高等数学第六章答案
高等数学第六章答案

第六章 定积分的应用第二节 定积分在几何上的应用 1. 求图中各阴影部分的面积: (1) 16. (2) 1(3)323. (4)323.2. 求由下列各曲线所围成的图形的面积: (1) 463π-. (2)3ln 22-. (3)12e e+-.(4)b a -3. 94.4. (1).1213(2).45. (1) πa 2. (2)238a π. (3)218a π.6. (1)423π⎛- ⎝ (2)54π(3)2cos 2ρθρθ==及162π-+7.求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积: (1)2x x y y x =和轴、向所围图形,绕轴及轴。
(2)22y x y 8x,x y ==和绕及轴。
(3)()22x y 516,x +-=绕轴。
(4)xy=1和y=4x 、x=2、y=0,绕。
(5)摆线()()x=a t-sint ,1cos ,y 0x y a t =-=的一拱,绕轴。
2234824131,;(2),;(3)160;(4);(5)5a .52556πππππππ()8.由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积.1287x V π=. y V =645π9.把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.332105a π 10.(1)证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为 ⎰=badx x xf V )(2π. 证明略。
(2)利用题(1)结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 22π11.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积. 343R .12.计算曲线3223y x =上相应于38x ≤≤的一段弧的弧长。
高数答案(全集)第六章参考答案

高数答案(全集)第六章参考答案第六章常微分方程1. (1) b,c,d (2) a,c (3) b,d2. (1) 二阶,线性 (2) 一阶,非线性 (3) 一阶,非线性 (4) 一阶,非线性3. (1)-(3)均为微分方程0222=+y dxy d ω的解,其中(2) (3)为通解 4. (1)将变量分离,得dx ydy cos 2= 两边积分得 c x y +=-sin 1通解为,sin 1c x y +-=此外,还有解0=y(2)分离变量,得dx x x y y d xx dx dy y y )111(1)1(2112222+-=+++=+或两边积分,得cx x y ln )1ln(ln )1ln(212++-=+即(1+ 2y )(1+ x)2=c 1 2x(3)将变量分离,得1122=-+-yydy xxdx积分得通解21x -+)20(12还有使因子21x -?012=-y 的四个解.x=(±)11 y -, y=(±)11 x - (4)将方程改写为(1+y 2)ex2dx-[]0)1( )e y +(1y=+-dy yex2dx=dy y y ??++-2y11 (e 积分得--=y e e y x arctan 212)1ln(212y +-21(5)令 z=x+y+1,z dx dz sin 1+=分解变量得到dx zdz=+sin 1………………(*) 为了便于积分,用1-sinz 乘上式左端的分子和分母,得到dz z z z se dz zzdz z z )tan sec (cos sin 1sin 1sin 1222-=-=-- 将(*)两端积分得到tanz-secz=x+c22z-∏)=x+c,将z 换为原变量,得到原方程的通解 X+c=-tan(214++-∏y x )6.令y=ux,则dy=udx+xdu 代入原方程得x 2( u 2-3)(udx+xdu)+2 x 2udx=0分离变量得du x dx 1)-u(u u 22-=,即得y 3=c(2y -2x ) 7. 令xy u =,则原方程化为dx x udu 1=,解得c x u ==ln 212,即,ln 2222cx x x y +=由定解条件得4=c ,故所求特解为,ln 4222x x x y +=8. 将方程化为x y xyy +-='2)(1,令x yu =,得,u u x y +'=代入得dx x du u 1112=- 得c x u ln ln arcsin +=,cx xyln arcsin= 9.化为x e x y dx dy x =+,解得)(1xe c xy +=,代入e y =)1(得0=c 特解x e y x = 10.由公式得1)()(-+=-x ce y x ??11.化为x y x y dx dy ln 2=+为贝努里方程令xyu =,则原方程化为dx dy y dx du 2--= 代入方程的x u x dx du ln 1-=-用公式求得])(ln 21[2x c x u -=解得12])(ln 21[1--=x c x y 另为,0=y 也是原方程的解 12.为贝努里方程令x yu =,则原方程化为322x xu dx du -=+用公式求得122+-=-x ce u x解得1122+-=-x cey x13.23x y yx dx dy =-将上式看成以y 为自变量的贝努里方程令x z 1=有3y yz dxdy-=- 22212+-=-y ce z y ,得通解1)2(2212=+--y cex y14.令x y N x y M +-=-=4,32有xNy M ??==??1,这是全微分方程0=duxy x y dy x y dx x y u y x +--=---=?32),()0,0(22)4()3(,即方程得通解为c y x xy =--232 15.化为0122=+-+xdx yx xdy ydx ,得通解为c x xy xy =+-+211ln 16.该方程有积分因子221y x +,)(arctan ))ln(21(2222x y d y x d y x ydx xdy xdy ydx ++=+-++ 17.1c e xe dx e xe e xd dx xe y xx x xx x+-=-==='?21211)2()(c x c x e c e xe x c e dx c e xe y x x x x x x ++-=+-++-=+-=?18.xx x dx x x y x1ln 32ln 12--=+=''? 2ln ln 213)1ln 3(21---=--='?x x x dx x x x y x 21ln 2223)2ln ln 213(2212+--=---=?x x x x dx x x x y x19.令y z '=,则xz z =-',xx x dxdx e c x c e x e c dx xe e z 111)1(])1([][++-=++-=+??=--?即x e c x y 1)1(++-='得2121c e c x y x ++--=20.令p y =',则dy dp p dx dy dy dp dx dp y =?==''所以0)(2323=+-=+-p p dy dp y p p p dy dp p y 则得p=0或02=+-p p dy dp y,前者对应解,后者对应方程y dy p p dp =-)1(积分得y c pp11=-即y c y c p dx dy 111+==两边积分得21||ln c x y c y '+='+,因此原方程的解是21||ln c x y c y '+='+及y=c 。
