高考达标检测(四十)曲线与方程求解3方法——直接法、定义法、代入法
求曲线的方程 课件

l1
⊥
l2
,
பைடு நூலகம்
所
以
|PM|
=
1 2
|AB|.
而
|PM|
=
x-22+y-42,
|AB|= 2x2+2y2,
所以 2 x-22+y-42= 4x2+4y2,
化简,得 x+2y-5=0 为所求轨迹方程.
[点评] 1.直译法求轨迹方程是常用的基本方法,大多数 题目可以依据文字叙述的条件要求,直接“翻译”列出等式整 理可得.
[解析] 解法一:如图所示,设点 A(a,0),B(0,b),M(x, y),因为 M 为线段 AB 的中点,所以 a=2x,b=2y,即 A(2x,0), B(0,2y).因为 l1⊥l2,所以 kAP·kPB=-1.而 kAP=24--20x(x≠1), kPB=42--20y,
所以1-2 x·2-1 y=-1(x≠1). 整理得,x+2y-5=0(x≠1).
(5)参数法:选取适当的参数,分别用参数表示动点坐标 x, y,得出轨迹的参数方程,消去参数,即得其普通方程.
(6)交轨法:求两动曲线交点轨迹时,可由方程直接消去参 数,例如求动直线的交点时常用此法,也可以引入参数来建立 这些动曲线的联系,然后消去参数得到轨迹方程.
命题方向 直译法求曲线的方程 [例 1] 过点 P(2,4)作两条互相垂直的直线 l1、l2,若 l1 交 x 轴于 A 点,l2 交 y 轴于 B 点,求线段 AB 的中点 M 的轨 迹方程.
(3)待定系数法:根据条件能知道曲线方程的类型,可设出 其方程形式,再根据条件确定待定的系数.
(4)代入法:动点 M(x,y)随着动点 P(x1,y1)的运动而运动, 点 P(x1,y1)在已知曲线 C 上运动,可根据 P 与 M 的关系用 x, y 表示 x1,y1,再代入曲线 C 的方程,即可得点 M 的轨迹方程.
求曲线方程的几种常用方法

求曲线方程的几种常用方法求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有:1.直接法:就是课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。
解法一:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的有中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则A (,0)a -,B (,0)a 。
设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。
解法二:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,C (,)x y∵1AC BC k k =-, (1) ∴1y y x a x a =-+- , (2)化简得:222x y a += , (3)由于在x a ≠±时方程(2)与(3)不等价,故所求轨迹方程为222x y a +=(x a ≠±)。
解法三:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,且设动点C (,)x y 。
∵1||||2COAB =, a =,即222x y a +=。
轨迹中应除去A 、B 两点(理由同解法一),故所求轨迹方程为222x y a +=(x a ≠±)。
说明:利用这种方法求曲线方程的一般方法步骤:(1)建立适当的直角坐标系,用(,)x y 表示曲线上任意点M 的坐标;(2)写出适合条件p 的点M 的集合{|()}p M p m =;(3)用坐标表示()p m ,列出方程(,)0f x y =;(4)化简方程(,)0f x y =为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点(此步骤经常省略,但一定要注意所求的方程中所表示的点是否都表示曲线上的点,要注意那些特殊的点。
高中数学复习专题讲座曲线的轨迹方程的求法

高中数学复习专题讲座曲线的轨迹方程的求法高考要求求曲线的轨迹方程是解析几何的两个基本问题之一 求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点重难点归纳求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念 典型题例示范讲解例1如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程命题意图 本题主要考查利用“相关点代入法”求曲线的轨迹方程知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程错解分析 欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题技巧与方法 对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程解 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线命题意图 本题主要考查“参数法”求曲线的轨迹方程 知识依托 直线与抛物线的位置关系错解分析 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论 技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a 由OM ⊥AB ,得m =-y x由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒= 故x =my +4p ,用m =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k =--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外), ①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力知识依托 圆锥曲线的定义,求两曲线的交点错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程 解 设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切建立如图所示的坐标系,并设⊙P 的半径为r ,则|PA |+|PO |=(1+r)+(1 5-r)=2 5∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为(x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+- 故所求圆柱的直径为76cm 例4已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线 解 建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0) 设M (x ,y )是轨迹上任意一点则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴) (2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0 点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆 学生巩固练习1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A 圆B 椭圆C 双曲线的一支D 抛物线2 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A 14922=+y xB 14922=+x y C 14922=-y x D 14922=-x y 3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程6 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程7 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q(1)求直线A 1P 与A 2Q 交点M 的轨迹方程; (2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率8 已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l的对称点为Q ,F 2Q 交l 于点R(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值 参考答案1 解析 ∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆 答案 A2 解析 设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得 答案 C3 解析 由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=- 答案 )4(1316162222ax a y a x >=-4 解析 设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0答案 4x 2+4y 2-85x +100=05 解 设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P 由切线的性质知 |BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6 解 设P (x 0,y 0)(x ≠±a ),Q (x ,y ) ∵A 1(-a ,0),A 2(a ,0)由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为 a 2x 2-b 2y 2=a 4(x ≠±a )7 解 (1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为 y =)(11m x mx y ++ ①A 2Q 的方程为 y =-)(11m x mx y -- ②①×②得 y 2=-)(2222121m x mx y -- ③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1 此即为M 的轨迹方程(2)当m ≠n 时,M 的轨迹方程是椭圆(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =nm n 22-8 解 (1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2| 又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0)|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2 故R 的轨迹方程为 x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2此时弦心距|OC |=21|2|kak +在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC课前后备注友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
高考研究课(四) 曲线与方程求解3方法——直接法、定义法、代入法

曲线与方程求解3方法——直接法、定义法、代入法
结
束
(2)在直角坐标平面 xOy 中,过定点(0,1)的直线 l 与圆 x2+y2=4 交 ―→ ―→ ―→ 于 A,B 两点.若动点 P(x,y)满足 OP = OA + OB ,则点 P 的轨 迹方程为________________.
