九年级数学中考基础训练6

合集下载

初三数学基础练习及答案

初三数学基础练习及答案

初三数学基础练习及答案1、如果-□×(-2)=6,则“□”内应填的实数是(3)。

2、下列各式计算不正确的是(B)。

3、视力表对我们来说并不陌生。

如图是视力表的一部分,其中开口向上的两个“E”之间的变化是(C)对称。

4、如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是(B)55°。

5、某校九年级学生参加体育测试,一组10人的引体向上成绩如下表:完成引体向上的个数:7 8 9 10人数:3 1 1 5这组同学引体向上个数的众数与中位数依次是(D)10和9.5.6、方程(x-3)(x+1)=x-3的解是(C)x=3或x=-1.7、如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,则这个几何的侧面积是(D)75πcm2.8、如图所示,给出下列条件:ACABA①∠B=∠ACD;②∠ADC=∠ACB;③△ABC∽△ACD;④AC2=AD·AB.其中单独能够判定△ABC∽△ACD的个数为(B)2.9、某校生物老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n组应该有种子数(2n+1)粒。

10、如图,直线l和双曲线y =(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则有(A)S1<S2<S3.11、计算:$|-3|-2=1$。

12、在函数$y=x+3$中,自变量$x$的取值范围是$(-\infty,+\infty)$。

13、截止2010年1月7日,京沪高铁累计完成投资1224亿元,为总投资的56.2%。

$1224\times10^8$元用科学记数法表示为$12.24$亿元。

2025年中考数学总复习前17题基础训练 (6)

2025年中考数学总复习前17题基础训练 (6)
正确.综上所述,正确的是①②⑤,共3个.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
11. (2023·东营)分解因式:3ma2-6mab+3mb2=
3m(a-b)2 .
解析:3ma2-6mab+3mb2=3m(a2-2ab+b2)=3m(a-b)2.
12. (2023·天津)不透明的袋子中装有10个球,其中有7个绿球、3个红
交于点C.∴ CD=CE.易得当涂色部分周长取得最小值时,AC+CD=
AC+CE=AE.在扇形AOB中,∠AOB=60°,OD平分∠AOB,
∴ ∠AOD=∠BOD=30°.由轴对称的性质,得∠BOE=∠BOD=30°,
OE=OD.∴ ∠AOE=90°.∴ △AOE是等腰直角三角形.∵ OA=1,∴
×
8. (2023·眉山)若关于x的不等式组ቊ
的整数解仅有4
5 − 2 < 4 + 1
个,则m的取值范围是( A )
A. -5≤m<-4
B. -5<m≤-4
C. -4≤m<-3
D. -4<m≤-3
解析:∵ 不等式组有解,∴ 解不等式组,得m+3<x<3.由题意,得-
2≤m+3<-1,解得-5≤m<-4.


AE= .∵ 的长=
= ,∴ 涂色部分周长的最小值为 + .

1
2
3
4
5

6
7

8
9
10
11
12
13
14
15
16
17
10. (2023·达州)如图,抛物线y=ax2+bx+c(a,b,c为常数)关于

人教版九年级数学 中考数学 基础训练

人教版九年级数学 中考数学 基础训练

人教版九年级数学中考数学 基础训练(卷面分值:150分;考试时间:120分钟)一、 选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求. 1. 一个几何体的三视图如图所示,则该几何体是( )2. 9的平方根是( ) A .±3 B .﹣3C .3D .±3.下列运算正确的是( )A. 22122a a-= B. ()32628a a -=- C. ()2224a a +=+ D. 2a a a ÷=4. 等腰三角形的两边长为方程x 2-7x +10=0的两根,则它的周长为( )A .12B .12或9C .9D .75. 某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( )A. 33603624120x y x y +=⎧⎨+=⎩B. 33602436120x y x y +=⎧⎨+=⎩C. 12036243360x y x y +=⎧⎨+=⎩D. 12024363360x y x y +=⎧⎨+=⎩6.一个三角形三边的长分别为15,20和25,则这个三角形最长边上的高为( ) A.12 B.15 C.20 D.25 7.用配方法解方程0522=--x x 时,配方后得到的方程为( ) A .9)1(2=+x B. 9)1(2=-x C. 6)1(2=+x D. 6)1(2=-x8.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m2,设小路宽为xm ,那么x 满足的方程是( )A 、x 2-25x+32=0 B 、x 2-17+16=0 C 、2x 2-25x+16=0 D 、x 2-17x-16=09.当1x =时,代数式334ax bx -+的值是7,则当1x =-时,这个代数式的值是( ) A.7 B.3 C.1 D.7-10.如图,在矩形ABCD 中,对角线BD AC ,交于点 O ,DB CE ⊥于E ,1:31:=∠∠DCE ,则OCE ∠=( ) A.︒30 B.︒45 C.︒60 D.︒5.67二、填空题(本大题共5小题,每小题4分,共20分)把答案直接填在答题卷的相应位置处.11. 若2ab =,1a b -=-,则代数式22a b ab -的值等于 .12. 关于x 的方程3kx 2+12x +2=0有实数根,则k 的取值范围是________.13. 据统计,今年“国庆”节某市接待游客共14900000人次,用科学记数法表示为 .14.如果代数式有意义,那么字母x 的取值范围是 .15.如图,CF 是ABC ∆的外角ACM ∠的平分线,且CF ∥AB ,︒=∠100ACM ,则B ∠的度数为 .三、解答题(本大题Ⅰ—Ⅴ题,共9小题,共90分)解答时应在答题卷的相应位置处写出文字说明、证明过程或演算过程.Ⅰ. (本题满分15分,第16题5分,第17题10分) 16.计算:()()0332015422---+÷-17. (1) 2(3)2(3)0x x x -+-=; (2)x 2-5x +2=0 Ⅱ. (本题满分30分,第18题、第19题、第20题每题10分) 18.化简:xx x x x x x x 4)44122(22-÷+----+,然后从3,2,1,0中选择一个你喜欢的x 的值代入求值.19.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC ∥AB . 求证:AE CE =20.中秋、国庆假日期间,某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