高等数学b2第六章教材答案

高等数学b2第六章教材答案高等数学B2 第六章教材答案第一节:函数极值和最值1. 函数的极值和最值是函数在定义域内的特殊点,它们在数学和实际问题中具有重要的应用价值。
下面是第六章教材中相关习题的答案:习题1:a) 求函数$f(x) = 3x^2 - 6x + 2$在区间[-1, 2]上的极大值和极小值。
解:首先求函数$f'(x) = 6x - 6$的零点,即$6x - 6 = 0$,得$x = 1$。
将$x = -1, x = 1, x = 2$代入$f(x)$中,分别得到$f(-1) = 13, f(1) = -1, f(2)= 10$。
所以$f(x)$在$x = 1$处取得极小值-1,在$x = -1$处取得极大值13。
b) 求函数$g(x) = x^3 - \frac{9}{2}x^2 + 3$在整个定义域上的最大值和最小值。
解:首先求函数$g'(x) = 3x^2 - 9x$的零点,即$3x^2 - 9x = 0$,得$x = 0, x = 3$。
将$x = 0, x = 3$代入$g(x)$中,分别得到$g(0) = 3, g(3) =\frac{27}{2}$。
所以$g(x)$在$x = 3$处取得最大值$\frac{27}{2}$,在$x = 0$处取得最小值3。
2. 函数的极值和最值在实际问题中有很多应用,比如优化问题、经济学中的最大效益等。
通过求解函数的极值和最值,可以找到使函数取得最优结果的变量取值。
习题2:一块长方形的地面上,以其一条边为底,作一个等腰直角梯形,使得梯形的上底与下底分别与已知两块木板的宽度相等。
问该等腰直角梯形的底边长度为多少,才能使梯形的面积最大。
解:设等腰直角梯形的底边长度为$x$,则梯形的上底和下底长度也都为$x$。
设梯形的高为$h$,根据勾股定理得到$h = \sqrt{2}x$。
梯形的面积$S(x) = \frac{1}{2}(x + x)(\sqrt{2}x)$。
高等数学第3版(张卓奎王金金)第六章习题解答

⾼等数学第3版(张卓奎王⾦⾦)第六章习题解答习题 6-11.设2=-+u a b c , 3=-+-va b c .试⽤a 、b 、c 表⽰23-u v .解 23-u v =5a -11b +7c .2.试⽤向量证明:三⾓形两边中点的连线平⾏且等于底边的⼀半.解设三⾓形ABC 中,E 是BC 的中点, F 是AC 的中点(图6-1),则11,,22AE AB AF AC == ⼜ ,,EF AF AE BC AC AB =-=- 所以 11()22EF AC AB BC =-=,图6-1 即EF 平⾏且等于底边BC 的⼀半。
3.求平⾏于向量43=-a i k 的单位向量.解所求单位向量为{}14,0,35±,即43{,0,}55-和43{,0,}55-. 4.求点M (-3, 4 ,5)到各坐标轴的距离.解过M 点做与x 轴垂直相交的直线,其交点坐标为 (-3,0,0),所以,点M 到x 轴=M 到y=Z 轴5=.5.在yOz ⾯上,求与三点A (3,1,2)、B (4,-2,-2)和C (0,5,1)等距离的点.解设点(0,,)P y z 与A B C 、、三点等距离,则 222 PA PB PC ==, 即 222222222223(1)(2)4(2)(2)(5)(1)4(2)(2)y z y z y z y z ?+-+-=+--+--??-+-=+--+--??,解⽅程组得,1,2y z ==-,故所求点为(0,1,2)-.6.求证以1M (4,3,1)、2M (7,1,2)、3M (5,2,3)三点为顶点的三⾓形是⼀个等腰三⾓形.解因为{}{}{}1213233,2,1,1,1,2,2,1,1M M M M M M =-=-=-,则13M M 236M M ==故三⾓形123M M M 是⼀个等腰三⾓形.A B FC E7.已知两点1M ,1)和2M (3,0,2).计算向量12M M 的模、⽅向余弦和⽅向⾓.解因为{}121,M M =-,所以模 122M M =;⽅向余弦分别为 1cos ,2α=-cos ,2β=-1cos 2γ=;⽅向⾓分别为23π,34π,3π. 8.已知向量447=-+a i j k 的终点在点B (2,-1,7),求这向量起点A 的坐标.解设A 点坐标为(,,)x y z ,则AB ={}{}2,1,74,4,,7x y z ----=-,解得2,3,0x y z =-==,故A (-2,3,0).9.设358247=++=--m i j k,n i j k 和54=+-p i j k .求向量43=+-a m n p 在y 轴上的分向量.解由于4(358)3(247)(54)=+++---+-a i j k i j k i j k 13715=+i j +k 故a 在y 轴上的分向量为7j .10.设a =(1,4,5),b =(1,1,2),求λ使λ+ab 垂直于λ-a b .解由于两个向量垂直,所以 2222()()4260λλλλ+?-=-=-=a b a b a b ,解得7λ=±.11.设质量为200kg 的物体从点1M (2,5,6)沿直线移动到点2M (1,2,3),计算重⼒所作的功(长度单位为m ,重⼒⽅向为z 轴负⽅向).解由于位移{}121,3,3M M =---s =,重⼒{}0,0,200g =-F (298/g m s =),所以, 重⼒所作的功{}{}0,0,2001,3,36005880W g g J =?-?---==F s =.习题 6-21.设32,2=--=+-ai j k b i j k ,求 (1) ?a b 及?a b ; (2) a 与b 的夹⾓的余弦.。
[工学]高等数学第六章
![[工学]高等数学第六章](https://img.taocdn.com/s3/m/4fe037dd48d7c1c709a1453a.png)
o
h
r
h
x
取积分变量为x,x[0,h]
在 [ 0 ,h ] 上 任 取 小 区 间 [ x ,x d ] , x
h
33
以 d为 底 x 的 窄 边 梯 形 绕 x 轴 旋 转 而 成 的 薄 片 的
体 积 为
y
dVhr x2dx o
P
r
h
x
圆 锥 体 的 体 积
V
0hhr x2dx
r 2 h2
区 间 [a,b]上 作 定 积 分 , 得 Ua bf(x)d, x
即 为 所 求 量 U的 积 分 表 达 式 .
这个方法通常叫做元素法.
应用方向:
平面图形的面积;体积;平面曲线的弧长; 功;水压力;引力和平均值等.
h
7
二、小结
元素法的提出、思想、步骤.
(注意微元法的本质)
h
8
思考题
微元法的实质是什么?
A
2a x
分别绕y轴旋转构成旋转体的体积之差.
