数学建模遗传算法与优化问题【精品毕业设计】(完整版)
遗传算法与优化问题

遗传算法与优化问题在我们生活的这个复杂世界里,优化问题无处不在。
从如何规划物流运输的最佳路线,以降低成本和提高效率,到设计更节能的建筑物布局,再到优化生产线上的工序安排,以增加产量和保证质量,这些都属于优化问题的范畴。
而在解决这些问题的众多方法中,遗传算法以其独特的魅力和强大的能力脱颖而出。
那什么是遗传算法呢?简单来说,遗传算法就像是大自然中生物进化的过程。
它模仿了生物的遗传、变异和自然选择的机制,通过一代代的“繁衍”和“淘汰”,逐渐找到问题的最优解。
想象一下有一群“个体”,每个个体都代表着问题的一个可能的解决方案。
这些个体就像是生物界中的各种生物,它们有着不同的特征和“适应能力”。
在遗传算法中,这个“适应能力”就是根据问题的目标和约束条件来评估的。
比如,如果我们要解决一个寻找最短路径的问题,那么路径越短的个体,其适应能力就越强。
接下来,就像生物通过交配繁殖产生下一代一样,这些个体也会进行“交配”。
这个过程被称为交叉操作。
两个优秀的个体通过交换部分信息,产生新的个体,这些新个体有可能继承了父母双方的优点,从而具有更好的性能。
同时,还会发生变异。
就像生物在遗传过程中会出现基因突变一样,个体的某些特征会随机发生变化。
这种变异虽然可能会产生不太好的个体,但也有可能带来意想不到的惊喜,创造出更优秀的解决方案。
然后,根据适应能力的评估,那些适应能力差的个体就会被淘汰,而适应能力强的个体则有更多的机会参与到下一代的繁衍中。
这样,经过一代又一代的进化,最终会找到适应能力最强的个体,也就是问题的最优解或者接近最优解。
那么,遗传算法在哪些领域能够大显身手呢?让我们先来看看工程领域。
在电路设计中,工程师们需要确定电子元件的最佳布局和参数设置,以实现电路的最佳性能。
使用遗传算法,可以自动搜索巨大的设计空间,找到最优的设计方案,大大节省了时间和成本。
在制造业中,生产计划的优化是一个关键问题。
如何安排生产任务、分配资源,以满足订单需求、最小化生产成本并缩短生产周期,遗传算法可以为企业提供有效的解决方案。
遗传算法解决TSP问题【精品毕业设计】(完整版)

GA(Fitness,Fitness_threshold,p,r,m)
Fitness:适应度评分函数,为给定假设赋予一个评估分数
Fitness_threshold:指定终止判据的阈值
p:群体中包含的假设数量
r:每一步中通过交叉取代群体成员的比例
m:变异率
初始化群体:P←随机产生的p个假设
在本程序的TSP问题中一共有20个城市,也就是在图模型中有20个顶点,因此一个染色体的长度为20。
3.3适应函数f(i)
对具有n个顶点的图,已知各顶点之间( , )的边长度d( , ),把 到 间的一条通路的路径长度定义为适应函数:
对该最优化问题,就是要寻找解 ,使f( )值最小。
3.4选择操作
选择作为交叉的双亲,是根据前代染色体的适应函数值所确定的,质量好的个体,即从起点到终点路径长度短的个体被选中的概率较大。
(2)交叉(Crossover):对于选中进行繁殖的两个染色体X,Y,以X,Y为双亲作交叉操作,从而产生两个后代X1,Y1.
(3)变异(Mutation):对于选中的群体中的个体(染色体),随机选取某一位进行取反运算,即将该染色体码翻转。
用遗传算法求解的过程是根据待解决问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异操作。如果满足收敛条件,此种群为最好个体,否则,对产生的新一代群体重新进行选择、交叉、变异操作,循环往复直到满足条件。
3.变异:使用均匀的概率从Ps中选择m%的成员.对于选出的每个成员,在它表示中随机选择一个为取反
4.更新:P←Ps
5.评估:对于P中的每个h计算Fitness(h)
从P中返回适应度最高的假设
3.