[解析] 设 AB 的中点为 M, ―→ 1 ―→ ―→ 1―→ 则 OM = ( OA + OB )= OP , 2 2
结
束
(2)因为B为CD的中点, ―→ ―→ 所以OB⊥ CD,则 OB ⊥ AB . ―→ 设B(x0,y0),则 AB =(x0- 3,y0). ―→ ―→ 由 OB · AB =0,得x0(x0- 3)+y2 0=0. x2 2 2 0 2 又 +y0=1,解得x0= ,y0=± . 4 3 3 2 则kOB=± ,kAB=∓ 2, 2 则直线AB的方程为y=± 2x- 3, 即 2x-y- 6=0或 2x+y- 6=0.
结
束
[ 典例 ]
(1)(2017· 津南一模 ) 平面直角坐标系中 , 已知两点
―→ ―→ ―→ A(3,1),B(-1,3),若点 C 满足 OC =λ1 OA +λ2 OB (O 为原点), 其中 λ1,λ2∈R,且 λ1+λ2=1,则点 C 的轨迹是 A.直线
[解析]
(
)
C.圆 D.双曲线 ―→ ―→ ―→ 设 C(x,y),因为 OC =λ1 OA +λ2 OB ,
曲线与方程求解3方法——直接法、定义法、代入法
结
束
[方法技巧]
定义法求轨迹方程的方法、关键及注意点 (1)求轨迹方程时,若动点与定点、定线间的等量关系满 足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先 确定轨迹类型,再写出其方程. (2)关键:理解解析几何中有关曲线的定义是解题关键. (3)利用定义法求轨迹方程时,还要看所求轨迹是否是完 整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则 应对其中的变量x或y进行限制.
高考研究:曲线方程常见解题方法

y2=-2x2+x.
探究2 (1)相关点法求曲线方程时一般有两 个动点,一个是主动的,另一个是次动的, 如本题中P是主动点,R是次动点.
(2)当题目中的条件同时具有以下特征时,一 般可以用相关点法求其轨迹方程:
x=x1+2 x2,
并且y=y1+2 y2,
⑦
y-x 1=xy11--xy22,
将⑦代入⑥并整理,得4x2+y2=y.⑧ 当x1=x2时,点A,B的坐标分别为(0,2),(0,-2).
这时点P的坐标为(0,0),也满足⑧.
所以点P的轨迹方程为
x2 1
+y-1 122=1.
16 4
【答案】 4x2+y2-y=0
例4
已知椭圆C:
x2 a2
+
y2 b2
=1(a>b>0)的一个焦点为
(
5,0),离心率为
5 3.
(1)求椭圆C的标准方程;
(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两 条切线相互垂直,求点P的轨迹方程.
【思路】 (1)由焦点坐标和离心率可求出椭圆的长 半轴长、半焦距长和短半轴长,可得椭圆的标准方 程;(2)讨论两条切线的斜率是否存在,斜率存在时, 设出切线方程,利用直线与椭圆相切得判别式Δ=0, 建立关于k的一元二次方程,利用两根之积为-1, 求出点P的轨迹方程.
【解析】 如下图,由切线性质,得
|PB|+|PC|=|BA|+|CA|=18>|BC|=6.可知P点轨迹是以
B,C为焦点的椭圆(但除去与BC的交点).以BC为x轴,BC
中点为原点建立坐标系得 P点轨迹方程为8x12 +7y22 =1(y≠0). 【答案】 8x12 +7y22 =1(y≠0)
高考数学总复习高考研究课(四)曲线与方程求解3方法-直接法、定义法、代入法课件理

答案:x2+y2-x-8=0
定义法
定义法:若动点的轨迹符合某一基本轨迹的定义,则 可根据定义法直接设出所求方程,再确定系数求出动点的 轨迹方程.
[典例] (2017·唐山一模)已知圆O:x2+y2 =4,点A( 3,0),以线段AB为直径的圆内切于 圆O,记点B的轨迹为F.
(1)求曲线F的方程; (2)直线AB交圆O于C,D两点,当B为CD的中点时,求直线AB 的方程. [解] (1)设AB的中点为M,切点为N,连接OM,MN,则 |OM|+|MN|=|ON|=2,取A关于y轴的对称点A′,连接A′B,故 |A′B|+|AB|=2|OM|+|MN|=4. 所以点B的轨迹是以A′,A为焦点,长轴长为4的椭圆. 其中,a=2,c= 3,b=1,则曲线F的方程为x42+y2=1.