Vy
02ax22(y)dy
x ( 2a
2
0
高等数学习题详解-第6章-定积分

习题6-11. 利用定积分的几何意义求定积分:(1)12xdx ⎰; (2)220aa x dx -⎰(0)a >.解 (1) 根据定然积分的几何意义知, 102xdx ⎰表示由直线2,1y x x ==及x 轴所围的三角形的面积,而此三角形面积为1,所以121xdx =⎰.(2) 根据定积分的几何意义知,220aa x dx -⎰表示由曲线22,0,y a x x x a =-==及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以222014a a x dx a -=⎰π.2. 根据定积分的性质,比较积分值的大小:(1)12x dx ⎰与13x dx ⎰; (2)1xe dx ⎰与1(1)x dx +⎰.解 (1) ∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230x dx x dx >⎰⎰.(2) 令()1,()1x xf x e x f x e '=--=-,因01x ≤≤,所以()0f x '>,从而()(0)0f x f ≥=,说明1xe x ≥+,所以110(1)x e dx x dx >+⎰⎰.3. 估计下列各积分值的范围:(1)421(1)x dx +⎰; (2) 33arctan xdx ⎰;(3)2ax ae dx --⎰(0a >); (4)22xxe dx -⎰.解 (1) 在区间[]1,4上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -≤+≤-⎰,即 4216(1)51x dx ≤+≤⎰.(2) 令()arctan f x x x =,则2()arctan 1xf x x x '=++,当[3]3x ∈时,()0f x '>,从而()f x 在[3]3上是增函数,从而f (x )在3]3上的最大值(3)3πM f ==,最小值(363πm f ==所以 3323arctan 3)9363333xdx =≤≤=⎰ππππ即2arctan 93x xdx ≤≤ππ.(3) 令2()x f x e -=,则2()2x f x xe -'=-,令()0f x '=得驻点0x =,又(0)1f =,2()()a f a f a e -=-=,a >0时, 21a e -<,故()f x 在[],a a -上的最大值1M =,最小值2e a m -=,所以2222aa x aa dx a ---≤≤⎰e e .(4) 令2()x xf x e-=,则2()(21)x x f x x e -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2f e f e -==,从而()f x 在[]0,2上的最大值2M e =,最小值14m e -=,所以 212242xxee dx e --≤≤⎰.习题6-21. 求下列导数:(1)0d dx ⎰; (2) 5ln 2x t d t e dt dx-⎰; (3) cos 20cos()x d t dt dx π⎰; (4) sin x d t dt dx tπ⎰ (0x >). 解 (1)d dx =⎰. (2) 55ln 2x t xd te dt x e dx--=⎰. (3) cos 2220cos()cos(cos )(cos )sin cos(cos )x d t dt x x x x dxπππ'=⋅=-⎰. (4) sin sin sin x x d t d t x dt dt dx t dx t xππ=-=-⎰⎰. 2. 求下列极限:(1) 02arctan limxx tdt x →⎰; (2)()22220e lime x t xx t dt t dt→⎰⎰.解 (1) ()022000021arctan arctan arctan 11(1)limlim lim lim 222x xx x x x tdt tdt x x x x x →→→→'⎡⎤--⎣⎦+====-'⎰⎰.(2) ()()22222222222000020000220022lim lim lim lim xxx x t t t x tx x x x x x x t x t e dt e dt e dt e dt xe xe te dtte dt →→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰e []2222202000222lim lim lim 2122x t x x x x x x x e dt e x e xe x xe →→→'⎡⎤⎣⎦====+'+⋅⎰. 3. 求由方程e cos 0yxt dt tdt +=⎰⎰所确定的隐函数()y y x =的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-, 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=, 即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-. 4. 计算下列定积分:(1)1⎰; (2)221d x x x --⎰;(3) 设,0,2()sin ,2x x f x x x πππ⎧≤≤⎪⎪=⎨⎪≤≤;⎪⎩ ,求0()f x dx π⎰(4)⎰.解 (1)4321121433x ==⎰.(2)21222221101()()()dx x x dx x x dx x x dx x x --=-+-+--⎰⎰⎰⎰ 012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3) ()22220022()sin 1cos 82xf x dx xdx xdx x ππππππππ=+=+=+-⎰⎰⎰(4)32322(2)(2)x dx x dx x dx =-=-+-⎰⎰⎰⎰232202115(2)(2)222x x x x =-+-=.5.设函数()f x 在区间[],a b 上连续,在(),a b 内可导,()0f x '≤,1()()xaF x f t dt x a =-⎰;证明:在(),a b 内有()0F x '≤. 证明 22111()()()()()()()()xx aa F x f t dt f x x a f x f t dt x a x a x a ⎡⎤'=-+=--⎢⎥⎣⎦---⎰⎰[][][]21()()()(),(,,)()x a f x x a f a x a b x a ξξ=---∈∈- (),((,)(,))x f x a b x aξηηξ-'=∈∈-. 由已知条件可知结论成立.习题 6-31. 计算下列积分:(1) 3sin()x dx πππ+3⎰; (2) 32(115)dxx 1-+⎰;(3)1-⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos udu ππ6⎰;(6)2e 1⎰(7)1(8);(9)ln3ln 2e e x x dx --⎰; (10) 3222dxx x +-⎰. 解 (1)333sin()sin()()[cos()]x dx x d x x ππππππππππ+=++=-+3333⎰⎰42coscos 033ππ=-+=. (2) 123322211(511)151(511)(115)5(511)10512dx d x x x x 11---+==-=+++⎰⎰. (3)1111(54)14x --=--==⎰⎰.(4)233422011sin cos cos cos cos 44d d πππϕϕϕϕϕϕ=-==-⎰⎰.(5) 222221cos 211cos cos 2(2)224u udu du du ud u ππππππππ6666+==+⎰⎰⎰⎰2611sin 226264u πππππ⎛⎫=+=- ⎪⎝⎭(6)222111)e e ===⎰⎰. (7) 令tan x t =,则2sec dx tdt =,当1x =时,4t π=;当x =3t π=;于是332144cos 1sin sin t dt t tππππ==-=⎰. (8)令x t =,则dx tdt =,当0x =时,0t =;当x =,2t π=;于是2222012cos (1cos 2)(sin 2)22tdt t dt t t ππππ==+==+⎰⎰.(9) 令xe t =,则1ln ,d x t x dt t==,当ln 2x =时,2t =;;当ln3x =时,3t =;于是3ln3332ln 22221113111(ln ln )12222111x x dx dt t dt e e t t t t --⎛⎫====- ⎪---++⎝⎭⎰⎰⎰. (10)333222211111()ln 231232dx x dx x x x x x -=-=+--++⎰⎰1211(ln ln )ln 2ln 53543=-=- 2. 计算下列定积分: (1)1e x x dx -⎰; (2)e1ln x xdx ⎰;(3)41dx ⎰; (4) 324sin xdx xππ⎰; (5) 220e cos xxdx π⎰; (6) 221log x xdx ⎰;(7)π2(sin )x x dx ⎰; (8) e1sin(ln )x dx ⎰.解 (1)1111000x x x xxe dx xde xe e dx ----=-=-+⎰⎰⎰1110121x e ee e e e----=--=--+=-. (2)2222211111111111ln ln ln (1)222244ee e ee x xdx xdx x x xdx e x e ==-=-=+⎰⎰⎰.(3) 444111112ln 28ln 2dx x dx x ==-=-⎰⎰⎰ 8ln 24=-.