2009年九年级数学中考试题专题之6-一元一次方程和二元一次方程组试题及答案

2009年九年级数学中考试题专题之6-一元一次方程和二元一次方程组试题及答案

2009年中考试题专题之6-一元一次方程和二元一次方程组试题及答案一、选择1、(2009年某某省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( )A .1B .3C .5D .22、(2009年某某市、某某市)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .33、(2009年某某市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .2013%2340x ⋅=B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=4、(2009年某某市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A .4种B .3种C .2种D .1种5、(2009年某某省)A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是()A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=6、(2009年某某市)班长去文具店买毕业留言卡50X ,每X 标价2元,店老板说可以按标价九折优惠,则班长应付()A .45元B .90元C .10元D .100元7、(2009某某某某)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ).A .1B .-1C . 2D .38、(2009某某)方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,.B .21x y =⎧⎨=⎩,.C .11x y =⎧⎨=⎩,.D .23x y =⎧⎨=⎩,.9、(2009年日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为A.43-B.43C.34D.34-10、(2009年某某)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是( )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩11、(2009年某某)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .4cmB .5cmC .6cmD .13cm12、(2009年某某)已知有10包相同数量的饼干,若将其中1包饼干平分给23名学生,最少剩3片。

2020春浙教版九年级中考数学复习测试:6.20圆与相似三角形的结合

2020春浙教版九年级中考数学复习测试:6.20圆与相似三角形的结合

第20讲圆与相似三角形的结合[学生用书P129]月球有多大?我们用三角函数可以测定月球的大小,当我们已知月球离地球的距离是三十八万四千千米,就可以用相似测定月球直径的大小.如图①,把一枚硬币(直径2.4 cm)放在离眼睛2.6 m的地方,大致能够把整个月面遮住.(试一试!)①②如图②,由△OAB∽△OCD,可得CDAB=OFOE(相似三角形对应高的比等于相似比).把AB=0.024 m,OF=384 000 000 m,OE=2.6 m代入,得CD=0.024×384 000 0002.6≈3 500 000(m).就是说,月球的直径约是3 500 km.类型之一圆的基本性质与相似三角形例1[2018·南京中考]如图,在正方形ABCD中,E是AB上一点,连结DE.过点A作AF⊥DE,垂足为F.⊙O经过点C,D,F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.【思路生成】(1)欲证明△AFG∽△DFC,只要证明∠F AG=∠FDC,∠AGF =∠FCD;(2)首先证明CG是直径,再求CG长度即可解决问题;解:(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,又∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC;(2)如答图,连结CG.答图∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF.∴EAAF=DADF,即EADA=AFDF.∵△AFG∽△DFC,∴AGDC=AF DF.∴AGDC=EADA.在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA-AG=4-1=3. ∴CG=DG2+DC2=32+42=5.∵∠CDG=90°,∴CG是⊙O的直径.∴⊙O的半径为5 2.圆与相似三角形的综合运用主要体现在以下几个方面:(1)证明圆中的比例式或等积式;(2)运用相似的性质进行圆的有关计算;(3)运用相似证明圆的切线.判定圆中的相似三角形(1)圆中的角主要有圆心角和圆周角,特别是直径所对的圆周角都是直角,利用圆心角、圆周角等寻找或构造相似三角形是基本思路;(2)利用圆的切线的判定或性质,或切线长定理寻找或构造相似三角形也是重要的方法.1.[太原竞赛]如图,已知△ABC中,∠C=90°,AC=11,BC=5,以C为圆心,BC为半径作圆交BA的延长线于D,则AD的长为__73__.答图【解析】如答图,延长AC与圆相交于E,F,则AF=5-11,AE=5+11,又AB=6,由相交弦定理AD·AB=AE·AF得AD=AE·AFAB=(5-11)(5+11)6=73.2.[第19届江苏竞赛]如图,AB为圆的直径,若AB=AC=5,BD=4,则AE BE=__724__.【解析】如答图,连结AD,答图∵AB为圆的直径,∴∠E=90°,AD⊥BC,而AB=AC=5,BD=4,则AD=3,BD=DC,∴BC=2BD=8,∵∠ACD=∠BCE,∴Rt△CDA∽Rt△CEB,∴ADBE=CDCE=CABC,即3BE=4CE=58,所以BE=245,CE=325,则AE=CE-AC=325-5=75,所以AEBE=724.3.[苏州中考]如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E ,连结CD 交OE 于点F .(1)求证:△DOE ∽△ABC ; (2)求证:∠ODF =∠BDE ;(3)连结OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若S 1S 2=27,求OEOD 的值.解:(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°. ∵DE ⊥AB ,∴∠DEO =90°.∴∠DEO =∠ACB . ∵OD ∥BC ,∴∠DOE =∠ABC ,∴△DOE ∽△ABC ;(2)证明:∵△DOE ∽△ABC ,∴∠ODE =∠A .∵∠A 和∠BDC 是BC ︵所对的圆周角,∴∠A =∠BDC ,∴∠ODE =∠BDC .∴∠ODF =∠BDE ;(3)∵△DOE ∽△ABC ,∴S △DOE S △ABC =⎝ ⎛⎭⎪⎫OD AB 2=14,即S △ABC =4S △DOE =4S 1, ∵OA =OB ,∴S △BOC =12S △ABC , 即S △BOC =2S 1.∵S 1S 2=27,S 2=S △BOC +S △DOE +S △DBE =2S 1+S 1+S △DBE ,∴S △DBE =12S 1,∴BE =12OE , 即OE =23OB =23OD ,∴OE OD =23.4.[2018·宁波中考]如图1,直线l :y =-34x +b 与x 轴交于点A (4,0),与y 轴交于点B ,点C 是线段OA 上一动点⎝ ⎛⎭⎪⎫0<AC <165,以点A 为圆心,AC 长为半径作⊙A 交x 轴于另一点D ,交线段AB 于点E .