核苷酸代谢

合集下载

核苷酸代谢

核苷酸代谢
尿酸是嘌呤核苷酸在人体内分解代谢的终产物。不 同动物,尿酸则可继续分解产生尿囊素、尿囊酸等。
(三)嘌呤核苷酸的合成代谢
从头合成与补救途径合成
1 .从头合成途径:
通过利用一些简单的前体物,如5-磷酸 核糖,氨基酸,一碳单位及CO2等,逐步合成 嘌呤核苷酸的过程称为从头合成途径。这一 途径主要见于肝脏,其次为小肠和胸腺。
在临床上应用较多的嘌呤核苷酸类似物 主要是6-巯基嘌呤(6-MP)。6-MP的化学结 构与次黄嘌呤类似,因而可以抑制 IMP 转变 为AMP或GMP,从而干扰嘌呤核苷酸的合成。
4、嘌呤核苷酸的抗代谢物
(1)嘌呤类似物
6-巯基嘌呤(6-MP) 6-巯基鸟嘌呤 8-氮杂鸟嘌呤 结构类似次黄嘌呤 抑制核苷酸正常合成
嘧啶核苷酸的主要合成步骤为:
(1)尿苷酸(uridine monophosphate)的合成: 在氨基甲酰磷酸合成酶Ⅱ的催化下,以Gln, CO2,ATP为原料合成氨基甲酰磷酸。后者在天冬氨 酸转氨甲酰酶的催化下,转移一分子天冬氨酸,从 而合成氨甲酰天冬氨酸,然后再经脱氢、脱羧、环 化等反应,合成第一个嘧啶核苷酸,即UMP。乳清 酸是关键性的中间产物。(P321) Gln+CO2+2ATP 氨基甲酰磷酸+Asp 氨甲酰天冬氨酸 二氢乳清 酸 乳清酸 UMP
由天冬氨酸提供氨基合成腺苷酸代琥珀酸
(AMP-S),然后裂解产生AMP;
IMP也可在IMP脱氢酶的催化下,以NAD+为
受氢体,脱氢氧化为黄苷酸(XMP),后者再
在鸟苷酸合成酶催化下,由谷氨酰胺提供氨基
合成鸟苷酸(GMP)。
(3)三磷酸嘌呤核苷的合成
P322
2、补救合成途径: 又称再利用合成途径(salvage pathway)。指利用分解代谢产生的自由嘌呤 碱合成嘌呤核苷酸的过程。这一途径可在大 多数组织细胞中进行。其反应为:

核苷酸代谢产物_概述及解释说明

核苷酸代谢产物_概述及解释说明

核苷酸代谢产物概述及解释说明1. 引言1.1 概述核苷酸代谢产物是在细胞内核苷酸代谢途径中生成的一系列化合物,它们在生物体内扮演着重要的角色。

核苷酸是构成DNA和RNA等核酸分子的基本组成单位,通过与其他化合物发生相互转化,核苷酸代谢产物参与到多个生物过程中。

了解核苷酸代谢产物及其功能对于揭示生命科学和疾病发生机制具有重要意义。

1.2 文章结构本文将从以下几个方面对核苷酸代谢产物进行概述与解释说明。

首先,我们将介绍核苷酸代谢产物的定义与分类,包括其在细胞内的形成过程以及不同类型的核苷酸代谢产物。

接着,我们将阐述核苷酸代谢产物在生物体内的作用与功能,包括能量传递、细胞信号传导和蛋白质合成等方面。

此外,本文还将探讨核苷酸代谢异常与疾病关联的研究进展,并介绍新药开发和靶向治疗的相关内容。

最后,我们将对核苷酸代谢产物的重要性和多样性进行总结,并展望其在生命科学和医学领域未来的研究方向以及应用前景。

1.3 目的本文旨在全面介绍核苷酸代谢产物的概念、分类、作用与功能,以及其与疾病关联的研究进展。

通过对这些内容的探讨,旨在增进读者对核苷酸代谢产物的理解,并为相关领域的研究提供有益参考。

同时,本文也希望能够引起更多科学家和医生们对核苷酸代谢产物研究的重视,促进该领域的发展与应用。

2. 核苷酸代谢产物的定义与分类2.1 核苷酸代谢概述核苷酸是生物体内重要的小分子化合物,由核糖/脱氧核糖(ribose/deoxyribose)、碱基和磷酸组成。