(4) 333324444cot cot cot sin x dx xd x x x xdx x ππππππππ=-=-+⎰⎰⎰34π131ln ln sin 492249xπππ⎛=-+=+- ⎝⎭.(5)22222222cos sin sin 2sin x x xx e xdx e d x e xe xdx ππππ==-⎰⎰⎰22222202cos 2cos 4cos x xx e e d x e e xe xdx πππππ=+=+-⎰⎰220e 24cos x e xdx ππ=--⎰于是221cos (2)5xe xdx e ππ=-⎰. (6) ()2222222111122221111log ln ln 2ln 22ln 211ln 2ln 22x xdx xdx x x xdx x x x ==-⎛⎫=- ⎪ ⎪⎝⎭⎰⎰⎰ 133(4ln 2)22ln 224ln 2=-=-. (7) 223200001111(sin )(1cos 2)(sin2)2232x x dx x x dx x x d x ππππ=-=-⎰⎰⎰33200011(sin 22sin2)cos26464x x x xdx xd x πππππ=--=-⎰⎰ 3001(cos 2cos2)64x x xdx πππ=--⎰ 3301sin 264864x πππππ=-+=-. (8)111sin(ln )sin(ln )cos(ln )eeex dx x x x dx =-⎰⎰11sin1cos(ln )sin(ln )eee x x x dx =--⎰1sin1cos11sin(ln )ee e x dx =-+-⎰所以11sin(ln )(sin1cos11)2ex dx e e =-+⎰. 3. 利用被积函数的奇偶性计算下列积分:(1)11ln(x dx -+⎰ ; (2)1212sin 1xdx x -++⎰(3)222(x dx -⎰; (4)4224cos d θθππ-⎰.解 (1)ln(1x +是奇函数,11ln(0x dx -∴+=⎰.(2)2sin 1xx +是奇函数,121sin 01x dx x-∴=+⎰, 因此 111221112sin 22arctan 11x dx dx x x x π---+===++⎰⎰.(3)2222222((42416x dx dx dx ---=+==⎰⎰⎰.(4) ()244222022201cos 24cos 8cos 82212cos 2cos231384222d d d d θθθθθθθθθππππππ-π+⎛⎫== ⎪⎝⎭=++=⋅⋅⋅=⎰⎰⎰⎰.4. 证明下列等式: (1) 证明:11(1)(1)m n n m x x dx x x dx -=-⎰⎰;(2) 证明:1122111xx dx dx x x =++⎰⎰ (0x >); (3) 设()f x 是定义在区间(,)-∞+∞上的周期为T 的连续函数,则对任意(,)a ∈-∞+∞,有0()()a TTaf x dx f x dx +=⎰⎰.证 (1)令1x t -=,则dx dt =-,当0x =时,1t =;当1x =时,0t =;于是1111(1)(1)()(1)(1)m nm nnmn m x x dx t t dt t t dt x x dx -=--=-=-⎰⎰⎰⎰,即11(1)(1)m n n m x x dx x x dx -=-⎰⎰.(2) 令1x t =则21dx dt t-=, 于是11111112222211211111111111t xx t t dx dt t dt dx x tt x t t⎛⎫=⋅=-⋅==- ⎪++++⎝⎭+⎰⎰⎰⎰⎰d ,即 1122111xx dx dx x x =++⎰⎰. (3) 因为()()()a TT a Taaf x dx f x dx f x dx ++=+⎰⎰⎰,而()()()a Taaaf x dx x t T f t T dt f t dt +=++=⎰⎰⎰令()()()aT Taf x dx f x dx f x dx ==-⎰⎰⎰故()()a TT af x dx f x dx +=⎰⎰.4. 若()f t 是连续函数且为奇函数,证明0()xf t dt ⎰是偶函数;若()f t 是连续函数且为偶函数,证明()xf t dt ⎰是奇函数.证 令0()()xF x f t dt =⎰.若()f t 为奇函数,则()()f t f t -=-,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--==⎰⎰⎰,所以0()()xF x f t dt =⎰是偶函数.若()f t 为偶函数,则()()f t f t -=,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--=-=-⎰⎰⎰,所以0()()xF x f t dt =⎰是奇函数.5. 利用分部积分公式证明:()()()()d xxuf u x u du f x x du -=⎰⎰⎰.证 令0()()uF u f x dx =⎰则()()F u f u '=,则(())()()()xu x xxf x dx du F u du uF u uF u du '==-⎰⎰⎰⎰()()()()xxxxF x uf u du x f x dx uf u du =-=-⎰⎰⎰ 0()()()()xx x xx f u du uf u du xf u du uf u du =-=-⎰⎰⎰⎰()()xx u f u du =-⎰.习题6-41. 求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =-; (2) xy e =与0x =及y e =; (3) 24y x =-与0y =; (4) 2y x =与y x =及2y x =;(5) 1y x =与y x =及2x =; (6) 2y x =与2y x =-;(7) ,x xy e y e -==与1x =;(8) sin (0)2y x x π=≤≤与0,1x y ==. 解 (1)两曲线的交点为(1,1),(1,1)-,取x 为积分变量,[]1,1x ∈-,面积元素22(2)dA x x dx =--,于是所求的面积为112311182(1)2()33A x dx x x --=-=-=⎰.(2) 曲线x y e =与y e =的交点坐标(1,)e , xy e =与0x =的交点为(0,1),取y 为积分变量,[]1,y e ∈,面积元素ln dA ydy =;于是所求面积为111ln (ln )1eeeA ydy ydy y y y ===-=⎰⎰.(3)曲线24y x =-与0y =的交点为(2,0),(2,0)-,取x 为积分变量,[]2,2x ∈-,面积元素2(4)dA x dx =-,于是所求的面积为222322132(4)(4)33A x dx x x --=-=-=⎰.(4) 曲线2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); 它们所围图形面积为:121222011(2)(2)(2)A x x dx x x dx xdx x x dx =-+-=+-⎰⎰⎰⎰223121117()236x x x =+-=.(5) 曲线1y x =与y x =的交点为(1,1),1y x =与2x =的交点为1(2,)2;取x 积分变量,[]1,2x ∈,面积元素1()dA x dx x=-,于是所求的面积为22211113()(ln )ln 222A x dx x x x =-=-=-⎰.(6) 曲线2y x =与2y x =-的交点为()()114,2-,和,取y 作积分变量,[]1,2y ∈-,面积元素2(2)dA y y dy =+-,于是所求的面积为2222311117(2)(2)232A y y dy y y y --=+-=+-=⎰.(7) 曲线x y e =与xy e-=的交点(0,1),取x 作积分变量,[]0,1x ∈,面积元素()x x dA e e dx -=-,于是所求图形的面积为10)()2x x x x A e e dx e e e e--=-=+=+-⎰101(. (8)取x 作积分变量,0,2x π⎡⎤∈⎢⎥⎣⎦,面积元素(1sin )dA x dx =-,于是所求的面积为2200(1sin )(cos )12A x dx x x πππ=-=+=-⎰.2. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:(1) 1,4,0y x x y ====,绕x 轴;(2) 3,2,y x x x ==轴,分别绕x 轴与y 轴; (3) 22,y x x y ==,绕y 轴; (4) 22(5)1x y -+=,绕y 轴.解 (1)取x 作积分变量,[]1,4x ∈,体积元素2dV dx xdx ππ==,于是所求旋转体的体积为442111522V xdx x πππ===⎰. (2)绕x 轴旋转时,取x 作积分变量,[]0,2x ∈,体积元素32()x dV x dx π=,于是2267012877x V x dx x πππ===⎰; 同理可求平面图形绕y 旋转所成的旋转体的体积858223003642(4)55y V dy y y πππ⎡⎤=-=-=⎣⎦⎰.(3)曲线2y x =与2x y =的交点为(0,0),(1,1),取y 作积分变量[]0,1y ∈,体积元素222()dV y dy π⎡⎤=-⎣⎦,于是所求的旋转体的体积为1142500113()()2510V y y dx y y πππ=-=-=⎰. (4) 取y 作积分变量[]1,1y ∈-,体积元素22(5(520dV dy π⎡⎤=-=⎣⎦,于是所求的旋转体的体积为1212020102V πππ-==⋅=⎰.3.设某企业边际成本是产量Q (单位)的函数0.2()2QC Q e '=(万元/单位),其固定成本为090C =(万元),求总成本函数. 解 总成本函数为0.200()()290Q QQ C Q C Q dQ C e dQ '=+=+⎰⎰0.20.2010901080QQ Q e e =+=+.4.