1)∠APC=12∠AOC=12(180060-0)=600,它不会随着点P 的变化而变化.(3分)(2)解法1:设AP 与CD 交于M ,PC 与AB 交于N ,连结BC ,易证ΔAMO ≌ΔCNB ,∴AM=CN ,MO=NB ,(5分)又∠AOD=∠APN ,∠MAO=∠NAP=600,∴ΔAMO ∽ΔANP ,∴APAOAN AM =,即AN AO AP AM ⋅=⋅①(7分)同理CM CO CP CN ⋅=⋅,亦即CM AO CP AM ⋅=⋅②(9分),①+②得,311(1)()(=+++=+++⨯=+⋅=+⋅NB ON OM CO ON AO CM AN AO PC PA AM ,∴ AM PC PA 3=+(11分),而≤23AM 1≤(12分),因此3≤PA+PC ≤故PA+PC 的值会随着点P 的变化而变化,其变化范围为3≤PA+PC ≤分)解法2:由于三角形AOC 为等腰三角形,且∠AOC=1200,AO=OC=1,因此(5分),在ΔAPC 中,由余弦定理得:2222cos60AC AP PC APPC =+-,即223AP PC AP PC +-= ,因此2()33AP PC AP PC +=+ (8分),要确定AP+PC 有无变化或其变化范围,只需研究AP PC 的值有无变化或其变化范围,而01sin 602APC S AP PC ∆=,故只需ΔAPC 的面积有无变化或其变化范围.由于底边AC 为定值,点P 在 DB上运动,则点P 到AC 的距离是变化的,因此ΔAPC 的面积是变化的,从而AP PC 的值也是变化的,且随点P 到AC 的距离的增大而增大(10分),由于点P 到AC 的距离的最大值为32,此时点P 为 DB 的中点,三角形APC 为正三角形,PA+PC的值为(11分).点P 到AC 的距离的最小值为1,此时点P 与点D 或点B 重合,PA+PC 的值为3(12分),因此,PA+PC 值的变化范围为3≤PA+PC ≤13分)注: 1、本题能得出结果但不能证明者扣分.2、本题还可以用O 、M 、P 、N 四点共圆、高中解析几何方法等方法证明20.解:设函数2y x ax b =++与x 轴的两个交点坐标分别为A )0,(1x ,B )0,(2x 且21x x <(1分),函数2y x bx a =++与x 轴的两个交点坐标分别为C )0,(3x ,D )0,(4x ,且43x x <(2分),则,021≤-=+a x x ,021<=b x x 则01<x ,02>x (4分),同理,043>-=+b x x ,043≥=a x x 则03≥x ,04>x (6分),则A 、B 、C 、D 在x 轴上的左右顺序为A ,B ,C ,D 或A ,C ,B ,D 或A ,C ,D ,B (7分)若按A ,C ,D ,B 的顺序排列,则AC=CD=DB ,则有2413x x x x -=-,即4321x x x x +=+,即b a -=-,与假设(0)a b ≥>矛盾,此不可能.(9分)若按A 、B 、C 、D 的顺序排列,则233412x x x x x x -=-=-,由于2422,1ba a x -±-=,2424,3ab b x -±-=,则a b b a 4422-=-∴0)4)((=++-b a b a ,而b a >, ∴ 04=++b a ,又4232x x x +=,则2424242222ab b b a a a b b -+-+-+-=---⨯, 化简得:b a a b b a 44322-+-=+,即444322-=-+-b a a b ,此不可能(11分) 若按A 、C 、B 、D 的顺序排列,则243213x x x x x x -=-=-,则有3412x x x x -=-,且2213x x x +=,因此a b b a 4422-=-,∴0)4)((=++-b a b a ,而b a >,∴04=++b a ,又1232x x x +=,则a ab b -=---⨯2422,解之得0=a 或4-=a (13分),而0≥a ,∴0=a ,4-=b ,经经验,0=a ,4-=b 满足题设要求.故0=a ,4-=b 为所求(14分).。

相关文档
最新文档