(2)因为B为CD的中点, 所以OB⊥ CD,则―O→B ⊥―A→B . 设B(x0,y0),则―A→B =(x0- 3,y0). 由―O→B ·―A→B =0,得x0(x0- 3)+y20=0. 又x420+y20=1,解得x0= 23,y0=± 23. 则kOB=± 22,kAB=∓ 2, 则直线AB的方程为y=± 2x- 3, 即 2x-y- 6=0或 2x+y- 6=0.
(2)当直线PN的斜率不存在时,直线MN的方程为x=2或x=-2. 显然与轨迹E相切.
当直线PN的斜率存在时,设PN的方程为y=kx+t(k≠0). ∵直线PN与圆O相切,∴ k|2t+| 1=2,即t2-4k2-4=0.
又∵直线MN的斜率为k2,点N的坐标为-kt ,0, ∴直线MN的方程为y=k2x+x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心 轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点 F(0,1)与点M(x,y)的距离为n. (1)求圆C的圆心轨迹L的方程; (2)求满足条件m=n的点M的轨迹Q的方程. 解:(1)两圆半径都为 1,两圆圆心分别为 C1(0,-4),C2(0,2), 由题意得|CC1|=|CC2|,可知圆心 C 的轨迹是线段 C1C2 的垂直 平分线,C1C2 的中点为(0,-1),直线 C1C2 的斜率不存在,故 圆心 C 的轨迹是线段 C1C2 的垂直平分线,直方程为 y=-1, 即圆 C 的圆心轨迹 L 的方程为 y=-1.
求曲线方程的几种常见方法
求曲线方程的几种常见方法求曲线方程的几种常见方法2011-04-20 13:59 来源:文字大小:【大】【中】【小】解析几何研究的主要问题是:(1)根据已知条件,求出表示曲线的方程;(2)通过曲线的方程,研究曲线的性质.所以求曲线的方程是解析几何中的一个重要问题.下文将讨论几种求曲线方程的方法及求曲线方程时应注意的问题.一、直接法若动点满足的几何条件本身就是一些几何量的等量关系,或这些几何量间的等量关系简单明了且易于表达,我们只要将这些的等量关系变成含,的等式就得到动点的轨迹方程.这种方法不需要其它技巧,故称为直接法.例1已知P,Q是平面内的2个定点,=2,点M为平面内的动点,且M到点P的距离与到点Q的距离的比值为(﹥0),求点M 的轨迹.解析以线段PQ的中点O为坐标原点,线段PQ的垂直平分线为轴建立直角坐标系.点为(-1,0),点为(1,0),设点为(,).,(﹥0),,,化简可得.(1)时,点的轨迹为轴,其方程为;(2)﹥0且时,点的轨迹方程可化为,即,当﹥0且时,点的轨迹是以为圆心,以为半径的圆.点评直接法求轨迹的一般步骤为:(1)必要时建立平面直角坐标系(若已有直角坐标系则可以省去这一步),设动点坐标为(,);(2)根据题设条件列出等量关系式;(3)将上述等量关系式转化为方程式;(4)整理、化简方程式为轨迹方程;(5)必要时进行讨论,以保证轨迹的纯粹性与完备性,并指出轨迹的具体几何意义.二、定义法若动点轨迹的条件符合某一基本轨迹(如圆、椭圆、双曲线、抛物线)的定义,则可以根据定义直接求出动点的轨迹方程,这种方法称为定义法.例2 如图,已知两圆,,动圆在圆内且和圆内切,和圆外切,求动圆圆心的轨迹.解析设动圆圆心为,由题意可知.根据椭圆的第一定义,点的轨迹是以点,为焦点的椭圆,其中,动圆圆心的轨迹方程为.点评解答本题的关键在于透过复杂的条件认识到点轨迹是以点,为焦点的椭圆,假若根据几何条件列方程求解就复杂了.三、相关点法有些求轨迹的问题中,其动点满足的条件不便用等式列出,但这一动点随另一动点(称之为相关点)而动.假若相关点所满足的条件是明显的或可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程或关系式,即可求得动点的轨迹方程,这种求轨迹方程的方法叫相关点法,也叫转移点法或代入法.例3 已知曲线与直线交于两点和,且﹤.记曲线在点A点B 之间的那段为L,设点P(s,t)是L上的任意一点,且点P与点A和点B均不重合.若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程.解析由,解得A(-1,1),B(2,4).由中点坐标公式可得点Q的坐标为(),设点M的坐标为().于是,,,又-1﹤s﹤2,﹤﹤,即﹤﹤.又点P(s,t)在曲线C上,.将代入得,即(﹤﹤).点评相关点法是一种常考的方法,用此法求轨迹的大致步骤是:(1)设所求轨迹的动点P的坐标为(),再设在曲线上与动点P相关的点为Q (),所以;(2)找出P,Q的坐标之间的关系式,并表示为(3)将代入,即可得所求的轨迹方程.本题中还要注意所求曲线只是抛物线的一部分.