连结OE 并延长交⊙A 于点F .(1)求直线l 的函数表达式和tan ∠BAO 的值. (2)如图2,连结CE ,当CE =EF 时. ①求证:△OCE ∽△OEA ; ②求点E 的坐标.(3)当点C 在线段OA 上运动时,求OE ·EF 的最大值.解:(1)∵直线l :y =-34x +b 与x 轴交于点A (4,0), ∴-34×4+b =0,∴b =3,∴直线l 的函数表达式为y =-34x +3, ∴B (0,3),∴OA =4,OB =3,在Rt△AOB中,tan∠BAO=OBOA=3 4.(2)①证明:如答图①,连结DE,DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA;②如答图①,过点E作EM⊥OA于M,由①知,tan∠OAB=3 4,设EM=3m,则AM=4m,∴OM=4-4m,AE=5m,∴E(4-4m,3m),AC=5m,∴OC=4-5m,由①知,△COE∽△EOA,∴OCOE=OEOA,∴OE2=OA·OC=4(4-5m)=16-20m,∵E(4-4m,3m),∴(4-4m)2+9m2=16-20m,解得m =0(舍)或m =1225,∴4-4m =5225,3m =3625, ∴E ⎝ ⎛⎭⎪⎫5225,3625.(3)如答图②,设⊙A 的半径为r ,设射线EA 与⊙A 相交于H ,过点O 作OG ⊥AB 于G ,连结FH ,答图①答图②∵A (4,0),B (0,3),∴OA =4,OB =3, ∴AB =5,∴12AB ×OG =12OA ×OB ,∴OG =125, ∴AG =OG tan ∠OAB=125×43=165, ∴EG =AG -AE =165-r ,∵EH 是⊙A 直径, ∴EH =2r ,∠EFH =90°=∠EGO , ∵∠OEG =∠HEF ,∴△OEG ∽△HEF , ∴OE HE =EG EF ,∴OE ·EF =HE ·EG =2r ⎝ ⎛⎭⎪⎫165-r =-2⎝ ⎛⎭⎪⎫r -852+12825,∴r =85时,OE ·EF 取最大值为12825.类型之二 圆的切线与相似三角形例2 [2018·成都]如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连结OF 交AD 于点G .(1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.【思路生成】(1)连结OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连结DF ,由(1)得到BC 为⊙O 的切线,由弦切角等于夹弧所对的圆周角,进而得到△ABD 与△ADF 相似,由相似得比例,即可表示出AD ;(3)连结EF ,设圆的半径为r ,由sin B 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF =sin B ,进而求出DG 的长即可.解:(1)证明:如答图,连结OD ,答图∵AD为∠BAC的平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,又⊙O过点D,∴BC为⊙O的切线;(2)如答图,连结DF,由(1)知BC为⊙O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴ABAD=ADAF,即AD2=AB·AF=xy,则AD=xy;(3)如答图,连结EF,在Rt△BOD中,sin B=ODOB=513,设圆的半径为r,可得rr+8=513,解得r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF =∠B ,∴sin ∠AEF =AF AE =513,∴AF =AE ·sin ∠AEF =10×513=5013,∵AF ∥OD ,∴AG DG =AF OD =50135=1013,即DG =1323AD ,∴AD =AB ·AF =18×5013=301313,则DG =1323×301313=301323.5.[2018·淄博中考]如图,以AB 为直径的⊙O外接于△ABC ,过A 点的切线AP 与BC 的延长线交于点P .∠APB 的平分线分别交AB ,AC 于点D ,E ,其中AE ,BD (AE <BD )的长是一元二次方程x 2-5x +6=0的两个实数根.(1)求证:P A ·BD =PB ·AE ;(2)在线段BC 上是否存在一点M ,使得四边形ADME 是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.解:(1)证明:∵AP 为⊙O 的切线,AB 是直径,∴∠BAP =90°,即∠BAC +∠EAP =90°,∵AB 为直径,∴∠ACB =90°,即∠BAC +∠DBP =90°,∴∠EAP=∠DBP,又∵PD平分∠APB,∴∠APE=∠BPD,∴△APE∽△BPD,∴P AAE=PBBD,∴P A·BD=PB·AE;(2)存在.如答图,过点D作DM⊥BC于点M,连结EM,答图∵PD平分∠APB,又AD⊥P A,DM⊥PM,∴DM=DA,∵∠AED=∠EAP+∠APE,∠ADE=∠DBP+∠BPD,又由(1)知∠EAP=∠DBP,∠APE=∠BPD,∴∠AED=∠ADE,∴AD=AE,∴DM=AE,∵DM⊥BC,AC⊥BC,∴DM∥AC,∴四边形ADME为菱形,易得x2-5x+6=0的两个根为2,3,∵AE<BD,∴BD=3,AE=2,∵四边形ADME为菱形,∴DM=AE=AD=2,在Rt△BDM中,BD=3,DM=2,∴BM=32-22=5,∵DM∥AC,∴BDDA=BM MC,∴32=5MC,∴MC=253,∴S菱形ADME =AE·MC=2×235=453.6.[2018·遂宁中考]如图,过⊙O外一点P作⊙O的切线P A切⊙O于点A,连结PO并延长,与⊙O交于C,D两点,M是半圆CD的中点,连结AM交CD于点N,连结AC,CM.(1)求证:CM2=MN·MA;(2)若∠P=30°,PC=2,求CM的长.解:(1)证明:∵在⊙O中M点是半圆CD的中点,∴∠CAM=∠DCM,又∵∠M是公共角,∴△CMN∽△AMC,∴CMAM=MNMC,∴CM2=MN·MA;(2)如答图,连结OA,DM,答图∵P A是⊙O的切线,∴∠P AO=90°,又∵∠P=30°,∴OA=12PO=12(PC+CO),设⊙O的半径为r,∵PC=2,∴r=12(2+r),解得r=2,又∵CD是直径,∴∠CMD=90°,∵M点是半圆CD的中点,∴CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD2,∴2CM2=(2r)2=16,解得CM=2 2.类型之三证明圆中的比例式或乘积式例3[天津竞赛]如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC,BD交于点E.(1)求证:AC·BC=2BD·CD;(2)若AE=3,CD=25,求弦AB和直径BC的长.【思路生成】(1)连结OD交AC于点F,由于D是弧AC的中点,∠ACD=∠ABD=∠CBD,由垂径定理知,AF=CF=12AC.∠CFD=∠BDC=90°,则有△CDF∽△BCD;(2)延长BA,CD交于点G,易得Rt△CDE∽Rt△CAG,由比例线段解得CE =5,在Rt△ACG中,由勾股定理得AG=4,由割线定理知,GA·GB=GD·GC,即4(AB+4)=25×45,解得AB=6.在Rt△ABC中,由勾股定理可求得BC的值.解:(1)证明:如答图,连结OD交AC于点F,答图∵D是弧AC的中点,∴∠ACD=∠ABD=∠CBD,且AF=CF=12AC.∵BC为直径,∴∠BDC=90°,又∵∠CFD=90°,∴△CDF∽△BCD.∴CFBD=CDBC,∴CF·BC=BD·CD.∴AC·BC=2BD·CD;(2)如答图,延长BA,CD交于点G,由(1)得∠ABD=∠CBD,∠BDC=90°,∴△BCG为等腰三角形,∴BD平分CG,∴CG=2CD=45,∴Rt△CDE∽Rt△CAG,∴CECG=CDCA,即CE45=25CE+3,解得CE=5或CE=-8(舍去).