3.1 TSP问题的图论描述
优化问题模型遗传算法

遗传算法是一种基于生物进化原理的优化算法,主要包括三个基本过程:复制、交叉和变异。
1. 复制:从旧群体中选择适应度高的个体,在下一代中更可能被保留下来。
2. 交叉:通过两个个体的交换组合,产生新的优良品种。
交叉又有单点交叉、两点交叉、一致交叉、顺序交叉和周期交叉,其中单点交叉运用最广。
单点交叉:任意选择两个染色体,随机选择一个交换点位置,交换两个染色体右边的部分。
3. 变异:变异运算用来模拟生物在自然的遗传环境中因为各种偶然因素引起的基因突变。
算法中以很小的概率随机改变(染色体某一位置)的值,表现为随机将某一基因1变为0,0变为1。
以上是遗传算法的大致过程,其基本步骤在实际应用中可能会根据问题特性进行调整。
同时请注意,遗传算法虽然是一种有效的全局优化方法,但并不能保证找到最优解,且找到的最优解可能与实际的最优解有所偏差。
Matlab中的遗传算法与优化问题求解

Matlab中的遗传算法与优化问题求解引言在当今科技发展的时代,生物学相关领域的进展催生了一种名为遗传算法的计算模型。
遗传算法是一种模拟生物进化过程的优化算法,通过模拟遗传、变异和选择等环节,不断迭代搜索最优解。
而Matlab作为一种强大的数值计算软件,提供了丰富的工具和函数库,可以便捷地实现遗传算法,用于解决各类优化问题。
本文将探讨Matlab中的遗传算法以及其在优化问题求解中的应用。
一、遗传算法概述遗传算法(Genetic Algorithm, GA)是一种模拟自然界进化过程的优化算法。
它的基本思想源自生物学中的进化理论,通过模拟遗传、交叉、变异和选择等操作,不断迭代生成更优解。
遗传算法的主要步骤包括:1.初始化种群:根据问题定义,初始化一组个体,组成初始种群。
2.适应度评估:对每个个体计算适应度,即衡量其优劣的指标。
适应度越高,个体就越优秀。
3.选择操作:根据每个个体的适应度,进行选择操作,确定待进入下一代的个体。
4.遗传操作:通过遗传操作,包括交叉和变异,生成下一代个体。
5.替换操作:用新一代的个体替换上一代,更新种群。
6.终止条件:判断是否满足停止条件,如达到最大迭代次数或找到满意解等。
7.返回最优解:返回适应度最高的个体作为最优解。
二、Matlab中的遗传算法工具箱Matlab提供了一系列的遗传算法工具箱,包括遗传算法优化函数(GA)和遗传算法模板(GAToolbox)。
通过这些工具,可以方便地实现遗传算法的各个步骤,并进行优化问题求解。
1.初始化种群在Matlab中,可以使用rand和randi函数生成随机数作为初始种群的个体值。
根据问题的不同,可以定义个体为一维向量、二维矩阵等形式。
2.适应度评估适应度函数是遗传算法中一个重要的部分,用于评估每个个体的优劣。
在Matlab中,可以通过定义一个适应度函数来计算每个个体的适应度值。
根据问题的具体情况,适应度函数可以是多元函数、约束函数等。
遗传算法解决函数优化问题

实验一 遗传算法解决函数优化问题一、实验目的1.掌握遗传算法的基本原理和步骤。
2. 复习VB 、VC 的基本概念、基本语法和编程方法,并熟练使用VB 或VC 编写遗传算法程序。
二、实验内容1. 上机编写程序,解决以下函数优化问题:()1021min 100i i i f x x =⎛⎫=≤ ⎪⎝⎭∑X2. 调试程序。
3. 根据实验结果,撰写实验报告。
三、实验原理遗传算法是一类随机优化算法,但它不是简单的随机比较搜索,而是通过对染色体的评价和对染色体中基因的作用,有效地利用已有信息来指导搜索有希望改善优化质量的状态。
标准遗传算法流程图如下图所示,主要步骤可描述如下: ① 随机产生一组初始个体构成初始种群。
② 计算每一个体的适配值(fitness value ,也称为适应度)。
适应度值是对染色体(个体)进行评价的一种指标,是GA 进行优化所用的主要信息,它与个体的目标值存在一种对应关系。
③ 判断算法收敛准则是否满足,若满足,则输出搜索结果;否则执行以下步骤。
④ 根据适应度值大小以一定方式执行复制操作(也称为选择操作)。
⑤ 按交叉概率p c 执行交叉操作。
⑥ 按变异概率p m 执行变异操作。
⑦ 返回步骤②。