四、交轨法若动点是两条动曲线(含直线)的交点,则可恰当的引入一个或几个参数,写出动曲线的方程,消去参数,即可求得所求的轨迹方程.这种方法叫交轨法.例4 如图,椭圆与轴的交点为A(2,0),B(-2,0),与轴平行的直线交该椭圆于不同的两点M,N,试求直线AM,BN的交点Q 的轨迹方程.解析直线MN的方程为,设M和N的坐标分别为(),(),则,即.M,N为不同的两点,,直线AM,BN的方程分别为因为点Q的坐标满足上式,所以将它们相乘可得,将代入上式可得,即.又交点Q不可能在轴上,.交点Q的轨迹方程是.点评交点Q不可能在轴上,去掉(2,0),(-2,0)两点,确保轨迹的纯粹性不容忽视.五、向量法用向量法求轨迹方程时,可充分利用向量垂直和共线的充要条件,并可以避免讨论直线斜率是否存在,使计算得到简化.例5 如图,设点A、B为抛物线(p﹥0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,M是垂足,求点M的轨迹方程,并说明它表示的曲线类型.解析设点A,点B(),M().,,,,.,即,.又,即,化简得.又∥,,化简可得.消去可得,又因为A、B异于原点,所以.点M的轨迹方程为,它表示一点(2p,0)为圆心,2p为半径的圆(不包含原点).点评利用向量可以将几何问题化为代数计算,在此设点A,点B(),而不设点,是为了尽量减少参数.六、参数法动点满足的条件式中含有参数(如角度、斜率、比值等)或动点运动过程中受到某个参数制约,我们建立以这个变量为参数的参数方程,然后消去这个参数,即得轨迹的普通方程,这种求轨迹方程的方法叫参数法.例6 过点P(4,1)的动直线与椭圆交于不同的两点A、B,在线段AB上取点Q,满足,证明:点Q总在某定直线上.证明设点Q,A,B的坐标分别为(),(),().由题设知,,,均不为0,记,则﹥0,且.又A,P,B,Q四点共线,从而.于是,,,.从而,………………①.………………②又因为点A、B在椭圆C上,即,………………③,………………④①+2②得,结合③、④得.即点Q()总在定直线上.点评在此选取比值作参数,得到轨迹的含的参数方程,最后消去参数得到轨迹的普通方程.本题中点Q的轨迹只是直线的一部分.七、点差法例7 给定双曲线,过点A(2,1)的直线与所给双曲线交于两点,求线段中点P的轨迹方程.解析设P(),,,则两式相减得.又.又,,A,P四点共线,,,即所求轨迹方程为.点评点差法是求弦中点形成的轨迹的有效方法.【练习】1.动点与两点连线的斜率之积为(﹤0),求点的轨迹方程,并根据值变化讨论其轨迹是什么曲线.2.已知圆:与定直线,动圆与圆外切,并且与直线相切,求动圆圆心的轨迹方程.3.已知O为坐标原点,A为椭圆(a﹥b﹥0)上任意一点,且,求点P的轨迹方程.4.如图,设点A、B分别为(-1,0)、(1,0),N为单位圆上的动点(不与点A、B重合),单位圆上过点N的切线与过点A、B的切线分别交于D、C两点,四边形ABCD的对角线AC与BD的交点为P,求交点P的轨迹.5.已知点A(1,0)为圆内的一点,P为圆上任意一点,线段AP的垂直平分线和半径OP相交于点Q,当点P在圆上运动时,点Q 的轨迹是什么?6.过抛物线的顶点O作两条互相垂直的直线,分别交抛物线于A、B两点,求线段AB的中点P的轨迹方程.7.线段AB是经过抛物线焦点的弦,求弦AB的中点的轨迹方程.【参考答案】1.(1)﹤-1时,轨迹方程为(),点的轨迹为焦点在轴上的椭圆(不含,两点);(2)时,轨迹方程为,点的轨迹为圆(不含,两点);(3)-1﹤﹤0时,轨迹方程为,点的轨迹为焦点在轴上的椭圆(不含,两点).2.3.4.设切点N的坐标为(cos,sin),则切线CD的方程为,求出点C、D的坐标,进而写出直线BD、AC的方程,消去即可.点P的轨迹为椭圆:除去A、B两点的部分.5.(用向量法和参数法).6.7.。
适用于新教材2024版高考数学一轮总复习:求曲线轨迹方程的方法课件北师大版
方程;
(3)代入法(相关点法):题中有两个动点,一个为所求,设为(x,y),另一个在已知
曲线上运动,设为(x0,y0),利用已知条件找出两个动点坐标的关系,用所求表示
0 = (,),
已知,即
将(x0,y0)代入已知曲线即得所求曲线方程;
的斜率为-4(x≠4),所以+4
2
=1(y≠0).
12
3
2
·-4=-4,整理得16
+
2
=1(y≠0),
12
规律方法 直接法求轨迹方程的两种策略
对点训练 1 已知点 A(0,1),B(2,-1),动点 P(x,y)满足 · =1,则点 P 的轨迹方
程为
.答案Biblioteka (x-1)2+y2=3M是一个动点,C,D分别为线段AM,BM的中点,且直线OC,OD的斜率之积是
- 3 ,记M的轨迹为E.求E的方程.