在Rt△ACG中,由勾股定理得AG=CG2-AC2=(45)2-(3+5)2=4,∵GA·GB=GD·GC,即4(AB+4)=25×45,解得AB=6.在Rt△ABC中,由勾股定理得BC=AB2+AC2=62+(3+5)2=10.7.如图,已知四边形ABCD为圆的内接四边形,求证:AB·CD+AD·BC=AC·BD.答图证明:如答图,在BD上取一点E,使∠BCE=∠ACD,即得△BEC∽△ADC,可得BE BC =AD AC ,即AD ·BC =BE ·AC ,①又∵∠ACB =∠DCE ,可得△ABC ∽△DEC ,即得AB AC =DE DC ,即AB ·CD =DE ·AC ,②由①+②,可得AB ·CD +AD ·BC =AC (BE +DE )=AC ·BD .8.[江苏竞赛]如图,AB ,AC ,AD 是圆中的三条弦,点E 在AD 上,且AB =AC =AE .请你说明以下各式成立的理由:(1)∠CAD =2∠DBE ;(2)AD 2-AB 2=BD ·DC .证明:(1)如答图,延长BE 交圆于点F ,连结AF ,则∠DBF =∠DAF ,答图∵AB =AE ,∴∠ABE =∠AEB =∠DAF +∠F ,∴AF ︵=AC ︵+CF ︵=AB ︵+DF ︵,∵AB =AC ,∴AB ︵=AC ︵,∴CF ︵=DF ︵,即点F 是CD ︵的中点,∴∠CAD =2∠DAF =2∠DBE ;(2)如答图,连结BC 交AD 于点G ,∵AB =AC ,∴∠ADB =∠ABC ,∠BAG =∠DAB ,∴△BAG ∽△DAB .∴AB AG =AD AB ,即AB 2=AG ·AD .∴AD 2-AB 2=AD 2-AG ·AD =AD (AD -AG )=AD ·DG ,∵∠BDA =∠ADC ,∠DBG =∠DAC ,∴△BDG ∽△ADC .∴BD AD =DG DC ,∴AD ·DG =BD ·DC .∴AD 2-AB 2=BD ·DC .相似三角形解决圆中计算问题作辅助线构造直角是证明圆中三角形相似的常见方法.圆中三角形的相似常见的基本图形如下图所示.类型之四 利用相似三角形解决圆中的计算问题例4 [2018·武汉中考]如图,P A 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连结PB ,PC ,PC交AB 于点E ,且P A =PB .(1)求证:PB 是⊙O 的切线;(2)若∠APC =3∠BPC ,求PE CE 的值.【思路生成】(1)连结OB ,OP ,△OAP 与△OBP 三边对应相等,这两个三角形全等,得∠OBP =∠OAP =90°,故PB 是⊙O 的切线;(2)连结BC ,AB 与OP 交于点H ,易证OP ⊥AB ,∠OPC =∠PCB =∠CPB ,由△OAH ∽△CAB 得OH CB =12;由△HPB ∽△BPO ,求得HP OH ;再由△HPE ∽△BCE ,可得PE CE 的值.解:(1)证明:如答图,连结OB ,OP ,在△OAP 和△OBP 中,⎩⎪⎨⎪⎧OA =OB ,OP =OP ,AP =BP ,∴△OAP ≌△OBP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,∴∠OBP =∠OAP =90°,∴PB 是⊙O 的切线;(2)如答图,连结BC ,AB 与OP 交于点H ,答图∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x , 由(1)知∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x ,∵AC 是⊙O 的直径,∴∠ABC =90°,由P A =PB ,∠APH =∠BPH 可得OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC ,∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP ,易证△OAH∽△CAB,∴OHCB=OAAC=12,设OH=a,则CB=BP=2a,易证△HPB∽△BPO,∴HPBP=BPOP,设HP=ya,则ya2a=2aa+ya,解得y1=-1-172(舍)或y2=-1+172,∵OP∥CB,易证△HPE∽△BCE,∴PECE=HPCB=ya2a=-1+174.9.[2018·鄂州中考]如图,四边形ABCD内接于⊙O,BC为⊙O的直径,AC 与BD交于点E,P为CB延长线上一点,连结P A,且∠P AB=∠ADB.(1)求证:AP是⊙O的切线;(2)若AB=6,tan∠ADB=34,求PB的长;(3)在(2)的条件下,若AD=CD,求△CDE的面积.解:(1)证明:如答图,连结OA,∵OA=OC,∴∠OCA=∠OAC,又∵∠P AB=∠ADB,∠OCA=∠ADB,∴∠OAC=∠P AB,∵BC为⊙O的直径,∴∠CAB=90°,∴∠OAC+∠OAB=90°,∴∠P AB+∠OAB=90°,即OA⊥AP,∴AP是⊙O的切线;(2)如答图,过点B作BF⊥AP于点F,答图∵∠ACB=∠P AB=∠ADB,AB=6,tan∠ADB=3 4,∴BC=10,BFAF=34,设BF=3a,AF=4a,又∵AB=6,∴(3a)2+(4a)2=62,∴a=65,∴BF=3a=185,AF=4a=245,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴BFOA=BPOP,即1855=BPBP+5,解得PB=907;(3)如答图,连结OD交AC于点G,∵CD=AD,∴OD⊥AC,并且CG=AG=12AC=4,在Rt△COG中,由勾股定理可得OG=OC2-CG2=52-42=3,∴DG=OD-OG=5-3=2,S△CDG=12CG·DG=12×4×2=4.显然Rt△CDG∽Rt△CED,∴S△CDES△CDG=⎝⎛⎭⎪⎫CDCG2=⎝⎛⎭⎪⎫2542=54,∴S△CDE =54S△CDG=54×4=5.圆与相似三角形的综合运用(1)证明圆的切线的常用辅助线是作过切点的半径,证明直线与这条半径垂直;(2)运用切线的性质时,常连结切点和圆心.类型之五圆与相似三角形的综合运用例5 [2017·温州中考]如图,已知线段AB =2,MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E ,D 分别是P A ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB =28°时,求∠B 和CM ︵所对的圆心角的度数.(2)求证:AC =AB .(3)在点P 的运动过程中.①当MP =4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值;②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G ,当点G 恰好落在MN 上,连结AG ,CG ,DG ,EG ,直接写出△ACG 与△DEG 的面积比.【思路生成】(1)根据三角形ABP 是等腰三角形,可得∠B 的度数,再连结MD ,根据MD 为△P AB 的中位线,可得∠MDB =∠APB =28°;(2)由等角的补角相等,得∠ACB =∠B ,则AC =AB ;(3)①由垂直平分线的性质,分类讨论符合条件的点Q 的个数,利用相似和勾股定理分别求出MQ 的长度;②利用旋转的性质,平行四边形的性质,锐角三角比求出各边的长度,用面积公式求出比值.解:(1)∵MN ⊥AB ,AM =BM ,∴P A =PB ,∴∠P AB =∠B ,答图①∵∠APB =28°,∴∠B =76°,如答图①,连结MD ,∵MD 为△P AB 的中位线,∴MD ∥AP ,∴∠MDB =∠APB =28°,∴CM ︵所对的圆心角的度数为2∠MDB =56°.(2)证明:∵∠BAC =∠MDC =∠APB ,又∵∠BAP =180°-∠APB -∠B ,∠ACB =180°-∠BAC -∠B , ∴∠BAP =∠ACB ,∵∠BAP =∠B ,∴∠ACB =∠B ,∴AC =AB .