它们在细胞中起着诸多重要的功能,包括能量传递、信号传导、DNA和RNA合成等。

2.2 核苷酸代谢产物的定义核苷酸代谢产物是指在核苷酸代谢过程中生成或消耗的中间产物。

它们可以通过各种代谢途径进行进一步转化,并参与细胞内复杂而精确的调控网络。

常见的核苷酸代谢产物包括AMP(腺苷酸)、GMP(鸟嘌呤核苷酸)、IMP(肌苷酸)等。

2.3 核苷酸代谢产物的分类和特点根据不同的分类方法和功能特点,核苷酸代谢产物可以分为以下几类:1. 能量相关核苷酸:ATP (三磷酸腺苷)和ADP (二磷酸腺苷)是细胞内重要的能量分子。

生物化学-核苷酸代谢(共41张PPT)

生物化学-核苷酸代谢(共41张PPT)

尿嘧啶磷酸核糖转移酶
尿嘧啶+PRPP
UMP+PPi
1-磷酸核糖
Pi
尿嘧啶核苷
尿苷激酶 Mg2+
UMP
ATP
ADP
胸苷激酶 脱氧胸苷
Mg2+
dTMP
ATP
ADP
x-染色体连锁隐性遗传 缺乏的酶:次黄嘌呤鸟嘌呤磷酸核糖基转移酶(HGPRT) 免疫缺陷症,
(ribonucleotide) ADA缺乏症患者体内腺苷酸分解代谢严重障碍,T、B淋巴细胞受损,引起反复感染等症状。
痛 风(GOUT)
痛风原因:高嘌呤饮食、体内核 酸分解增强、肾脏疾病
表现:尿酸盐沉积造成损害
别嘌呤醇治疗痛风:机制是别嘌 呤醇在结构上与次黄嘌呤相似 ,抑制黄嘌呤氧化酶
腺苷脱氨酶(ADA)基因位于20q13-qter,编码一条含363个氨 基酸残基的多肽链。
腺苷脱氨酶(ADA)缺乏引起重症免疫缺陷症,即ADA缺乏症。ADA缺乏 症患者体内腺苷酸分解代谢严重障碍,T、B淋巴细胞受损,引起反 复感染等症状。
硫氧还蛋白
S S
谷氧还蛋白还原酶
硫氧还蛋白还原酶
G SSG
2G SH
谷胱甘肽还原酶
NADPH +H +
N A D P+
FAD
FA D H 2
硫氧还蛋白还原酶
NADPH +H +
NADP+
脱氧胸苷酸(dTMP)的生成
尿苷一磷酸激酶
尿苷二磷酸激酶
UMP
UDP
UTP
ATP合酶
CTP
ATP
ADP
ATP
ADP 谷氨酰胺
鸟苷一磷酸 (GMP) 鸟苷二磷酸 (GDP) 鸟苷三磷酸 (GTP)