4
解 由题意可知,直线 OC,OD 的斜率存在且不为 0,且 AM∥OD,BM∥OC,所以
直线 BM,AM
3
的斜率之积也等于-4.设
(x≠-4),直线
+4
故E
BM
2
的方程为
16
+
M(x,y)(y≠0),则直线 AM 的斜率为
对点训练 2(2023·广东番禺中学高三检测节选)已知定点 P( 3,0),圆
Q:(x+ 3)2+y2=16,N 为圆 Q 上的动点,线段 NP 的垂直平分线和半径 NQ 相交
于点 M.求点 M 的轨迹 Γ 的方程.
求曲线轨迹方程的方法
四、参数法求曲线方程
若过点 P(1,1)且互相垂直的两条直线 l1,l2 分别与 x 轴,y 轴交于 A,B 两点,则 AB 中点 M 的轨迹方程为________.
四、参数法求曲线方程
【审题】 斜率存在时,点斜式设l1的方程→得l2的方程→ 联立方程→求交点坐标→消去参数→得结果→斜率不存在时将
三、相关点法求曲线轨迹方程
基本思路:
①设点:设被动点的坐标 M (x, y),主动点的坐标 P(x0, y0;) ②求关系式:用被动点的坐标M (x, y) 表示主动点的坐标 P(x0, y0 ),即
得关系式
xy00
g(x, h(x,
y) y)
③代换:将上述关系式带入主动点满足的方程,化简整理可得所求动 点的轨迹方程。
三、相关点法求曲线轨迹方程
x 例 在圆 x2 y2 4上任取一点P,过点P作 轴的垂线段PD,
D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设M (x, y), P(x0 , y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以x02 y02 4 。
把 x0 x, y0 2x带入上式得:x2 4 y2 4.
二:定义法求轨迹方程
思路:如果动点的轨迹满足某种已知曲线定义,则可由曲 线的定义直接写出方程,利用定义法求轨迹方程要善于抓 住曲线定义的特征。 要点:四种曲线定义及成立条件
方法:建系设点 定型(思考几何关系,进而寻求数量关系) 定方程 定范围
二:定义法求轨迹方程
圆的定义: |PC|=r (r>0) 椭圆的定义:
一:直接法(直译法)求轨迹方程
例 已知一条直线 l 和它上方的一个点F,点F到l 的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
2018年高考数学(理)总复习高考达标检测(四十)曲线与方程求解3方法——直接法、定义法、代入法
高考达标检测(四十)曲线与方程求解3方法——直接法、定义法、代入法 一、选择题1.(2017·深圳调研)已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP ―→·QF ―→=FP ―→·FQ ―→,则动点P 的轨迹方程为( )A .x 2=4y B .y 2=3x C .x 2=2yD .y 2=4x解析:选A 设点P (x ,y ),则Q (x ,-1). ∵QP ―→·QF ―→=FP ―→·FQ ―→,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y , ∴动点P 的轨迹方程为x 2=4y 、2.(2016·呼和浩特调研)已知椭圆x 2a 2+y 2b2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线解析:选B 设椭圆的右焦点是F 2, 由椭圆定义可得|MF 1|+|MF 2|=2a >2c , 所以|PF 1|+|PO |=12(|MF 1|+|MF 2|)=a >c ,所以点P 的轨迹是以F 1和O 为焦点的椭圆.3.已知正方形的四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),点D ,E 分别在线段OC ,AB 上运动,且OD =BE ,设AD 与OE 交于点G ,则点G 的轨迹方程是( )A .y =x (1-x )(0≤x ≤1)B .x =y (1-y )(0≤y ≤1)C .y =x 2(0≤x ≤1) D .y =1-x 2(0≤x ≤1)解析:选 A 设D (0,λ),E (1,1-λ),0≤λ≤1,所以线段AD 的方程为x +yλ=1(0≤x ≤1),线段OE 的方程为y =(1-λ)x (0≤x ≤1),联立方程组⎩⎪⎨⎪⎧x +y λ=1,0≤x ≤1,y =-λx ,0≤x ≤1(λ为参数),消去参数λ得点G 的轨迹方程为y =x (1-x )(0≤x ≤1).4.(2016·廊坊二模)有一动圆P 恒过定点F (a,0)(a >0)且与y 轴相交于点A ,B ,若△ABP 为正三角形,则圆心P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线解析:选D 设P (x ,y ),动圆P 的半径为R , ∵△ABP 为正三角形, ∴P 到y 轴的距离d =32R ,即|x |=32R 、 而R =|PF |=x -a 2+y 2, ∴|x |=32·x -a2+y 2、整理得(x +3a )2-3y 2=12a 2,即x +3a212a2-y 24a2=1、 ∴点P 的轨迹为双曲线.故选D 、5.(2016·沈阳质检)已知点O (0,0),A (1,-2),动点P 满足|PA |=3|PO |,则P 点的轨迹方程是( )A .8x 2+8y 2+2x -4y -5=0 B .8x 2+8y 2-2x -4y -5=0 C .8x 2+8y 2+2x +4y -5=0 D .8x 2+8y 2-2x +4y -5=0解析:选 A 设P 点的坐标为(x ,y ),由|PA |=3|PO |,得x -2+y +2=3x 2+y 2,整理得8x 2+8y 2+2x -4y -5=0,故选A 、6.(2017·梅州质检)动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8x B .y 2=-8x C .y 2=4xD .y 2=-4x解析:选B 双曲线x 2-y 23=1的左焦点F (-2,0),动圆M 经过F 且与直线x =2相切,则圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x 、二、填空题7.(2017·聊城一模)在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC ―→=OA ―→+t (OB ―→-OA ―→),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC ―→=(x ,y ),OA ―→+t (OB ―→-OA ―→)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t 消去参数t 得点C 的轨迹方程为y =2x -2、答案:y =2x -28.