(3)①记MP 与圆的另一个交点为R ,∵MD 是Rt △MBP 的中线,∴DM =DP ,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=138,∴MR=198,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=19 8;Ⅱ.如答图②,当∠QCD=90°时,在Rt△QCP中,由PR=CR可知PQ=2PR=134,∴MQ=34;答图②答图③Ⅲ.如答图③,当∠QDC=90°时,∵BM=1,MP=4,∴BP=17,∴DP=12BP=172,∵△PBM∽△PQD,∴MPPB=DPPQ,∴PQ=178,∴MQ=158;Ⅳ.如答图④,当∠AEQ=90°时,答图④由AE=PE,可得AQ=PQ,设MQ=x,则x2+1=(4-x)2,解得x=15 8,∴MQ=15 8;综上所述,MQ的值为198或34或158;②△ACG和△DEG的面积之比为6-233.理由:如答图⑤,过C作CH⊥AB于H,答图⑤∵DM∥AF,DE∥AB,∴四边形AMDE 是平行四边形,四边形AMDF 是等腰梯形,∴DF =AM =DE =1,又由对称性可得GE =GD ,并且DG =DF ,∴△DEG 是等边三角形, ∴∠EDF =90°-60°=30°,∴∠DEF =75°=∠MDE ,∴∠GDM =75°-60°=15°,∴∠GMD =∠PGD -∠GDM =15°, ∴∠GMD =∠GDM ,∴GM =GD =1,由∠B =∠BAP =∠DEF =75°,得∠BAC =30°,从而CH =12AC =12AB =1=MG ,AH =3,∴CG =MH =3-1,∴S △ACG =12CG ×CH =3-12,∵S △DEG =34,∴S △ACG ∶S △DEG =6-233.10.[2018·温州中考]如图,已知P 为锐角∠MAN内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连结AP ,BD ,AP 交⊙O 于点E .(1)求证:∠BPD =∠BAC .(2)连结EB ,ED ,当tan ∠MAN =2,AB =25时,在点P 的整个运动过程中.①若∠BDE =45°,求PD 的长;②若△BED 为等腰三角形,求所有满足条件的BD 的长.(3)连结OC ,EC ,OC 交AP 于点F ,当tan ∠MAN =1,OC ∥BE 时,记△OFP的面积为S 1,△CFE 的面积为S 2,请写出S 1S 2的值. 解:(1)证明:∵PB ⊥AM ,PC ⊥AN ,∴∠ABP =∠ACP =90°,∴∠BAC +∠BPC =180°,又∠BPD +∠BPC =180°,∴∠BPD =∠BAC .(2)①如答图①,∵∠APB =∠BDE =45°,∠ABP =90°,∴BP =AB =25,∵∠BPD =∠BAC ,∴tan ∠BPD =tan ∠BAC ,∴BD DP =2,∴BP =5PD ,∴PD =2;②Ⅰ.当BD =BE 时,∠BED =∠BDE ,∴∠BPD =∠BED =∠BDE =∠BPE =∠BAC ,∴tan ∠BPE =2, ∵AB =25,∴BP =5,∴BD =2;Ⅱ.当BE =DE 时,∠EBD =∠EDB ,∵∠APB=∠BDE,∠DBE=∠APC,∴∠APB=∠APC,∴AC=AB=25,如答图①过点B作BG⊥AC于点G,则四边形BGCD是矩形,答图①∵AB=25,tan∠BAC=2,∴AG=2,∴BD=CG=25-2;Ⅲ.当BD=DE时,∠DEB=∠DBE=∠APC,∵∠DEB=∠DPB=∠BAC,∴∠APC=∠BAC,设PD=x,则BD=2x,∴ACPC=2,而AG=2,CD=BG=4,∴2x+24-x=2,∴x=32,∴BD=2x=3,综上所述,当BD=2,3或25-2时,△BDE为等腰三角形.(3)如答图②,过点O作OH⊥DC于点H,答图②∵tan∠BPD=tan∠MAN=1,∴BD=PD,设BD=PD=2a,PC=2b,则OH=a,CH=a+2b,AC=4a+2b,∵OC∥BE且∠BEP=90°,∴∠PFC=90°,∴∠P AC+∠APC=∠OCH+∠APC=90°,∴∠OCH=∠P AC,∴△ACP∽△CHO,∴OHCH=PCAC,即OH·AC=CH·PC,∴a(4a+2b)=2b(a+2b),∴a=b,即CP=2a,CH=3a,则OC=10a,∵△CPF∽△COH,∴CFCH=CPOC,即CF3a=2a10a,则CF=3105a,OF=OC-CF=2105a,∵BE∥OC且BO=PO,∴OF为△PBE的中位线,∴EF=PF,∴S1S2=OFCF=23.例6[全国数学联赛题]如图,已知四边形ABCD外接圆O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=2AE,且BD=23,求四边形ABCD的面积.【思路生成】先求△ABD的面积,再证△ABD与△BCD的面积相等即可.解:如答图,连结AO,交BD于H,连结OB,答图∵AE=EC,AB=2AE,∴AB2=2AE2=AE·AC,∴ABAC=AEAB,又∠EAB=∠BAC,∴△ABE∽△ACB,∴∠ABE=∠ACB=∠ADB,∴AB=AD.∵AB =AD ,∴AO ⊥BD ,∴BH =HD ,∵BO =2,BD =23,∴BH =HD = 3.∴OH =OB 2-BH 2=4-3=1,AH =OA -OH =2-1=1.∴S △ABD =12BD ·AH =12×23×1=3,∵E 是AC 的中点,∴S △ABE =S △BCE ,S △ADE =S △CDE ,∴S △ABD =S △BCD ,∴S 四边形ABCD =2S △ABD =2 3.[学生用书P67]【思维入门】1.[余姚自主招生]如图,AB 是半圆的直径,点C 是AB ︵的中点,点E 是AC ︵的中点,连结EB ,CA 交于点F ,则EF BF =( D )A.13B.14C.1-22 D.2-12【解析】 连结AE ,CE ,作AD ∥CE ,交BE 于点D ,答图∵点E 是AC ︵的中点,设AE =CE =x ,根据平行线的性质得∠ADE =∠CED =45°,∴△ADE 是等腰直角三角形,则AD =2x ,又∠DAF =∠ACE =∠CAE =∠CBE ,而∠CAB =∠CBA =45°,∴∠DAB =∠DBA ,∴BD =AD =2x ,∴BE =(2+1)x .∵∠EAC =∠ABE ,∠AEF =∠BEA ,∴△AEF ∽△BEA ,∴AE BE =EF EA ,∴EF =(2-1)x ,BF =2x .∴EF BF =2-12.2.[雨花区自主招生]如图,BC 是半圆O 的直径,EF ⊥BC 于点F ,BF FC =5,又AB =8,AE =2,则AD 的长为( B )A .1+ 3 B.1+32 C.32 D .1+ 2 【解析】 如答图,连结BE .答图∵BC是直径.∴∠AEB=∠BEC=90°,在Rt△ABE中,根据勾股定理可得BE2=AB2-AE2=82-22=60.∵BFFC=5,∴设FC=x,则BF=5x,BC=6x,又∵BE2=BF·BC,即30x2=60,解得x=2,∴EC2=FC·BC=6x2=12,∴EC=23,∴AC=AE+EC=2+23,∵AD·AB=AE·AC,∴AD=AE·ACAB=2(2+23)8=1+32.3.[天津中考]如图,已知△ABC为等腰直角三角形,D为斜边BC的中点,经过点A,D的⊙O与边AB,AC,BC分别相交于点E,F,M.对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③EDEF=BABC;④2BM2=BE·BA;⑤四边形AEMF为矩形.其中正确结论的个数是(C)A.2个B.3个C.4个D.5个【解析】如答图,连结AM,根据等腰三角形的三线合一,得AD⊥BC,答图再根据90°的圆周角所对的弦是直径,得EF,AM是直径,根据对角线相等且互相平分的四边形是矩形,得四边形AEMF是矩形,∴①根据等腰直角三角形ABC的底角是45°,易得∠FMC=45°,正确;②根据矩形和等腰直角三角形的性质,得AE+AF=AB,正确;③连结FD,可以证明△EDF是等腰直角三角形,则③中左右两边的比都是等腰直角三角形的直角边和斜边的比,正确;④根据BM=2BE,得左边=4BE2,故需证明AB=4BE,根据已知条件它们之间不一定有这种关系,错误;⑤正确.