生物化学核苷酸代谢

生物化学核苷酸代谢

生物化学核苷酸代谢核苷酸代谢是生物体内重要的生化过程,涉及到核酸合成、降解、修复、信号传递等多个方面。

核苷酸由碱基、糖和磷酸组成,其代谢在细胞中是高度调控和平衡的。

核苷酸合成主要通过转氨基树酸循环和核苷酸分子的合成反应进行。

在转氨基树酸循环中,核苷酸前体物质首先被转化为碱基,然后与多磷酸核糖(PRPP)反应生成核苷酸。

在核苷酸分子的合成过程中,磷酸化反应是关键步骤。

首先,核苷酸前体物质通过化学反应与其他辅助分子发生磷酸化,生成亲核试剂;然后亲核试剂与其他原子或分子发生进一步反应,最终形成核苷酸分子。

核苷酸降解是核酸的代谢终点。

核苷酸降解主要通过核苷酸酶和核酸酶的作用进行。

核苷酸首先被分解为核苷和糖酸,然后再被分解为碱基、磷酸和其他代谢产物。

核苷酸的降解产物在细胞中可以被重新利用,参与核酸合成或其他代谢途径。

核苷酸修复是为了纠正核苷酸中的损伤或错误。

核酸在细胞中会受到化学、物理和生物性的损伤。

这些损伤可能导致突变和疾病的发生。

核苷酸修复过程中的多个酶参与到检测和修复核酸中的损伤。

例如,碱基切割酶可以识别含有损伤碱基的DNA链,然后切割并去除这些损伤碱基。

然后,DNA聚合酶、连接酶和重排序酶等修复酶可以填补被切割的DNA链,并确保修复后的DNA链的完整性。

核苷酸在细胞中还扮演着重要的信号传递和调控作用。

一些核苷酸可以作为二级信使,传递细胞内外的信号,调控细胞的生理和代谢过程。

例如,环磷酸腺苷(cAMP)和磷腺苷酸(cGMP)是细胞内常见的二级信使,它们通过激活蛋白激酶A、蛋白激酶G等酶的信号通路,参与细胞的增殖、分化、凋亡等生理过程。

总结起来,核苷酸代谢是生物体内重要的生化过程,它涉及核酸的合成、降解、修复以及信号传递等多个方面。

核苷酸代谢的平衡和调控对细胞活动的正常进行至关重要,异常的核苷酸代谢可能导致疾病的发生。

因此,对核苷酸代谢的深入研究,有助于揭示生命活动的机制和疾病发生的原因,也为药物研发和治疗提供了理论基础。

核苷酸代谢生物化学

核苷酸代谢生物化学
嘧啶衍生物进一步分解为二氧化碳、 水和氨,而磷酸核糖则进一步发生代 谢。
核苷一磷酸的分解
核苷一磷酸在磷酸酶的作用下,将其中的特殊化学键转移给特殊化学物质,生成 相应的单糖和磷酸。
单糖进一步发生代谢,而磷酸则参与其他生化反应。
核苷二磷酸的分解
核苷二磷酸在磷酸酶的作用下,将其中的特殊化学键转移给特殊化学物质,生成相应的单糖和磷酸。
单糖进一步发生代谢,而磷酸则参与其他生化反应。
04
核苷酸代谢的调控
酶的调节
01
酶的激活与抑制
酶的活性可以通过共价修饰(如磷酸化、去磷酸化)、变构效应、与配
体的结合等方式进行激活或抑制,从而调节核苷酸代谢的速度和方向。
Hale Waihona Puke 02酶的浓度调节酶的合成和降解可以调节其在细胞内的浓度,进而影响核苷酸代谢的速
率。
核苷酸的分解代谢
嘌呤核苷酸的分解
嘌呤核苷酸首先在核苷酸酶的作用下 ,将其中的特殊化学键转移给特殊化 学物质,生成相应的嘌呤衍生物和磷 酸核糖。
嘌呤衍生物进一步分解为尿酸,而磷 酸核糖则进一步发生代谢。
嘧啶核苷酸的分解
嘧啶核苷酸在核苷酸酶的作用下,将 其中的特殊化学键转移给特殊化学物 质,生成相应的嘧啶衍生物和磷酸核 糖。
合成过程包括脱氧、磷酸化等步骤,最终 形成脱氧核苷酸。
脱氧核苷酸是DNA的重要组成部分,对 维持生物体的遗传信息具有重要意义。
核苷三磷酸的合成
核苷三磷酸是由核苷二磷酸在激酶催化下 合成的。
合成过程需要消耗能量,如ATP等。
核苷三磷酸是RNA的重要组成部分,对 维持生物体的正常代谢具有重要意义。
03
细胞信号转导的调节
信号转导蛋白
细胞内的信号转导蛋白可以感知 核苷酸代谢产物的浓度,进而调 节核苷酸代谢酶的活性。