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是____________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|FA |+|FB |,∴|FA |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为 x 24+y 23=1(y ≠0).答案:x 24+y 23=1(y ≠0)9.在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是________.解析:由正弦定理得|AB |2R -|AC |2R =12×|BC |2R ,即|AB |-|AC |=12|BC |,故动点A 是以B ,C 为焦点,a2为实轴长的双曲线右支.即动点A 的轨迹方程为16x 2a 2-16y23a 2=1(x >0且y ≠0).答案:16x2a 2-16y23a 2=1(x >0且y ≠0)三、解答题10.已知圆C 1的圆心在坐标原点O ,且恰好与直线l 1:x -y -22=0相切. (1)求圆的标准方程;(2)设点A 为圆上一动点,AN ⊥x 轴于点N ,若动点Q 满足OQ ―→=m OA ―→+(1-m )ON ―→(其中m 为非零常数),试求动点Q 的轨迹方程C 2、解:(1)设圆的半径为r ,圆心到直线l 1的距离为d ,则d =|-22|12+12=2=r , ∴圆C 1的方程为x 2+y 2=4、 (2)设动点Q (x ,y ),A (x 0,y 0), ∵AN ⊥x 轴于点N , ∴N (x 0,0),由题意,得(x ,y )=m (x 0,y 0)+(1-m )(x 0,0),∴⎩⎪⎨⎪⎧x =x 0,y =my 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=1m y ,将A ⎝ ⎛⎭⎪⎫x ,1m y 代入x 2+y 2=4,得x 24+y 24m 2=1、即动点Q 的轨迹方程为x 24+y 24m2=1、11.(2017·唐山统考)已知动点P 到直线l :x =-1的距离等于它到圆C :x 2+y 2-4x +1=0的切线长(P 到切点的距离).记动点P 的轨迹为曲线E 、(1)求曲线E 的方程;(2)点Q 是直线l 上的动点,过圆心C 作QC 的垂线交曲线E 于A ,B 两点,设AB 的中点为D ,求|QD ||AB |的取值范围.解:(1)由已知得圆的方程为(x -2)2+y 2=3, 则圆心为C (2,0),半径r =3、 设P (x ,y ),依题意可得|x +1|=x -2+y 2-3,整理得y 2=6x 、故曲线E 的方程为y 2=6x 、 (2)设直线AB 的方程为my =x -2,则直线CQ 的方程为y =-m (x -2),可得Q (-1,3m ). 将my =x -2代入y 2=6x 并整理可得y 2-6my -12=0, 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=6m ,y 1y 2=-12,AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,即D (3m 2+2,3m ),|QD |=3m 2+3、 |AB |=1+m 2·y 1-y 22=23+m2m 2+,所以⎝ ⎛⎭⎪⎫|QD ||AB |2=3m 2+3m 2+=14⎝ ⎛⎭⎪⎫1-13m 2+4的取值范围是⎣⎢⎡⎭⎪⎫316,14, 故|QD ||AB |的取值范围是⎣⎢⎡⎭⎪⎫34,12、 12.(2016·泰安质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积.(2)求直线AA 1与直线A 2B 交点M 的轨迹方程. 解:(1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|, 由x 209+y 20=1得y 20=1-x 209, 从而x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94、当x 20=92,y 20=12时,S max =6、从而t 2=x 20+y 20=5,t =5,∴当t =5时,矩形ABCD 的面积取到最大值6、 (2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0), 得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上, 故y 20=1-x 209、④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).高考达标检测(一) 集 合一、选择题1.(2017·郑州质量预测)设全集U ={x ∈N *|x ≤4},集合A ={1,4},B ={2,4},则∁U (A ∩B )=( )A .{1,2,3}B .{1,2,4}C .{1,3,4}D .{2,3,4}解析:选A 因为U ={1,2,3,4},A ∩B ={4},所以∁U (A ∩B )={1,2,3},故选A 、 2.(2017·福州模拟)集合A ={-3,-1,2,4},B ={x |2x<8},则A ∩B =( ) A .{-3} B .{-1,2} C .{-3,-1,2}D .{-3,-1,2,4}解析:选C 由题意知,集合A ={-3,-1,2,4},B ={x |2x <8}={x |x <3},则A ∩B = {-3,-1,2},故选C 、3.(2017·重庆适应性测试)设全集U =R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x -1x -2>0,B ={x ∈R|0<x <2},则(∁U A )∩B =( )A .(1,2]B .[1,2)C .(1,2)D .[1,2]解析:选B 依题意得∁U A ={x |1≤x ≤2},(∁U A )∩B ={x |1≤x <2}=[1,2),选B 、 4.(2017·武汉调研)已知集合A ={x |-2≤x ≤3},B ={x |x 2+2x -8>0},则A ∪B =( )A .(-∞,-4)∪[-2,+∞)B .(2,3]C .(-∞,3]∪(4,+∞)D .[-2,2)解析:选A 因为B ={x |x >2或x <-4},所以A ∪B ={x |x <-4或x ≥-2},故选A 、 5.(2016·浙江高考)已知集合P ={x ∈R|1≤x ≤3},Q ={x ∈R|x 2≥4},则P ∪(∁R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)解析:选B ∵Q ={x ∈R|x 2≥4},∴∁R Q ={x ∈R|x 2<4}={x ∈R|-2<x <2}.∵P={x∈R|1≤x≤3},∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].6.