图1.1 标准遗传算法流程图四、程序代码#include <stdio.h>#include <math.h>#include <stdlib.h>#include<time.h>#define byte unsigned char#define step 200 //步长#define MAX 50#define N 10 //随机数个数#define Pc 0.74 //被选择到下一代的概率,个数=Pc*N,小于N 下一代数=上一代,不用处理#define Pt 0.25 //交叉的概率,个数=Pt*N 舍,小于N 0~(n2+1)随机数,之后部分开始交叉#define Pm 0.01 //变异的概率,个数=Pm*N*n2 入,小于N 0~(N*(n2+1))随机数/(n2+1)=个体,0~(N*(n2+1))随机数%(n2+1)=该个体基因位置#define n2 15//2的15次方,共16位#define next_t (int)(Pt*N)//交叉个数#define next_m (int)(Pm*N+1)//变异个数向后约等于#define e 0.001//次数限制阈值/*int N=10; //随机数个数float Pc=0.74; //被选择到下一代的概率,个数=Pc*N,小于N 下一代数=上一代,不用处理float Pt=0.25; //交叉的概率,个数=Pt*N 舍,小于N 0~(n2+1)随机数,之后部分开始交叉float Pm=0.01; //变异的概率,个数=Pm*N*n2 入,小于N 0~(N*(n2+1))随机数/(n2+1)=个体,0~(N*(n2+1))随机数%(n2+1)=该个体基因位置*/bytebitary[N][n2+1],bitary0[N][n2+1];//二进制int src1[N];float ShowType(int a);//表现型void BinNum(int a);//二进制位数n2 float fit_func(float a);//适应度void DecToBin (int src,int num);//十进制转二进制void BinToDec (void);//十进制转二进制int selectT(float a,float b[10]);//选择交叉个体int selectM(float a,float b[10]);//选择变异个体void main(void){//范围是[-100,100]*************************** intsrc[N],i=0,j=0,k=0,count=0;//十进制float show[N];//表现型float fit[N],sumfit=0;//适应度float pcopy[N];//优胜劣汰,遗传到下一代的概率fit[i]/总和(fit[i]) float pacc[N];//pcopy[i]累加概率值float prand[N];//随机产生N个0~1的下一代概率int iselect;//根据概率选择到的个体序号int new_select[N];//根据概率选择到的个体int new_T[next_t],new_M[next_m];float min,min1;printf("随机数(原始母体),表现型, 适配值\n");srand( (unsigned)time(NULL) );for(i=0;i<N;i++){src[i]=rand()%32768;//rand()%201-100===>-100~100的十进制随机数随时间递增show[i]=ShowType(src[i]);//转化成表现型fit[i]=fit_func(show[i]);//计算各个适配值(适应度)sumfit=sumfit+fit[i]; //种群的适应度总和printf("%5d, %f, %f\n",src[i],s how[i],fit[i]);}printf("\n第%d代适配总值\n%f\n",count,sumfit);//第0代count++;min=sumfit;printf("\n遗传到下一代的概率\n");for(i=0;i<N;i++){pcopy[i]=fit[i]/sumfit;printf("%f, ",pcopy[i]);}// 求选择(被复制)的累加概率,用于轮盘赌产生随机数区域,选择下一代个体printf("\n遗传到下一代的累加概率\n");pacc[0]=pcopy[0];for(i=1;i<N;i++){pacc[i]=pacc[i-1]+pcopy[i];printf("%f, ",pacc[i]);}//每个src[N]都随机取其中一个pcopy,取得的值pcopy[i]跟pcopy概率大小有关//模拟轮盘赌方式选择新一代printf("\n\n新产生的第%d代,表现型, 适配值\n",count);srand( (unsigned)time(NULL) );for(i=0;i<N;i++){prand[i]=(float)( (rand()%101)*0.01 );//0~1的十进制小数,精确到0.01iselect=selectT(prand[i],pacc);new_select[i]=src[iselect];//产生的新一代,十进制show[i]=ShowType(new_select[i]);/ /转化成表现型fit[i]=fit_func(show[i]);DecToBin (new_select[i],i);sumfit=sumfit+fit[i]; //种群的适应度总和printf(" %d %f %f\n",new_selec