核苷酸代谢

核苷酸代谢

核苷酸代谢
核苷酸代谢是生物体内一系列生化反应的过程,用于合成和分解核苷酸分子,包括腺嘌呤核苷酸和胞嘌呤核苷酸。

这些核苷酸是DNA 和RNA 的构建单元,同时还在细胞内参与能量转化和信号传递等生物过程。

核苷酸代谢在维持细胞生存和功能中起着重要作用。

核苷酸代谢包括以下主要过程:
1.核苷酸合成:细胞需要合成新的核苷酸来满足DNA 和RNA
的合成需求。

这包括腺嘌呤核苷酸和胞嘌呤核苷酸的合成。

合成的过程需要多个中间产物,如核糖核苷酸、二磷酸核糖核苷酸等。

2.核苷酸降解:细胞需要分解核苷酸来回收核苷酸单体或能量。

核苷酸降解包括核苷酸的酶解和分解成较小的分子,如核苷、碱基、糖和磷酸。

3.核苷酸储存:一些细胞会储存核苷酸以供以后使用,以应对细
胞周期或环境变化。

4.调控:核苷酸代谢受到多种调控机制的调节,包括反馈抑制、
激活、废物排除和信号传递。

这有助于维持核苷酸浓度在细胞内的平衡。

核苷酸代谢与细胞的生长、分裂、DNA 修复、RNA 合成以及能量代谢等过程密切相关。

失调的核苷酸代谢可能会导致遗传疾病,如类风湿性关节炎、DNA损伤修复缺陷疾病、免疫系统疾病等。

因此,核苷酸代谢的研究对于理解生物体内的基本生物学过程和开发相关药
物非常重要。

细胞生物学中的核苷酸代谢途径

细胞生物学中的核苷酸代谢途径

细胞生物学中的核苷酸代谢途径细胞是生物体的基本单位,其中核酸是构成核糖体和DNA序列的关键组成部分。

核酸由核苷酸单元组成,核苷酸代谢是维持细胞正常功能的重要过程。

这一过程涉及到核苷酸的合成、降解和再利用,为了维持细胞正常的功能和稳态,细胞需要控制核苷酸代谢途径的平衡。

本文将探讨细胞生物学中的核苷酸代谢途径,包括核苷酸合成、降解和再利用等方面的内容。

一、核苷酸合成途径核苷酸合成是细胞中核苷酸代谢的重要组成部分,它涉及到细胞中氮代谢途径和葡萄糖代谢途径。

核苷酸的合成途径不同于降解途径,它是通过一系列酶催化的反应来完成的。

首先,核苷酸合成途径需要合成核苷酸的前体物质。

在动物细胞中,核苷酸的合成起始物质包括核碱基、糖和磷酸。

细胞通过葡萄糖、胱氨酸和甲硫氨酸等原料,经过一系列的酶催化反应,合成核苷酸的前体物质。

其次,核苷酸合成途径需要核苷酸的合成酶。