设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是( )A.7 B.10C.25 D.52解析:选B 因为A={-1,0,1},B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3}.由x∈A∩B,可知x可取0,1;由y∈A∪B,可知y可取-1,0,1,2,3、所以元素(x,y)的所有结果如下表所示:所以A*B中的元素共有10个.7.(2017·吉林一模)设集合A={0,1},集合B={x|x>a},若A∩B中只有一个元素,则实数a的取值范围是( )A.{a|a<1} B.{a|0≤a<1}C.{a|a≥1} D.{a|a≤1}解析:选B 由题意知,集合A={0,1},集合B={x|x>a},画出数轴(图略).若A∩B 中只有一个元素,则0≤a<1,故选B、8.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q=( )A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|2≤x<3}解析:选B 由log2x<1,得0<x<2,所以P={x|0<x<2}.由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.二、填空题9.(2017·辽宁师大附中调研)若集合A={x|(a-1)·x2+3x-2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18、综上可知,实数a 的值为1或-18、答案:1或-1810.(2017·湖南岳阳一中调研)已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是________.解析:由∁R B ={x |x ≤1或x ≥2}, 且A ∪(∁R B )=R , 可得a ≥2、 答案:[2,+∞)11.(2017·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A 、则集合A =________、(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种; ②这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x )-x =16(种). ②这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种).由于⎩⎪⎨⎪⎧16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14、所以(43-y )min =43-14=29、答案:①16 ②29 三、解答题13.设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}. (1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}. 易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,画出数轴(图略),易知2<a <a +1<4,解得2<a <3、故实数a 的取值范围是(2,3).14.(2017·青岛模拟)若集合M ={x |-3≤x ≤4},集合P ={x |2m -1≤x ≤m +1}. (1)证明M 与P 不可能相等;(2)若集合M 与P 中有一个集合是另一个集合的真子集,求实数m 的取值范围. 解:(1)证明:若M =P ,则-3=2m -1且4=m +1,即m =-1且m =3,不成立. 故M 与P 不可能相等.(2)若P M ,当P ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1<4,m +1≥2m -1或⎩⎪⎨⎪⎧-3<2m -1,m +1≤4,m +1≥2m -1,解得-1≤m ≤2;当P =∅时,有2m -1>m +1,解得m >2,即m ≥-1; 若M P ,则⎩⎪⎨⎪⎧-3≥2m -1,4<m +1,m +1≥2m -1或⎩⎪⎨⎪⎧-3>2m -1,4≤m +1,m +1≥m -1,无解.综上可知,当有一个集合是另一个集合的真子集时,只能是P M ,此时必有m ≥-1,即实数m 的取值范围为[-1,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考达标检测(四十)曲线与方程求解3方法——直接法、定义法、代入法一、选择题1.(2017·深圳调研)已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP ―→·QF ―→=FP ―→·FQ ―→,则动点P 的轨迹方程为( )A .x 2=4yB .y 2=3xC .x 2=2yD .y 2=4x解析:选A 设点P (x ,y ),则Q (x ,-1).∵QP ―→·QF ―→=FP ―→·FQ ―→,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2),即2(y +1)=x 2-2(y -1),整理得x 2=4y ,∴动点P 的轨迹方程为x 2=4y .2.(2016·呼和浩特调研)已知椭圆x 2a 2+y 2b 2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线解析:选B 设椭圆的右焦点是F 2,由椭圆定义可得|MF 1|+|MF 2|=2a >2c ,所以|PF 1|+|PO |=12(|MF 1|+|MF 2|)=a >c , 所以点P 的轨迹是以F 1和O 为焦点的椭圆.3.已知正方形的四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),点D ,E 分别在线段OC ,AB 上运动,且OD =BE ,设AD 与OE 交于点G ,则点G 的轨迹方程是( )A .y =x (1-x )(0≤x ≤1)B .x =y (1-y )(0≤y ≤1)C .y =x 2(0≤x ≤1)D .y =1-x 2(0≤x ≤1)解析:选A 设D (0,λ),E (1,1-λ),0≤λ≤1,所以线段AD 的方程为x +y λ=1(0≤x ≤1),线段OE 的方程为y =(1-λ)x (0≤x ≤1),联立方程组⎩⎪⎨⎪⎧x +y λ=1,0≤x ≤1,y =(1-λ)x ,0≤x ≤1(λ为参数),消去参数λ得点G 的轨迹方程为y =x (1-x )(0≤x ≤1).4.(2016·廊坊二模)有一动圆P 恒过定点F (a,0)(a >0)且与y 轴相交于点A ,B ,若△ABP 为正三角形,则圆心P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线 解析:选D 设P (x ,y ),动圆P 的半径为R ,∵△ABP 为正三角形,∴P 到y 轴的距离d =32R ,即|x |=32R . 而R =|PF |=(x -a )2+y 2, ∴|x |=32·(x -a )2+y 2. 