所以①②③⑤共4个正确.4.[麻城自主招生]如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=22,AC=32,BC=6,则⊙O的半径是(D)A.3 B.4C.4 3 D.2 3【解析】如答图,延长EC交⊙O于点F,连结DF.则根据90°的圆周角所对的弦是直径,得DF是直径,答图∵DE∥BC,∴△ADE∽△ABC.∴DEBC=AEAC.则DE=4.由Rt△ADE∽Rt△DFE,得EF=DE2AE=4 2.根据勾股定理,得DF=DE2+EF2=16+32=43,则圆的半径是2 3.5.[淮安自主招生]如图,△ABC中,∠C=90°,O为AB上一点,以O为圆心,OB为半径的圆与AB相交于点E,与AC相切于点D,已知AD=2,AE=1,那么BC=__125__.答图【解析】 如答图,连结OD ,∵AC 为⊙O 的切线,∴OD ⊥AC ,在Rt △ADO 中,设OD =R ,∵AD =2,AE =1,∴22+R 2=(R +1)2,解得R =32,∴AO =52,AB =4,又∵∠C =90°,∴OD ∥BC ,∴△AOD ∽△ABC ,∴OD BC =OA AB ,即BC =4×3252=125.6.[2018·柳州]如图,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,过点A 作⊙O 的切线交BC 的延长线于点D .(1)求证:△DAC ∽△DBA ;(2)过点C 作⊙O 的切线CE 交AD 于点E ,求证:CE =12AD ;(3)若点F 为直径AB 下方半圆的中点,连结CF 交AB于点G,且AD=6,AB=3,求CG的长.解:(1)证明:∵AB是⊙O直径,∴∠ACD=∠ACB=90°,答图∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)证明:∵EA,EC是⊙O的切线,∴AE=CE,∴∠DAC=∠ECA,∵∠ACD =90°,∴∠ACE +∠DCE =90°,∠DAC +∠D =90°,∴∠D =∠DCE ,∴DE =CE ,∴AD =AE +DE =CE +CE =2CE ,∴CE =12AD ;(3)如答图,过点G 作GH ⊥BD 于H ,在Rt △ABD 中,AD =6,AB =3,∴tan ∠ABD =AD AB =2,∴tan ∠ABD =GH BH =2,∴GH =2BH ,∵点F 是直径AB 下方半圆的中点,∴∠BCF =45°,∴∠CGH =90°-∠BCF =45°,∴CH =GH =2BH ,∴BC =BH +CH =3BH ,在Rt △ABC 中,tan ∠ABC =AC BC =2,∴AC =2BC ,根据勾股定理得,AC 2+BC 2=AB 2,∴4BC 2+BC 2=9,∴BC =355,∴3BH =355,∴BH =55,∴GH=2BH=25 5,在Rt△CHG中,∠BCF=45°,∴CG=2GH=2105.【思维拓展】7.[瓯海区自主招生]如图,已知:P A切⊙O于A,若AC为⊙O的直径,PBC为⊙O的割线,E为弦AB的中点,PE的延长线交AC于F,且∠FPB=45°,点F到PC的距离为5,则FC的长为(C)A.10 B.12 C.5 5 D.5 6【解析】设PB=x,∵P A切⊙O于A,∴AP⊥AC,∴∠P AC=90°,∵AC为⊙O的直径,∴∠ABC=90°,∵∠FPB=45°,∴BE=PB=x,AB=2x,PH=FH=5,∵∠C+∠BAC=90°,∠P AB+∠BAC=90°,∴∠C=∠P AB,∴△APB∽△CAB,∴AB BC =PB AB ,即2x BC =x 2x ,解得BC =4x ,∴CH =PC -PH =PB +BC -PH =5x -5,∵FH ∥AB ,∴△CFH ∽△CAB ,∴FH AB =CH CB ,即52x =5x -54x ,解得x =3,∴CH =5x -5=10,在Rt △CFH 中,CF =FH 2+CH 2=52+102=5 5.8.[成都自主招生]如图,过⊙O 直径AB 上的点C 作AB 的垂线交⊙O 于点D ,再过D 点作圆的切线l ,然后过C 点作l 的垂线交l 于点E ,若AC =a ,CB =b ,那么CE长为( A )A.2ab a +bB.abC.a +b 2D. a 2+b 22 【解析】 如答图,连结OD ,答图∵AB =AC +BC =a +b ,∴OD=12(a+b),∴OC=OA-AC=12(a+b)-a=12(b-a),∵CD⊥AB,∴∠DCO=90°,在Rt△DCO中,CD=OD2-OC2=ab,∵l与⊙O相切于点D,∴OD⊥l,∵CE⊥l,∴OD∥CE,∴∠ODC=∠ECD,∴Rt△ODC∽Rt△DCE,∴CDCE=ODCD,即abCE=12(a+b)ab,∴CE=2ab a+b.9.[第23届“希望杯”竞赛]如图,已知A,B,C三点在同一圆上,并且AB是⊙O的直径,若点C到AB的距离CD=5,则⊙O的直径最小值是__10__.【解析】AD·DB=CD2=25,AB2=(AD+BD)2=(AD -BD)2+4AD·BD≥4AD·BD=100,当AD=BD时,AB取得最小值10.10.[成都中考]如图,在半径为5的⊙O 中,弦AB=8,P 是弦AB 所对的优弧上的动点,连结AP ,过点A作AP 的垂线交射线PB 于点C ,当△P AB 是等腰三角形时,线段BC 的长为__8或5615或853__.【解析】 Ⅰ.当BA =BP 时,则AB =BP =BC =8,即线段BC 的长为8.Ⅱ.当AB =AP 时,如答图①,延长AO 交PB 于点D ,过点O 作OE ⊥AB 于点E ,则AD ⊥PB ,AE =12AB =4,∴BD =DP ,答图①在Rt △AEO 中,AE =4,AO =5,∴OE =3,∵∠OAE =∠BAD ,∠AEO =∠ADB =90°,∴△AOE ∽△ABD ,∴AO AB =OE BD ,∴BD =245,∴BD =PD =245,即PB =485,∵AB=AP=8,∴∠ABD=∠P,∵∠P AC=∠ADB=90°,∴△ABD∽△CP A,∴BDAB=P ACP,∴CP=403,∴BC=CP-BP=403-485=5615;Ⅲ.当P A=PB时,如答图②,连结PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连结OB,则PF⊥AB,答图②∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,∵∠P AF=∠ABP=∠CBG,∠AFP=∠CGB=90°,∴△PFB∽△CGB,∴PFFB=CGBG=21,设BG=t,则CG=2t,∵∠CAG=∠APF,∠AFP=∠AGC=90°,∴△APF∽△CAG,∴AFPF=CGAG,∴2t8+t=12,解得t=83,在Rt△BCG中,BC=5t=85 3,综上所述,当△P AB是等腰三角形时,线段BC的长为8或5615或853.11.如图,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于E,交AC于点P,求证:点P平分线段DE.答图证明:如答图,连结OD,∵OC∥AD,∴∠COD=∠ADO,∠COB=∠DAO,∵OA=OD,∴∠ADO=∠DAO,∴∠COD=∠COB,∵OD=OB,OC=OC,∴△ODC≌△OBC,∴∠ODC=∠OBC.∵OB是⊙O的半径,BC是⊙O的切线,∴BC⊥OB.∴∠OBC=90°,∴∠ODC=90°,∴CD⊥OD,∴CD是⊙O的切线.过A作⊙O的切线AF,交CD的延长线于点F,则F A⊥AB. ∵DE⊥AB,CB⊥AB,∴F A∥DE∥CB,∴FDFC=AEAB.在△F AC中,∵DP∥F A,∴DPF A=DCFC,即DPDC=F AFC.∵F A,FD是⊙O的切线,∴F A=FD,。