核苷酸的合成酶是完成核苷酸合成的催化剂。

不同类型的核苷酸合成酶以及参与核苷酸合成的酶协同作用,使细胞能够有效地合成各种类型的核苷酸。

最后,核苷酸合成途径需要能量和NADPH供给。

核苷酸的合成需要大量的能量和还原物质NADPH。

细胞通过葡萄糖代谢途径中的糖酵解和线粒体的呼吸链来提供能量和NADPH。

总之,核苷酸合成途径是细胞为了维持正常功能所需的重要过程。

细胞通过合成核苷酸的前体物质、核苷酸的合成酶、能量和还原物质来完成核苷酸的合成过程。

二、核苷酸降解途径核苷酸降解是细胞中的另一个核苷酸代谢途径。

核苷酸的降解途径通常发生在葡萄糖代谢途径的线粒体中。

首先,核苷酸降解途径需要核苷酸酶。

核苷酸酶是完成核苷酸降解的催化剂。

不同类型的核苷酸酶以及参与核苷酸降解的酶协同作用,使细胞能够有效地降解各种类型的核苷酸。

其次,核苷酸降解途径需要核苷酸降解的前体物质。

核苷酸降解会产生一些化合物,如尿素和氨基酸等。

这些化合物可以进一步参与细胞的代谢途径,如氮代谢途径和葡萄糖代谢途径。

最后,核苷酸降解途径还需要能量供给。

核苷酸代谢

核苷酸代谢

第十章核苷酸代谢1. 核苷酸的分解代谢1)核酸的降解:核酸+H2O+核酸酶→单核苷酸+核苷酸酶→核苷+PPi+核苷酶→戊糖+碱基(嘌呤/嘧啶) +核苷酸酸化酶→戊糖-1-磷酸+碱基※核苷水解酶不对脱氧核糖核苷生效。

2)限制性内切酶:3)嘌呤核苷酸的降解:代谢中间产物——黄嘌呤,终产物尿酸(彻底分解为CO2和NH3)。

嘌呤核苷酸→嘌呤核苷→①腺嘌呤(脱氨→次黄嘌呤+黄嘌呤氧化酶→黄嘌呤)②鸟嘌呤(脱氨→黄嘌呤)黄嘌呤+黄嘌呤氧化酶→尿酸肌肉中的嘌呤核苷酸循环生成氨;AMP+AMP脱氨酶→IMP,肌肉中的IMP→AMP,这一过程为嘌呤核苷酸循环。

4)嘧啶核苷酸的降解:分解成磷酸、核糖和嘧啶碱。

①胞嘧啶+胞嘧啶脱氢酶→尿嘧啶+二氢尿嘧啶脱氢酶(开环)→β-脲基丙酸→β-丙氨酸(脱氨参与有机代谢)+NH3+CO2+H2O②胸腺嘧啶+二氢尿嘧啶脱氢酶→二氢胸腺嘧啶+二氢嘧啶酶→β-脲基异丁酸→β-氨基异丁酸(监测放化疗程度)+NH3+CO2+H2O5)尿酸过高与痛风:尿酸在体内过量积累会导致痛风症,别嘌呤醇可治疗痛风,因与次黄嘌呤相似,可抑制黄嘌呤氧化酶从而抑制尿酸生成。