设某产品的边际收益是产量Q (单位)的函数()152R Q Q '=-(元/单位),试求总收益函数与需求函数. 解 总收益函数为20()(152)15QR Q Q dQ Q Q =-=-⎰需求函数为()15R Q P Q Q==-. 5.已知某产品产量的变化率是时间t (单位:月)的函数()25,0f t t t =+≥,问:第一个5月和第二个5月的总产量各是多少?解 设产品总产量为()Q t ,则()()Q t f t '=,第一个5月的总产量552510()(25)(5)50Q f t dt t dt t t ==+=+=⎰⎰.第二个5月的总产量为10102102555()(25)(5)100Q f t dt t dt t t ==+=+=⎰⎰.6.某厂生产某产品Q (百台)的总成本()C Q (万元)的变化率为()2C Q '=(设固定成本为零),总收益()R Q (万元)的变化率为产量Q (百台)的函数()72R Q Q '=-.问: (1) 生产量为多少时,总利润最大?最大利润为多少?(2) 在利润最大的基础上又多生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q '=即()()0R Q C Q ''-=即7220Q --=,2.5Q =(百台)时,总利润最大,此时的总成本和总收益分别为2.52.52.50()225C C Q dQ dQ Q'====⎰⎰2.52.52.520()(72)(7)11.25R R Q dQ Q dQ Q Q '==-=-=⎰⎰总利润11.255 6.25L R C =-=-=(万元).即当产量为2.5(百台)时,总利润最大,最大利润是6.25万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台,总成本3300()26C C Q dQ dQ '===⎰⎰,总收入3323000()(72)(7)12R R Q dQ Q dQ Q Q '==-=-=⎰⎰, 总利润为1266L R C =-=-=(万元).减少了6.2560.25-=万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.习题 6-51. 判断下列反常积分的敛散性,若收敛,则求其值: (1)41dxx +∞⎰; (2)1+∞⎰; (3) 0xe dx +∞-⎰(a >0); (4)sin xdx +∞⎰;(5)1-⎰; (6)222dxx x +∞-∞++⎰;(7)21⎰; (8)10ln x xdx ⎰;(9)e1⎰; (10)23(1)dxx -⎰.解 (1)14311133dx x x +∞+∞=-=⎰.此反常积分收敛.(2)1+∞==+∞⎰.此反常积分发散. (3) 101x xe dx e +∞--+∞=-=⎰.此反常积分收敛.(4) 0sin cos lim cos 1x xdx x x +∞+∞→+∞=-=-+⎰不存在,此反常积分发散.(5)111arcsin x π--==⎰.此反常积分收敛.(6)22(1)arctan(1)22(1)1dxd x x x x x π+∞+∞+∞-∞-∞-∞+==+=++++⎰⎰.此反常积分收敛.(7)23222110012lim lim (1)3x εεεε+++→→+⎡==-+⎢⎣⎰⎰320222lim 22333εε+→⎛==-- ⎝.此反常积分收敛. (8)11122221000111111ln limln lim ln lim ln 222424x xdx xdx x x xdx εεεεεεεεε→→→⎛⎫⎛⎫==-=-- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰, 所以11220001111ln lim ln lim(ln )4244x xdx x xdx εεεεεε++→→==--=-⎰⎰.此反常积分收敛.(9)111πarcsin(ln )2eeex ===⎰⎰.此反常积分收敛. (10)21233301(1)(1)(1)dx dx dx x x x =+---⎰⎰⎰,因为反常积分1132001(1)(1)dx x x ==∞--⎰发散,所以反常积分230(1)dxx -⎰发散. 2. 当k 为何值时,反常积分+2(ln )kdxx x ∞⎰收敛?当k 为何值时,这反常积分发散? 解 当1k =时,++222ln ln(ln )ln ln dxd x x x x x∞∞+∞===+∞⎰⎰,发散.当1k ≠时,1++122211(ln )(1)(ln 2)(ln )ln (ln )11kk kk k dx x k x d x x x kk -∞∞--+∞⎧>⎪-===⎨-⎪+∞<⎩⎰⎰所以,当1k >时,此广义积分收敛;当1k ≤时,此广义积分发散. 3. 利用递推公式计算反常积分+0e n x n I x dx ∞-=⎰.解 ++110n x n xn x n n I x de x e n x e dx nI ∞∞----+∞-=-=-+=⎰⎰,因为 +101x x xI xde xe e ∞---+∞+∞=-=--=⎰,所以 121(1)(1)2!n n n I nI n n I n n I n --==-=-=.复习题6(A )1、 求下列积分:(1)121tan sin 1xdx x -+⎰; (2)⎰; (3)2x⎰; (4)ln 0⎰;(5)21220(1)x dx x +⎰; (6)1⎰;(7)120xx e dx -⎰; (8)21(ln )ex dx ⎰;(9) 401cos 2xdx xπ+⎰; (10) 20cos x e xdx π-⎰;(11) 20sin 1cos x xdx x π++⎰; (12) 40ln(1tan )x dx π+⎰. 解 (1) 因为被积函数2tan sin 1x x +是奇函数,所以121tan 0sin 1xdx x -=+⎰.(2)=⎰⎰,令1sin x t -=,则cos dx tdt =;当0x =时,2t π=-;当1x =时,0t =;所以22221cos 2sin 2cos 2244t t t tdt dt ππππ---+⎡⎤===+=⎢⎥⎣⎦⎰⎰⎰. (3) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t π=;所以222222204sin 4cos 4sin 22(1cos 4)xt tdt tdt t dt πππ=⋅==-⎰⎰⎰⎰2012(sin 4)4t t ππ=-=. (4)t =,则221tdx dt t =+,当0x =时,0t =;当ln 2x =时,1t =;所以2ln 11200022(arctan )2(1)14t dt t t t π==-=-+⎰⎰. (5) 令tan x t =,则2sec dx tdt =,当0x =时,0t =;当1x =时,4t π=;所以22412442240000tan 1cos 2sin 21sec ()(1)sec 22484x t t t t dx tdt dt x t ππππ-===-=-+⎰⎰⎰.(6) 令sec x t =,则sec tan dx t tdt =,当1x =时,0t =;当2x =时,3t π=;所以23330100tan sec tan tan (tan )sec 3t t tdt tdt t t t ππππ===-=⎰⎰⎰.(7)111112221022x x x x x x e dx x de x e xe dx e xde ------=-=-+=--⎰⎰⎰⎰1111110223225x x x e xe e dx e e e ------=--+=--=-⎰.(8)22111111(ln )ln 2ln 2ln 22ee e e e x dx x x x x dx e x x dx e x=-⋅=-+=-⎰⎰⎰.(9) 44440000tan tan tan 1cos 2xdx xd x x x xdx x ππππ==-+⎰⎰⎰ 401ln cos ln 2442x πππ=+=-. (10)22220cos cos cos sin xxxx e xdx xdee x e xdx ππππ----=-=--⎰⎰⎰2220001sin 1sin cos xxx xdee x e xdx πππ---=+=+-⎰⎰221cos x ee xdx ππ--=+-⎰,所以 2201cos (1)2xe xdx e ππ--=+⎰.(11)22222000002sin sin cos tan 1cos 1cos 21cos 2cos2x x x x x d x dx dx dx xd x x x x πππππ+=+=-+++⎰⎰⎰⎰⎰2220002200tan tan ln(1cos )222ln cos ln(1cos )22x x x dx x x x ππππππ=--+=--+⎰20ln 22ln cos222x πππ=++=. (12) 4444000cos sin ln(1tan )ln ln(cos sin )ln cos cos x x x dx dx x x dx xdx xππππ++==+-⎰⎰⎰⎰令4x u π-=,可得0440041ln(cos sin )ln cos()(ln 2ln cos )42x x dx x dx u du ππππ⎤+=-=-+⎥⎦⎰⎰⎰40ln 2ln cos 8xdx ππ=+⎰所以40ln 2ln(1tan )8x dx ππ+=⎰.2、设()f x 在[],a b 上连续,且()1baf x dx =⎰,求()b af a b x dx +-⎰.解 令a b x t +-=,则dx dt =-,当x a =时,t b =;当x b =时,t a =;所以()()()1bababaf a b x dx f t dt f t dt +-=-==⎰⎰⎰.3、设()f x 为连续函数,试证明:()()(())xx tf t x t dt f u du dt -=⎰⎰⎰.