人教版九年级数学中考复习第一轮专题--6.强化训练第六章 圆

人教版九年级数学中考复习第一轮专题--6.强化训练第六章 圆
(3)解:如图,连接 BD,AD,DO,作∠BAF=∠DBA,交 BD 于点 F,
∵DO=BO, ∴∠ODB=∠OBD, ∴∠AOD=2∠ODB=∠EDO. ∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB, ∴∠ODB=15°=∠OBD. ∵∠BAF=∠DBA=15°,
∴AF=BF,∠AFD=30°. ∵AB 是直径,∴∠ADB=90°, ∴AF=2AD,DF= AD, ∴BD=DF+BF= AD+2AD,
C.G,H,E
D.H,E,F
5.(2018 福建)如图,AB 是☉O 的直径,BC 与☉O 相切于点 B,AC 交
☉O 于点 D,若∠ACB=50°,则∠BOD 等于( D )
A.40°
B.50°
C.60°
D.80°
第 5 题图
第 6 题图
6.(2018 哈尔滨)如图,点 P 为☉O 外一点,PA 为☉O 的切线,A 为切
(1)求证:EG 是☉O 的切线;
(2)延长 AB 交 GE 的延长线于点 M,若 AH=2,CH=2 2,求 OM 的 长. (1)证明:连接 OE,如图,
∵GE=GF,∴∠GEF=∠GFE. 而∠GFE=∠AFH,∴∠GEF=∠AFH. ∵AB⊥CD,∴∠OAF+∠AFH=90°, ∴∠GEA+∠OAF=90°. ∵OA=OE,∴∠OEA=∠OAF, ∴∠GEA+∠OEA=90°,即∠GEO=90°, ∴OE⊥GE,
第23讲 与圆有关的位置关系
1.(2011.(2019 南岗)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以
点 A 为圆心作圆,如果圆 A 与线段 BC 没有公共点,那么圆 A 的半