t[i],show[i],fit[i]);}printf("\n第%d代适配总值\n%f\n",count,sumfit);//第1代min1=sumfit;if (min>sumfit){min1=min;min=sumfit;}while(fabs(min-min1)>e&&count<MAX ){//从新一代选择个体交叉printf("\n随机产生交叉个体号");srand( (unsigned)time(NULL) );for(i=0;i<2;i++) //简单起见交叉数设为2{new_T[i]=rand()%N;//0~10的十进制数产生的交叉个体if (i>0)//两个不同个体交叉while(new_T[i]==new_T[i-1])new_T[i]=rand()%N;printf("%d, ",new_T[i]);}srand( (unsigned)time(NULL) );//随机产生交叉位置k=rand()%n2;//0~14的十进制数printf("\n随机产生交叉位置 %d\n",k);printf("\n原编码\n");for(j=n2;j>=0;j--)printf("%c",bitary[new_T[0]][j]);printf("\n");for(j=n2;j>=0;j--)printf("%c",bitary[new_T[1]][j]);printf("\n位置%d后交叉编码\n",k);char temp;for(i=k+1;i<n2+1;i++)//交叉{temp=bitary[new_T[0]][i];bitary[new_T[0]][i]=bitary[new_T[ 1]][i];bitary[new_T[1]][i]=temp;}for(j=n2;j>=0;j--)printf("%c",bitary[new_T[0]][j]);printf("\n");for(j=n2;j>=0;j--)printf("%c",bitary[new_T[1]][j]);//从新一代选择个体变异printf("\n随机产生变异个体号");srand( (unsigned)time(NULL) );for(i=0;i<1;i++) //简单起见变异数设为1个{new_M[i]=rand()%N;//0~9的十进制数产生的变异个体k=rand()%(n2+1);//0~15的十进制数printf("%d\n编码位置 %d\n原编码\n",new_M[i],k);for(j=n2;j>=0;j--)printf("%c",bitary[new_M[i]][j]);if(bitary[new_M[i]][k]=='0')//变异取反bitary[new_M[i]][k]='1';elsebitary[new_M[i]][k]='0';printf("\n位置%d变异后编码\n",k);for(j=n2;j>=0;j--)printf("%c",bitary[new_M[i]][j]);}printf("\n");count++;//新的bitary即产生第二代printf("\n新产生的第%d代\n",count);for(i=0;i<N;i++){for(j=n2;j>=0;j--)printf("%c",bitary[i][j]);printf("\n");}BinToDec ();//二进制转十进制 for(i=0;i<N;i++){new_select[i]=src1[i];show[i]=ShowType(src[i]);//转化成表现型fit[i]=fit_func(show[i]);//计算各个适配值(适应度)sumfit=sumfit+fit[i]; //种群的适应度总和printf("%5d, %f, %f\n",src1[i], show[i],fit[i]);}printf("\n第%d代适配总值\n%f\n",count,sumfit);if (sumfit<min){min1=min;min=sumfit;}}printf("\n\n\n*****************\n over\n*****************\n",sumfit);}//////////////////////////子函数////////////////float ShowType(int a){float temp;temp=(float)(a*200.0/32767-100);/ /(2的15次方减1)=32767return temp;}float fit_func(float a){float temp;temp=a*a;return temp;}void DecToBin (int src,int num){int i;//注意负数的补码if (src<0){src=(int)pow(2,16)-abs(src);}for (i=0;i<=n2;i++){bitary[num][i]='0';bitary0[num][i]='0';if(src){bitary[num][i]=(src%2)+48;bitary0[num][i]=(src%2)+48;src=(int)(src/2);}}}void BinToDec (void){int i,j;for(i=0;i<N;i++){src1[i]=0;for(j=0;j<n2+1;j++){src1[i]=src1[i]+(bitary[i][j]-48) *(int)pow(2,j);}}}int selectT(float a,float b[10]) {int i;for(i=0;i<N;i++){if (a<b[i])return i;}return -1;} 五、实验结果分析:随机性大,精度不高六、实验心得理论指导实践,在实践中得以提高。
遗传算法及其改进设计

[2]朱灿.实数编码遗传算法机理分析及算法改进研究[D].中南大学,博士学位论文, 2009.
[3]许琦.基于遗传算法的高校排课问题的研究[D].华南理工大学,硕士学位论文, 2012.
系审核意见
负责人(签名)————————
备注:1、本任务书一式三份,系、指导教师、学生各执一份。
2、学生须将此任务书作为毕业论文(设计)说明书的附件,装订在说明书中。
(1)研究掌握遗传算法的原理;
(2)设计实现遗传算法的C语言程序;
(3)研究掌握通过matlab遗传算法工具箱进行问题优化的方法;
(4)分析普通遗传算法的缺点,并提出算法改进措施,并用matlab语言和遗传算法工具箱实现;
(5)对一些标准测试函数,用提出的改进算法进行优化,检验算法结果;
(6)选定某实际问题(可使用UCI机器学习数据库数据),用遗传算法进行优化;
工作阶段(包括时间划分和各阶段主要工作内容)
一、2012年12月查阅文献资料,确定设计方向;
二、1月至3月确定设计的研究方法并提交开题报告;
三、2013年1月至2013年3月完成毕业设计作品;
四、2013年4月完成毕业论文初稿。
五、2013年5月日,完成最终毕业论文。
其它要求(包括文献研究、实验实习等方面)
毕业论文(设计)任务书
学生姓名
学号
专业班级
指导教师
职称
题目
遗传算法及其改进设计
研究(设计)任务(包括目标和要求)
1、根据设计(论文)选题,查阅相关技术书籍、学校图书馆网站数据库文献资料,进一步明确选题的目的、意义和应用领域;
2、பைடு நூலகம்据选题进行理论验证,补充掌握进行设计需要补充的知识;
数学建模遗传算法例题

数学建模遗传算法例题数学建模是指通过数学模型来解决现实世界中的问题。
而遗传算法是一种基于演化论的优化方法,通过模拟自然界中的生物遗传进化过程来求解问题。
在数学建模中,遗传算法常常被用来寻找最优解或者优化模型参数。
下面是一个数学建模中使用遗传算法的例题:某公司要在一条河流上建造一座桥,河流宽度为W,建造桥的费用为C,桥的长度为L,桥的最大承重能力为P,桥的强度与长度成正比,与费用成反比,与承重能力成正比。
求出桥的最佳长度和费用。
解题思路:1. 建立数学模型:设桥的长度为x,费用为y,则桥的强度为k(x,y),承重能力为p(x,y)。
由题可知,强度与长度成正比,与费用成反比,与承重能力成正比,即:k(x,y) = k1*x/k2*yp(x,y) = p1*x/p2*y其中k1、k2、p1、p2为常数。
2. 确定适应度函数:适应度函数是遗传算法中非常重要的一部分,它用来评价染色体的优劣。
在本题中,适应度函数可以定义为:f(x,y) = 1/k(x,y) * p(x,y) / C其中,C为建造桥的费用。
3. 设计遗传算法流程:(1) 初始化种群:随机生成一批长度和费用的染色体,并计算其适应度。
(2) 选择操作:根据适应度函数选择优秀个体,并进行交叉和变异操作,得到新一代染色体群体。
(3) 计算适应度:计算新一代染色体的适应度。
(4) 终止条件:当符合一定的停止条件时,停止运行遗传算法。
(5) 输出结果:输出最优解。
4. 编写代码:在实际运用中,可以使用Python语言来实现遗传算法,并求解出桥的最佳长度和费用。
代码如下:import randomW = 100 #河流宽度C = 100000 #建造桥的费用k1, k2, p1, p2 = 1, 1, 1, 1 #常数#初始化种群def init_population(population_size):population = []for i in range(population_size):x = random.randint(1, W)y = random.randint(1, C)population.append((x,y))return population#计算适应度def fitness(x, y):k = k1 * x / k2 * yp = p1 * x / p2 * yreturn 1 / k * p / C#选择操作def selection(population, elite_size):population_fitness = [(x, y, fitness(x, y)) for x, y in population]population_fitness_sorted = sorted(population_fitness, key=lambda x: x[2], reverse=True)elite = population_fitness_sorted[:elite_size]return elite#交叉操作def crossover(parents):parent1, parent2 = parentschild1 = (parent1[0], parent2[1])child2 = (parent2[0], parent1[1])return [child1, child2]#变异操作def mutation(individual, gene_pool):gene = random.randint(0, 1)if gene == 0:x = random.choice(gene_pool)individual = (x, individual[1])else:y = random.choice(gene_pool)individual = (individual[0], y)return individual#遗传算法def genetic_algorithm(population_size, elite_size, mutation_rate, generations):population = init_population(population_size)for i in range(generations):elite = selection(population, elite_size)parents = random.sample(elite, 2)children = crossover(parents)for child in children:if random.uniform(0, 1) < mutation_rate:child = mutation(child, range(1, W+1))population.append(child)population = random.sample(population, population_size)return max(population, key=lambda x: fitness(x[0], x[1])) #求解最佳长度和费用best_bridge = genetic_algorithm(population_size=100, elite_size=10, mutation_rate=0.1, generations=1000)print('最佳长度为:', best_bridge[0])print('最佳费用为:', best_bridge[1])通过遗传算法,我们可以求出桥的最佳长度为39,最佳费用为389。
MATLAB中的遗传算法与优化问题解析

MATLAB中的遗传算法与优化问题解析引言随着计算机科学的迅猛发展,优化问题的求解变得越来越重要。
在现实生活中,我们经常遇到各种需要优化的情况,例如在工程设计中寻找最佳方案、在运输调度中确定最优路径、在金融领域优化投资组合等。
针对这些问题,遗传算法作为一种基于生物进化思想的优化算法,成为了研究者们的关注焦点。
一、遗传算法概述遗传算法(Genetic Algorithm, GA)是一种用来求解最优化问题的随机搜索和优化技术。
它通过模拟生物进化的机制,不断地进行个体之间的交叉、变异和选择,以寻找到最优解。
1.1 算法流程遗传算法的基本流程包括初始化种群、评估适应度、选择、交叉、变异和进化等步骤。
首先,通过随机生成一定数量的个体作为初始种群,利用适应度函数评估每个个体的适应程度。
然后,根据适应度大小,按照一定的概率选择优秀个体作为父代,进行交叉和变异操作产生新的个体。
最后,将新个体替换掉原有种群中适应度较差的个体,重复以上步骤直到满足终止条件。
1.2 适应度函数设计适应度函数是遗传算法中非常重要的一个组成部分,它用来评估个体的优劣程度。
适应度函数应该能准确地衡量问题的目标函数,使得达到最大(或最小)适应度的个体能代表问题的最优解。
在设计适应度函数时,需要结合问题本身的特点和要求,合理选择适应性度量。
1.3 交叉与变异操作交叉和变异是遗传算法中的两个重要操作。
交叉操作通过将两个父代个体的染色体片段进行互换,产生出新的后代个体。
变异操作则是在个体的染色体上随机改变一个或多个基因的值。
通过交叉和变异操作可以增加种群的多样性,提高搜索空间的覆盖率,从而增加找到最优解的概率。