证 用分部积分法,(())()(())xxt tx tf u du dt t f u du td f u du =-⎰⎰⎰⎰⎰()()()()xx x xx f u du tf t dt xf t dt tf t dt =-=-⎰⎰⎰⎰()()xf t x t dx =-⎰.4、设()u ϕ为连续函数,试证明:220()2()aa ax dx x dx ϕϕ-=⎰⎰.证2220()()()aaaax dx x dx x dx ϕϕϕ--=+⎰⎰⎰,令x t =-,则0022220()(())()()a aaax dx t dt t dt x dx ϕϕϕϕ-=--==⎰⎰⎰⎰所以022220()()()2()aa aaax dx x dx x dx x dx ϕϕϕϕ--=+=⎰⎰⎰⎰.5、计算下列反常积分:(1)2048dxx x +∞++⎰; (2)21arctan x dx x+∞⎰; (3)1⎰; (4)1e ⎰解 (1)222000(2)12arctan 48(2)2228dx d x x x x x π+∞+∞+∞++===++++⎰⎰. (2)221111arctan 1arctan 1arctan (1)x x dx xd dx x x x x x +∞+∞+∞+∞=-=-++⎰⎰⎰ 22111lnln 242142xx ππ+∞=+=++.(3)11100022dx π⎡===⎣⎰⎰.(4)112ee ===⎰⎰. 6、求抛物线22y px =及其在点(,)2pp 处的法线所围成的平面图形的面积. 解 抛物线22y px =在点(,)2p p 处的法线方程为32x y p +=,两曲线的交点为9(,3),(,)22pp p p -;取y 作积分变量3p y p -≤≤,所求的平面图形面积为 2232333131116()()222263pp p pA p y y dy py y y p p p --=--=--=⎰. 7、求由曲线32y x =与直线4,x x =轴所围图形绕y 轴旋转而成的旋转体的体积.解 曲线32y x =与直线4x =的交点为(4,8),取y 作积分变量,08y ≤≤,体积元素223244()(16)dy y dy y dy ππ⎡⎤=-=-⎣⎦于是,所求的旋转体的体积为884373003512(16)(16)77V y dy y y πππ=-=-=⎰.8、设某产品的边际成本为()2C Q Q '=-(万元/台),其中Q 代表产量,固定成本022C ==(万元),边际收益()204R Q Q '=-(万元/台).试求: (1) 总成本函数和总收益函数; (2) 获得最大利润时的产量;(3) 从最大利润时的产量又生产了4台,总利润的变化. 解 (1)总成本函数2001()(2)2222QC Q Q dQ C Q Q =-+=-+⎰,总收益函数20()(204)202QR Q Q dQ Q Q =-=-⎰.(2)利润函数23()()()18222L Q R Q C Q Q Q =-=--,令()0L Q '=,得6Q =(台),而(6)30L ''=-<,所以当产量6Q =(台)时,利润最大.(3)(10)(6)83224L L -=-=-,所以从最大利润时的产量又生产了4台,总利润减少了24(万元).(B) 1、填空题:(1)202cos x d x t dt dx=⎰ . (2) 设()f x 连续,220()()x F x xf t dt =⎰,则()F x '= .(3) 2sin()x d x t dt dx -=⎰ .(4) 设()f x 连续,则220()xd tf x t dt dx -=⎰ . (5) 设20cos ()1sin xt f x dt t=+⎰,则220()1()f x dx f x π'=+⎰ . (6) 设()f x 连续,且1()2()f x x f x dx =+⎰,,则()f x = .(7) 设()f x 连续,且()1cos xtf x t dt x -=-⎰,则20()f x dx π=⎰ .(8)2ln e dxx x +∞=⎰ .解 (1) 2220002224cos (cos )cos (cos )2x x x d d x t dt x t dt t dt x x x dx dx==+-⋅⎰⎰⎰2224cos 2cos xt dt x x =-⎰.(2) 2222200()(())()()2x x d F x x f t dt f t dt x f x x dx '==+⋅⋅⎰⎰22220()2()x f t dt x f x =+⎰.(3) 令x t u -=,则02220sin()sin ()sin xxxx t dt u du u du -=-=⎰⎰⎰所以22200sin()sin sin x x d d x t dt u du x dx dx-==⎰⎰. (4)令22x t u -= 则222222001()()()2x x tf x t dt f x t d x t -=---⎰⎰220011()()22x x f u du f u du =-=⎰⎰.所以2222001()()()2x x d d tf x t dt f u du xf x dx dx-=⋅=⎰⎰. (5)22200()arctan ()arctan ()arctan (0)1()2f x dx f x f f f x πππ'==-+⎰, 而02222000cos cos (0)0,()arctan(sin )1sin 21sin 4t t f dt f dt t t t ππππ=====++⎰⎰,所以220()arctan 1()4f x dx f x ππ'=+⎰(6) 等式1()2()f x x f x dx =+⎰两边在区间[]0,1积分得111100001()2()2()2f x dx xdx f x dx f x dx =+=+⎰⎰⎰⎰101()2f x dx =-⎰, 所以 ()1f x x =-.(7)令x t u -=,则du dt =-,于是00()()()xxtf x t dt x u f u du -=-⎰⎰原等式化为 0()()1cos xxx f u du uf u du x -=-⎰⎰两边对x 求导()sin xf u du x =⎰在上式中,令2x π=,得()1xf x dx =⎰.(8)22ln 11ln ln ln ee edx d x x x x x +∞+∞+∞==-=⎰⎰ 2、计算下列积分:(1) 120ln(1)(2)x dx x +-⎰; (2) 3142(1)x x dx -⎰;(3) 31(2)f x dx -⎰,其中21()x x f x e -⎧+=⎨⎩ 00x x ≤>;(4) 0()f x dx π⎰,其中0sin ()x t f x dt tπ=-⎰. 解 (1) 111120000ln(1)1ln(1)ln(1)(2)22(1)(2)x x dxdx x d x x x x x ++=+=----+-⎰⎰⎰ 1100111111ln 2()ln 2ln ln 2312323x dx x x x +=--=-=+--⎰. (2) 令2sin x t =,则331144242222200001111cos 2(1)(1)cos ()2222t x x dx x dx tdt dt ππ+-=-==⎰⎰⎰⎰220011cos 41313(12cos 2)(sin 2sin 4)8282832t t dt t t t πππ+=++=++=⎰. (3) 令2x t -=,则dx dt =,当1x =时,1t =-;当3x =时,1t =;于是3101111(2)()()()f x dx f t dt f x dx f x dx ---==+⎰⎰⎰⎰12171(1)3x x dx e dx e--=++=-⎰⎰. (4) 由题设有sin ()xf x xπ'=-,用分部积分法得 00000sin sin ()()()t x f x dx xf x xf x dx dt x dx t xππππππππ'=-=---⎰⎰⎰⎰ 000sin sin sin ()x x xdx x dx x dx x x xππππππππ=-=----⎰⎰⎰sin 2xdx π==⎰.3、设13201()()1f x x f x dx x =++⎰,求10()f x dx ⎰. 解 等式两边在区间[]0,1上积分得11113200001()()1f x dx dx f x dx x dx x =+⋅+⎰⎰⎰⎰11100011arctan ()()444x f x dx f x dx π=+=+⎰⎰解得1()3f x dx π=⎰.4、求函数2()(1)x t f x t e dt -=-⎰的极值.解 令222()(1)22(1)(1)0x x f x x e x x x x e --'=-⋅=--+=,得函数()f x 的驻点:1,0,1-;当1x <-时,()0f x '>;当10x -<<时,()0f x '<; 当01x <<时,()0f x '>;当1x >时,()0f x '<;所以函数()f x 在0x =处取得极小值(0)0f =,在1x =±处取得极大值:101(1)(1)t f t e dt e-±=-=⎰.5、设21sin ()x tf x dt t=⎰,求10()xf x dx ⎰.解 用分部积分法得221211122220011001sin 1sin 1sin ()2222x x t t x xf x dx dt dx x dt x xdx t t x ⎡⎤⎡⎤==-⋅⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰112220011cos11sin cos 222x dx x -=-==⎰.6、求曲线(1)(2)y x x =--和x 轴围成的平面图形绕y 轴旋转所成的旋转体体积. 