苏科版2020-2021年九年级数学中考专题复习《网格问题》 试卷

苏科版2020-2021年九年级数学中考专题复习《网格问题》 试卷

初三数学专题复习【基础训练】1.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则tan∠BED 等于.2.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC沿A﹣D的方向平移AD 长,得△DEF(B、C的对应点分别为E、F),则BE长为.3.如图,在4×4的网格纸中,△ABC的三个顶点都在格点上.现要在这张网格纸中找出一格点作为旋转中心,绕着这个中心旋转后的三角形的顶点也在格点上,若旋转前后的两个三角形构成中心对称图形,那么满足条件的旋转中心有个.4.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(画出图形)(3)△A2B2C2的面积是平方单位.【典型例题】例1.(1)如图所示的网格是正方形网格,则∠BAC﹣∠DAE=°(点A,B,C,D,E是网格线交点).(2)10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为.例2.如图是4×4的正方形网格,每个小正方形的边长均为1且顶点称为格点,点A,B均在格点上.在网格中建立平面直角坐标系,且A(﹣1,1),B(1,2).如果点C也在此4×4的正方形网格的格点上,且△ABC是等腰三角形,那么当△ABC的面积最大时,点C的坐标为.例3.如图,每个小正方形的边长都是1的方格纸中,有线段AB和线段CD,点A、B、C、D的端点都在小正方形的顶点上.(1)在方格纸中画出一个以线段AB为一边的菱形ABEF,所画的菱形的各顶点必须在小正方形的顶点上,并且其面积为20.(2)在方格纸中以CD为腰画出等腰三角形CDK,点K在小正方形的顶点上,且∠KCD=45°.(3)在(1)、(2)的条件下,连接EK,请直接写出线段EK的长.例4.定义:如果一个直角三角形的两条直角边的比为1:2,那么这个三角形叫做“半正切三角形”.(1)如图①,正方形网格中,已知格点A,B,在格点C,D,E,F中,与A,B能构成“半正切三角形”的是点;(2)如图②,△ABC(BC<AC)为“半正切三角形”,点M在斜边AB上,点D在边AC上,将射线MD绕点M逆时针旋转90°,所得射线交边BC于点E,连接DE.小彤发现:若M为斜边AB的中点,则△DEM一定为“半正切三角形”.请判断“小彤发现”是否正确?并说明理由;【巩固练习】1.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为.2.如图,A、B、C三点在正方形网格线的交点处,若将△ACB绕着点A逆时针旋转得到△AC′B′,使点B′落在射线AC上,则cos∠B′CB的值为.3.如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则∠BAC+∠ACD=°.4.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1) 填空:∠ABC=,BC=.(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.5.已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN 的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).6.在如图9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,无需画图,直接写出P、Q两点的坐标.7.如图是由边长相等的小正方形组成的网格,点A、B均在格点上.(1)在网格中,用无刻度的直尺画等腰直角三角形ACB.使∠ACB=90;(2)在(1)的条件下,点D在AC上(点D可以不在格点上).在网格中,用无刻度的直尺画出∠CBD,使tan∠CBD=.8.按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.9.如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B 作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B 重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm1 1.52 2.53 3.54y/cm0 3.7 3.8 3.3 2.5(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为cm.10.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是________(4)△ABC在整个平移过程中线段AB 扫过的面积为________(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有______个。

2024年河南省九年级中考数学模拟试卷(六)

2024年河南省九年级中考数学模拟试卷(六)

2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考基础训练(6)
时间:30分钟 你实际使用 分钟
班级 姓名 学号 成绩
一、精心选一选
1.2的倒数是( )
A.2- B.12 C.1
2- D.1
2.反比例函数()0k
y k x
=≠的图像经过点()13-,,则k 的值为( )
A.3- B.3 C.13 D.1
3
-
3.数据24457,
,,,的众数是( ) A.2 B.4 C.5 D.7
4.不等式组10
30
x x ->⎧⎨
-<⎩的解集是( )
A.1x > B.3x < C.13x <<
D.无解
5.下列图形中,不是..
轴对称图形的是( )
6.随着新农村建设的进一步加快,湖州市农村居民人均纯收入增长迅速.据统计,2005年本市农村居民人均纯收入比上一年增长14.2%.若2004年湖州市农村居民人均纯收入为a 元,则2005年本市农村居民人均纯收入可表示为( ) A.14.2a 元 B.1.42a 元 C.1.142a 元 D.0.142a 元 7.如图,在O 中,AB 是弦,OC AB ⊥,垂足为C ,若16AB =,
6OC =,则O 的半径OA 等于( )
A.16 B.12 C.10 D.8 8.如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a 在展开前所对
的面的数字是( ) A.2 B.3 C.4 D.5 9.下列各式从左到右的变形正确的是( )
A.
1
22
1
22
x y
x y
x y
x y -
-=
++
B.
0.220.22a b a b
a b a b ++=++
C.11
x x x y x y
+--
=-- D.
a b a b
a b a b
+-=-+ 10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2
)的
A. B. C. D.
(第7题)
(第8题)
概率等于( ) A.1
B.
12
C.
13
D.
23
11.已知一次函数y kx b =+(k b ,是常数,0k ≠),x 与y 的部分对应值如下表所示:
那么不等式kx b +<的解集是( ) A.0x < B.0x > C.1x <
D.1x >
12.已知二次函数()2
111y x bx b =-+-≤≤,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( ) A.先往左上方移动,再往左下方移动 B.先往左下方移动,再往左上方移动 C.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动
二、细心填一填
13.请你写出一个..比0.1小的有理数 . 14.分解因式:322________a a a -+=.
15
.分式方程
121
x x =+
的解是______x =.
16.如图,O 的半径为4cm ,直线l OA ⊥,垂足为O ,则直线l 沿射线OA 方向平移 cm 时与O 相切.
17.为了测量校园内水平地面上一棵不可攀的树的高度,学校
数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底()8.4B 米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得 2.4DE =
米,观察者目高 1.6CD =米,则树()AB 的高度约为 米.(精确到0.1米)
(第10题 图1) (第10题 图2)
(第17题)
A
B
C D
E
(第18题)
(第16题) l
18.一青蛙在如图88⨯的正方形(每个小正方形的边长为1)网格的格点(小正方形的顶点)
上跳跃,青蛙从点A 开始连续跳六次正好跳回到点A ,则所构成的封闭图形的面积的最大值是 .
三、开心用一用
19.计算:()2
122
-+-

答案:
一、选择题
二、填空题
13.略(答案不唯一) 14.()2
1a a - 15.1 16.4 17.5.6 18.12 三、解答题(共60分) 19.(本小题8分)
解:原式1312=-+122
=.。

相关文档
最新文档