二、 MATLAB中的遗传算法工具箱MATLAB作为一种高效且易于使用的科学计算软件,提供了丰富的工具箱,其中包括了强大的遗传算法工具箱。
通过这个工具箱,用户可以方便地实现遗传算法来解决各种优化问题。
2.1 工具箱安装与调用遗传算法工具箱是MATLAB的一个功能扩展包,用户可以在MATLAB官方网站上下载并安装。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十遗传算法与优化问题一、问题背景与实验目的遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位.本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).(1)遗传算法中的生物遗传学概念由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念.首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation).遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解.下面给出遗传算法的具体步骤,流程图参见图1:第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间;第二步:定义适应函数,便于计算适应值;第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数;第四步:随机产生初始化群体;第五步:计算群体中的个体或染色体解码后的适应值;第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体;第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步.图1 一个遗传算法的具体步骤遗传算法有很多种具体的不同实现过程,以上介绍的是标准遗传算法的主要步骤,此算法会一直运行直到找到满足条件的最优解为止.2.遗传算法的实际应用例1:设2()20.5f x x x =-++,求 max (), [1,2]f x x ∈-.注:这是一个非常简单的二次函数求极值的问题,相信大家都会做.在此我们要研究的不是问题本身,而是借此来说明如何通过遗传算法分析和解决问题.在此将细化地给出遗传算法的整个过程.(1)编码和产生初始群体首先第一步要确定编码的策略,也就是说如何把1-到2这个区间内的数用计算机语言表示出来.编码就是表现型到基因型的映射,编码时要注意以下三个原则:完备性:问题空间中所有点(潜在解)都能成为GA 编码空间中的点(染色体位串)的表现型;健全性:GA 编码空间中的染色体位串必须对应问题空间中的某一潜在解; 非冗余性:染色体和潜在解必须一一对应.这里我们通过采用二进制的形式来解决编码问题,将某个变量值代表的个体表示为一个{0,1}二进制串.当然,串长取决于求解的精度.如果要设定求解精度到六位小数,由于区间长度为2(1)3--=,则必须将闭区间 [1,2]-分为6310⨯等分.因为216222097152231024194304=<⨯<= 所以编码的二进制串至少需要22位.将一个二进制串(b 21b 20b 19…b 1b 0)转化为区间[1,2]-内对应的实数值很简单,只需采取以下两步(Matlab 程序参见附录4):1)将一个二进制串(b 21b 20b 19…b 1b 0)代表的二进制数化为10进制数:21212019102100()(2)'i i i b b b b b b x =⋯=⋅=∑2)'x 对应的区间[1,2]-内的实数:12)1(2'122---⋅+-=x x 例如,一个二进制串a=<1000101110110101000111>表示实数0.637197.'x =(1000101110110101000111)2=2288967637197.01232288967122=-⋅+-=x 二进制串<0000000000000000000000>,<1111111111111111111111>,则分别表示区间的两个端点值-1和2.利用这种方法我们就完成了遗传算法的第一步——编码,这种二进制编码的方法完全符合上述的编码的三个原则.首先我们来随机的产生一个个体数为4个的初始群体如下:pop(1)={<1101011101001100011110>, %% a1<1000011001010001000010>, %% a2<0001100111010110000000>, %% a3<0110101001101110010101>} %% a4(Matlab 程序参见附录2)化成十进制的数分别为:pop(1)={ 1.523032,0.574022 ,-0.697235 ,0.247238 }接下来我们就要解决每个染色体个体的适应值问题了.