整理得(x +3a )2-3y 2=12a 2,即(x +3a )212a 2-y 24a2=1. ∴点P 的轨迹为双曲线.故选D.5.(2016·沈阳质检)已知点O (0,0),A (1,-2),动点P 满足|PA |=3|PO |,则P 点的轨迹方程是( )A .8x 2+8y 2+2x -4y -5=0B .8x 2+8y 2-2x -4y -5=0C .8x 2+8y 2+2x +4y -5=0D .8x 2+8y 2-2x +4y -5=0解析:选A 设P 点的坐标为(x ,y ),由|PA |=3|PO |,得(x -1)2+(y +2)2=3x 2+y 2,整理得8x 2+8y 2+2x -4y -5=0,故选A.6.(2017·梅州质检)动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x 解析:选B 双曲线x 2-y 23=1的左焦点F (-2,0),动圆M 经过F 且与直线x =2相切,则圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .二、填空题7.(2017·聊城一模)在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC ―→=OA ―→+t (OB ―→-OA ―→),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC ―→=(x ,y ),OA ―→+t (OB ―→-OA ―→)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -28.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是____________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|FA |+|FB |,∴|FA |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为 x 24+y 23=1(y ≠0). 答案:x 24+y 23=1(y ≠0) 9.在△ABC 中,A 为动点,B ,C 为定点,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是________. 解析:由正弦定理得|AB |2R -|AC |2R =12×|BC |2R, 即|AB |-|AC |=12|BC |, 故动点A 是以B ,C 为焦点,a 2为实轴长的双曲线右支. 即动点A 的轨迹方程为16x 2a 2-16y 23a 2=1(x >0且y ≠0).答案:16x 2a 2-16y 23a 2=1(x >0且y ≠0) 三、解答题10.已知圆C 1的圆心在坐标原点O ,且恰好与直线l 1:x -y -22=0相切.(1)求圆的标准方程;(2)设点A 为圆上一动点,AN ⊥x 轴于点N ,若动点Q 满足OQ ―→=m OA ―→+(1-m )ON ―→ (其中m 为非零常数),试求动点Q 的轨迹方程C 2.解:(1)设圆的半径为r ,圆心到直线l 1的距离为d ,则d =|-22|12+12=2=r ,∴圆C 1的方程为x 2+y 2=4.(2)设动点Q (x ,y ),A (x 0,y 0),∵AN ⊥x 轴于点N ,∴N (x 0,0),由题意,得(x ,y )=m (x 0,y 0)+(1-m )(x 0,0),∴⎩⎪⎨⎪⎧ x =x 0,y =my 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=1m y , 将A ⎝⎛⎭⎫x ,1m y 代入x 2+y 2=4,得x 24+y 24m2=1. 即动点Q 的轨迹方程为x 24+y 24m2=1. 11.(2017·唐山统考)已知动点P 到直线l :x =-1的距离等于它到圆C :x 2+y 2-4x +1=0的切线长(P 到切点的距离).记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)点Q 是直线l 上的动点,过圆心C 作QC 的垂线交曲线E 于A ,B 两点,设AB 的中点为D ,求|QD ||AB |的取值范围. 解:(1)由已知得圆的方程为(x -2)2+y 2=3,则圆心为C (2,0),半径r = 3. 设P (x ,y ),依题意可得|x +1|=(x -2)2+y 2-3,整理得y 2=6x .故曲线E 的方程为y 2=6x .(2)设直线AB 的方程为my =x -2,则直线CQ 的方程为y =-m (x -2),可得Q (-1,3m ). 将my =x -2代入y 2=6x 并整理可得y 2-6my -12=0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6m ,y 1y 2=-12,AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, 即D (3m 2+2,3m ),|QD |=3m 2+3.|AB |=1+m 2·(y 1-y 2)2=23(1+m 2)(3m 2+4),所以⎝⎛⎭⎫|QD ||AB |2=3m 2+34(3m 2+4)=14⎝ ⎛⎭⎪⎫1-13m 2+4的取值范围是⎣⎡⎭⎫316,14, 故|QD ||AB |的取值范围是⎣⎡⎭⎫34,12. 12.(2016·泰安质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积.(2)求直线AA 1与直线A 2B 交点M 的轨迹方程.解:(1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|,由x 209+y 20=1得y 20=1-x 209, 从而x 20y 20=x 20⎝⎛⎭⎫1-x 209=-19⎝⎛⎭⎫x 20-922+94. 当x 20=92,y 20=12时,S max =6. 从而t 2=x 20+y 20=5,t =5,∴当t =5时,矩形ABCD 的面积取到最大值6.(2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0), 由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0),设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3).① 直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②得y 2=-y 20x 20-9(x 2-9).③ 又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④ 将④代入③得x 29-y 2=1(x <-3,y <0). 因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).。