解 抛物线(1)(2)y x x =--的顶点坐标为31(,)24-,左、右半支方程分别为:11()(32x y =和21()(32x y =;取y 作积分变量,104y -≤≤;体积元素为2221(())(())3dV x y x y dy π⎡⎤=-=⎣⎦,因此所求的旋转体的体积为0302114433(14)(14)422V y y πππ--==+=+=⎰⎰.7、设2()()()xax x t f t dt Φ=-⎰,证明:()2()()xax x t f t dt 'Φ=-⎰.证 2222()(2)()()2()()xxx xaaaax x xt t f t dt xf t dt x tf t dt t f t dt Φ=-+=-+⎰⎰⎰⎰,所以()22()()2()()xxx aaax xf t dt x tf t dt t f t dt ''Φ=-+⎰⎰⎰222()()2()2()()xxa ax f t dt x f x tf t dt x xf x x f x =+--⋅+⎰⎰2()2()2()()xx xaaaxf t dt tf t dt x t f t dt =-=-⎰⎰⎰.8、设连续函数()f x 满足(2)2()f x f x =,证明:2110()7()xf x dx xf x dx =⎰⎰. 证 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰, 令2x t =,则21110000()2(2)(2)42()8()xf x dx tf t d t t f t dt xf x dx ==⋅=⎰⎰⎰⎰, 所以 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰ 111000()8()7()xf x dx xf x dx xf x dx =-+=⎰⎰⎰.。
高等数学第六章课后习题答案(大连理工版)

(理工类)习题 6-1答案: (经管类)习题 5-1答案: 1. (1)1;(2)1-e .2. (1)0;(2)0; (3)1;(4)418-π.3. (1)dx x )sin(10⎰π;(2)dx x ⎰1ln .(理工类)习题 6-2答案: (经管类)习题 5-2答案: 1. (1)>⎰102dx x 13x dx ⎰; (2) ⎰⎰<433432)(ln )(ln dx x dx x ;(3) ⎰⎰>1012dxe dx e xx; (4) ⎰⎰+>434)3(tan ππdxxx xdx .2. (1);51)1(6412≤+≤⎰dx x (2)⎰≤+≤πππ02)sin 1(dx x ;(3)22041222e dx ee xx ≤≤⎰--; (4)3sin3143πππ≤+≤⎰x.(5)12012≤-≤⎰dx x x(理工类)习题 6-3答案: (经管类)习题 5-3答案: 1. (1)xxx 2cos1sin + ; (2)42xxe-;(3))cos )(sin sincos(2x x x -π.2. xxsin 1cos --.3. (1)21;(2)e21;(3)21;(4)42π.4. 极值点0=x ,拐点为))11(21;22(e-±. 5. (1)881;(2)6π;(3)3π;(4)21;(5)4;(6)41π-.6. ⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤=Φ21,672210,3)(23x x x x x x . 7. )(x F 在0=x 处连续,但不可导.(理工类)习题 6-4答案: (经管类)习题 5-4答案:1. (1)2π;(2)16π;(3)3322-;(4)61;(5)322;(6)52; (7))1(211--e ;(8)23;(9)1;(10)4arctan π-e .2. 212121tan4+--e.3. (1)0 ;(2)3243π;(3)π-4;(4)ln .4. (1)2-π;(2)4142+e; (3)12312-+π;(4)214-π;(5)42ln 8-π;(6)122--e (7))11cos 1sin (21+-e e ;(8)12-e .(理工类)习题 6-5答案: (经管类)习题 5-5答案:1. (1)1;(2)21;(3)发散;(4)2ln ;(5) π;(6)2ln 21 ; (7) 发散;(8) 发散;(9) 1;(10) 发散. 2. 当1>λ时收敛于1)2)(ln 1(1--λλ;当1≤λ时发散.3. 2ln 214+π.(理工类)习题 6-6答案: (经管类)习题 5-6答案: 1. (1)364;(2)61;(3)332;(4)2ln 23-;(5)a b -;(6)21-+ee .2.169.3. (1)2a π;(2)218a π;(3) 45π.4.103π.5. 225a π;336a π. 6.h a 221π.(理工类)习题 6-7答案: 1. 1.56焦. 2. ⎪⎭⎫⎝⎛-b akq 11. 3. 1.57697.5kJ. 4. 710693.7⨯焦. 5. ab k ln.6..323R γ7. 3.1429N.8. 取y轴通过细棒,11y F G m aρ⎛⎫=-⎝,xF =(理工类)复习题六1. (1)4π; (2)32234-;(3))a af (; (4)2.2.≤21dx xx ⎰24sin ππ⋅≤223. (1)2sin x ;(2))(2x xf .4.)0(2cos 22≠y yexy.5.51.6. 32342+-x x .7. y x =. 11.(1)342-π; (2)π32;(3))2(2+π;(4)2ln 3112.2π.13.⎪⎭⎫⎝⎛-++A 212121π 17.).21(33+18.1. 19.2e .20. (1)7π,4π;(2)2160π.21.43,32==b a .22..cb c sh2(经管类)复习题六1. (1)4π; (2))a af (.2. (1)2sin x ;(2))(2x xf .3. 32342+-x x .4. y x =. 8.(1)342-π; (2)π32;(3))2(2+π;(4)2ln 31.9.2π.10.⎪⎭⎫⎝⎛-++A 212121π. 14. ).21(33+15.1. 16. 43,32==b a .。
高等数学课后答案-第六章-习题详细解答

习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ). 由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: =,BM =,∴=+=+BM =与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 22αβγ===-,从而π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模;(2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:oa =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦. 解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b -解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α,22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z x y zij kc a b a a a b b b 324112=--i j k =105+j k,||10==c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=AB C A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=;(8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成 (4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B 0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++c z b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a ==化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l=-.10、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ ∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面;(4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;图6-1 空所流动与飞机飞行速度的关系(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可. 因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪=由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(12=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s ,得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及AB 共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 定积分的应用第二节 定积分在几何上的应用 1. 求图中各阴影部分的面积: (1) 16. (2) 1(3)323. (4)323.2. 求由下列各曲线所围成的图形的面积: (1) 463π-. (2)3ln 22-. (3)12e e+-.(4)b a -3. 94.4. (1).1213(2).45. (1) πa 2. (2)238a π. (3)218a π.6. (1)423π⎛ ⎝ (2)54π(3)2cos2ρθρθ==及162π+7.求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积: (1)2x x y y x =和轴、向所围图形,绕轴及轴。