(2)定义适应函数和适应值由于给定的目标函数2()20.5f x x x =-++在[1,2]-内的值有正有负,所以必须通过建立适应函数与目标函数的映射关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为以后计算各个体的入选概率打下基础.对于本题中的最大化问题,定义适应函数()g x ,采用下述方法:min min (), ()0()0,f x F f x F g x -->⎧=⎨⎩若其他 式中min F 既可以是特定的输入值,也可以是当前所有代或最近K 代中()f x 的最小值,这里为了便于计算,将采用了一个特定的输入值.若取min 1F =-,则当()1f x =时适应函数()2g x =;当() 1.1f x =-时适应函数()0g x =.由上述所随机产生的初始群体,我们可以先计算出目标函数值分别如下(Matlab 程序参见附录3):f [pop(1)]={ 1.226437 , 1.318543 , -1.380607 , 0.933350 }然后通过适应函数计算出适应值分别如下(Matlab 程序参见附录5、附录6): 取min 1F =-,g[pop(1)]= { 2.226437 , 2.318543 , 0 , 1.933350 }(3)确定选择标准这里我们用到了适应值的比例来作为选择的标准,得到的每个个体的适应值比例叫作入选概率.其计算公式如下:对于给定的规模为n 的群体pop={123,,,,n a a a a },个体i a 的适应值为()i g a ,则其入选概率为1()(),1,2,3,,()i s i n ii g a P a i n g a ===⋯∑由上述给出的群体,我们可以计算出各个个体的入选概率.首先可得 41() 6.478330ii g a ==∑, 然后分别用四个个体的适应值去除以41()i i g a =∑,得:P (a 1)=2.226437 / 6.478330 = 0.343675 %% a 1P (a 2)=2.318543 / 6.478330 = 0.357892 %% a 2P (a 3)= 0 / 6.478330 = 0 %% a 3P (a 4)=1.933350 / 6.478330 = 0.298433 %% a 4(Matlab 程序参见附录7)(4)产生种群计算完了入选概率后,就将入选概率大的个体选入种群,淘汰概率小的个体,并用入选概率最大的个体补入种群,得到与原群体大小同样的种群(Matlab 程序参见附录8、附录11).要说明的是:附录11的算法与这里不完全相同.为保证收敛性,附录11的算法作了修正,采用了最佳个体保存方法(elitist model),具体内容将在后面给出介绍.由初始群体的入选概率我们淘汰掉a3,再加入a2补足成与群体同样大小的种群得到newpop(1)如下:newpop(1)={<1101011101001100011110>,%% a1<1000011001010001000010>,%% a2<1000011001010001000010>,%% a2<0110101001101110010101>} %% a4(5)交叉交叉也就是将一组染色体上对应基因段的交换得到新的染色体,然后得到新的染色体组,组成新的群体(Matlab程序参见附录9).我们把之前得到的newpop(1)的四个个体两两组成一对,重复的不配对,进行交叉.(可以在任一位进行交叉)<110101110 1001100011110>,<1101011101010001000010>交叉得:<100001100 1010001000010>,<1000011001001100011110><10000110010100 01000010>,<1000011001010010010101>交叉得:<01101010011011 10010101>,<0110101001101101000010>通过交叉得到了四个新个体,得到新的群体jchpop (1)如下:jchpop(1)={<1101011101010001000010>,<1000011001001100011110>,<1000011001010010010101>,<0110101001101101000010>}这里采用的是单点交叉的方法,当然还有多点交叉的方法,不过有些烦琐,这里就不着重介绍了.(6)变异变异也就是通过一个小概率改变染色体位串上的某个基因(Matlab程序参见附录10).现把刚得到的jchpop(1)中第3个个体中的第9位改变,就产生了变异,得到了新的群体pop(2)如下:pop(2)= {<1101011101010001000010>,<1000011001001100011110>,<1000011011010010010101>,<0110101001101101000010> }然后重复上述的选择、交叉、变异直到满足终止条件为止.(7)终止条件。