(2)22y x y 8x,x y ==和绕及轴。
(3)()22x y 516,x +-=绕轴。
(4)xy=1和y=4x 、x=2、y=0,绕。
(5)摆线()()x=a t-sint ,1cos ,y 0x y a t =-=的一拱,绕轴。
2234824131,;(2),;(3)160;(4);(5)5a .52556πππππππ()8.由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积.1287x V π=. y V =645π 9.把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.332105a π 10.(1)证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为 ⎰=badx x xf V )(2π. 证明略。
(2)利用题(1)结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 22π11.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积. 3R .12.计算曲线3223y x =上相应于38x ≤≤的一段弧的弧长。
212313.计算曲线2ln(1)y x =-上相应于102x ≤≤的一段弧的弧长。
1ln 32- 14.求星型线33cos sin x a ty a t ⎧=⎨=⎩的全长。
6a15.求曲线()1cos a ρθ=-的周长。
8a第三节 定积分的应用第四节1. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功. 18 k(牛⋅厘米)解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为 182160260===⎰s k ksds Wk(牛⋅厘米). 2.直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功?800ln 2π(J). 解 由玻-马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=-⋅x x P , π-=80800)(x P .功元素为dx x P dW )()10(2⋅=π, 所求功为 2ln 8008018000080800)10(400402πππππ=-=-⋅⋅=⎰⎰dx dx W(J).3.设地球的质量为M ,半径为R ,现要将一个质量为m 的物体从地球表面升高到h 处,问需要做多少功(设引力系数为G )?()mMhGR h +4.半径为R 的圆柱体沿固定水平面做纯滚动,试分别求圆心C 沿其轨迹移动的距离S 时,作用于其上的静滑动摩擦力和滚动摩阻力偶的功解 圆柱体做平面运动,由运动学知,点B 为圆柱体的速度瞬心,由式 (11-16)知圆柱体沿固定面做纯滚动时,静滑动摩擦力的功为零。
滚动摩阻力偶的功可利用滚动摩阻力偶矩M=FNδ来计算所以它的元功为 Md W -=δ=-ds RF nδ如FN及R 均为常量,滚动一段路程S 后滚动摩阻力偶的功为W=⎰0S -ds R F nδ=-s RF n δ 可见滚动摩阻力偶的功为负功,且其绝对值W 与圆柱半径成反比5.设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功? 解 在水深x 处, 水平截面半径为x r 3210-=, 功元素为dx x x dx r x dW 22)3210(-=⋅=ππ,所求功为 ⎰-=1502)3210(dx x x Wπ⎰+-=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).6. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力.205.8(kN).解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=,闸门上所受的水压力为21252252===⎰x xdx P (吨)=205. 8(kN).7. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力. 17.3(kN).解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+-y x .压力元素为dx x x dx x y x dP 22)43()43(38)(21--⋅=⋅⋅=,所求压力为⎰⎰-⋅⋅+=--⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x Pππ169cos 49202==⎰tdx (吨)=17.3(kN).(提示: 积分中所作的变换为tx sin 4343=-)8. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力. 14388(千牛) 解 建立坐标系如图. 直线AB 的方程为x y 1015-=,压力元素为dx x x dx x y x dP )5110()(21-⋅=⋅⋅=,所求压力为1467)5110(200=-⋅=⎰dx x x P (吨)=14388(千牛).9.一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力. 解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=⎰x x dx x x P (克)=1.65(牛).10. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为 dF r a dF x -=, dF ry dF y =.2202222022)(1)(l a a l Gm dy y a y a aGm dy y a Gm r a F l lx +-=++-=+⋅-=⎰⎰μμμ, )11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +-=++=+⋅=⎰⎰μμμ总复习题六1. 填空题:(1) 曲线2y x =与22y x x =-直线围成所界区域的面积为 13(2)曲线226y x =+与直线1y x =-所界区域的面积为 18(3)曲线0y =⎰上相应于0x π≤≤的一段弧长为 4(4) 圆盘222a y x ≤+绕x =-b (b >a >0)旋转所成旋转体的体积 . 222a b π (5)一圆盘的半径为R ,而密度为()ργ,其中γ为圆盘上一点到圆心的距离,则其质量M ()02Rd πγργγ⎰(6) 半径为的球沉入水中,它与水面相切,密度与水相同,若将球从水中取出,则做 的功。
2.求抛物线223x x y --=与Ox 轴所围成图形的面积。
3.求抛物线x y =2与42+-=x y 所围成图形的面积。
4.求圆222r y x =+的面积、圆周长。
5.求双纽线θ2cos 22a r =的面积。
6.求心脏线)cos 1(θ+=a r 绕极轴旋转所成旋转体体积。
7.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x )20(π≤≤t 与x 轴围成图形的面积,弧长,绕x 轴旋转体体积。
8.求悬链线)(,)(2a x axach e e a y a xa x≤=+=-下的曲边梯形的面积,弧长,绕x 轴旋转体体积。
9.抛物线)0(,22a x px y ≤≤=绕x 轴旋转所得旋转抛物面的体积。
10.证明曲线x y sin =的一个周期的弧长等于椭圆2222=+y x 的周长。
11.求椭球体1222222=++cz b y a x 的体积。
12.设有一半径为R ,长度为l 的圆柱体平放在深度为R 2的水池中(圆柱体的侧面与水面相切)。
设圆柱体的比重为)1(>ρρ,现将圆柱体从水中移出水面,问需做多少功? 13.一块高为a ,底为b 的等腰三角形薄板,垂直地沉没在水中,顶在下,底与水面相齐,试计算薄板每面所受的压力。
14.用铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉击入木板的深度成正比,在铁锤击第一次时能将铁钉击入木板内cm 1,如果铁锤每次打击铁钉所做的功相等,问铁锤击第二次时,能将铁钉又击入多少cm ? 答案:2.解:),1)(3(232x x x x y -+=--=令0=y 得13or x -=。
故抛物线与Ox 轴交点为)0,3(-及)0,1(,所求图形为Ox 轴上半部分。
332)23()(13213=--==⎰⎰--dx x x dx x f S 。
3.解:两条抛物线交点为)2,2(),2,2(-。
则2316)24(2])4[(222222=-=-+-=⎰⎰-dy y dy y y S 。
4.解:由对称性,只需考虑第一象限,dx x r S r⎰-=0221422cos 1cos cos sin 220220rdt t r tdt r t r t r x πππ=+=⋅=⎰⎰; 故圆面积为2r S π=。
由圆的参数方程⎩⎨⎧==,sin ,cos t r y t r x ,求周长只需考虑第一象限,2cos sin 202022221rdt r dt t r t r l πππ==+=⎰⎰;圆周长r l l π241==。