尿酸中体内彻底分解形成CO2和氨。

2. 核苷酸的合成代谢:分布广、功能强;从头合成:利用核糖磷酸、氨基酸CO2和NH3等简单的前提分子,经过酶促反应合成核苷酸。

补救合成:简单、省能,无需从头合成碱基;利用体内现有的核苷和碱基再循环。

嘌呤核苷酸合成前体:次黄嘌呤核苷酸(IMP/肌苷酸)+5-磷酸核糖(起始物)↓活化形式1)嘌呤核糖核苷酸的从头合成途径:主要调节方式——反馈调节;ATP+5-磷酸核糖+5-磷酸核糖焦磷酸合成酶(PRPP合成酶)→5-磷酸核糖焦磷酸(PRPP)腺嘌呤核苷酸AMP鸟嘌呤核苷酸GMPIMP+Asp+腺苷酸琥珀酸合成酶→腺苷酸琥珀酸+腺苷酸琥珀酸裂合酶→延胡索酸+AMPIMP+IMP脱氢酶→黄嘌呤核苷酸+鸟嘌呤核苷酸合成酶→GMP补救合成途径:脑、骨髓组织缺乏从头合成所需要的酶,依靠嘌呤碱或嘌呤核苷合成嘌呤核苷酸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物再循环,重新形成核苷酸的过程。
15.2 核苷酸生物合成需要磷酸核糖焦磷酸
各种嘌呤类核苷酸的前体是次黄嘌呤核苷酸 (IMP,或称之肌苷酸);而各种嘧啶核苷酸则是从 尿嘧啶核苷酸(UMP)衍生出来的。 IMP是在核糖-5-磷酸的基础上合成次黄嘌呤环结 构的,而UMP则是先合成尿嘧啶碱基,然后再连接5磷酸核糖。但无论那种连接方式,使用的都是核糖 -
15 核苷酸代谢
15.1 核酸的降解过程 15.2 核苷酸生物合成需要磷酸核糖焦磷酸 15.3 同位素标记实验给出了嘌呤环中各个原子的来源
15.4 嘌呤核苷酸的从头合成的最初产物是次黄嘌呤核苷酸
15.5 AMP和GMP是次黄嘌呤核苷酸的衍生物 15.6 核苷酸可以通过补救途径合成
15.7 嘧啶核苷酸的从头合成途径的最初产物是UMP
5- 磷酸的活化 形式 5- 磷 酸核糖 焦磷酸 ( PRPP )。
PRPP 是在 PRPP 合成酶催化下由核糖 -5- 磷酸和 ATP
合成的。
又称磷酸核糖焦磷酸激酶
核糖-5-磷酸与ATP反应, 焦磷酸基团从ATP转移 到核糖-5-磷酸的C-1, 形成5-磷酸核糖-1-焦磷 酸(PRPP),是-构 型。
保留在合成的嘌呤核苷酸中。然后构型的5-磷酸核糖胺的氨基
被甘氨酸酰化,在甘氨酰胺核苷酸合成酶的催化下,形成甘氨 酰胺核苷酸。
在第3步反应中,在甘氨酰胺核苷酸转甲酰酶的作用下,一 个甲酰基从N10-甲酰四氢叶酸转移到甘氨酰胺核苷酸的氨基上, 形成IMP的C-8。在第4步反应中,来自谷氨酰胺的酰胺在酰胺 转移酶的催化下,转换成脒(R)NH-C=NH,反应需要ATP。 该酶受到类似于谷氨酰胺的抗生素,例如重氮丝氨酸和6-重氮5-氧-正亮氨酸的不可逆抑制。这些化合物(作为亲和标记试剂) 可以与酶的巯基反应。 IMP合成的第5步反应是需要ATP的闭环反应,形成一个咪 唑衍生物。 2 第6步反应中,CO2连接到已经变成嘌呤的C-5上,这个羧
▲ DNA 和 RNA合成的前体。 ▲ 其衍生物是许多生物合成的活化的中间物。 ▲ ATP是生物系统最通用的能量、GTP赋予大分子例如新生 肽链在核糖体上的移位运动的动力及信号偶联蛋白的活化。 ▲ 腺苷酸是三种主要辅酶NAD+、FAD+ 和 CoA的组分。 ▲ 核苷酸也是代谢调节物,例如cAMP、cGMP是许多激素 行使调节作用的细胞内信使。 腺嘌呤核苷酸生物合成过程的阐明对于筛选抗肿瘤药物 以及选育核苷酸高产菌株都有指导意义。
叶酸;N-3,来自谷氨酰胺;C-6来自CO2;N-1,来自天冬氨酸;
然后在第10步反应形成嘧啶6员环。
1 从头合成途径开始于 PRPP 的焦磷酰基被谷氨酰胺的酰胺
氮取代的反应,反应是由谷氨酰胺-PRPP转酰胺酶催化的,值
得注意的是,核糖的异头构型在亲核取代过程中由 α 构型转换 成了β 构型,形成的是构型的5-磷酸核糖胺。这种β 构型一直
Phosphoribosyl pyrophosphokinase
15.3 同位素标记实验给出了嘌呤环中各个原子的来源
嘌呤环上原子的来源为: N-1 来自天冬氨酸; C-2 和 C-8 来
自甲酸(通过10-甲酰四氢叶酸);N-3和N-9来自谷氨酰胺的酰 胺基;C-4、C-5和N-7都来自甘氨酸;C-6来自CO2。
化反应很罕见,因为反应既不需要ATP,也不需要生物素。
在第7和8步反应中,天冬氨酸的氨基整合到嘌呤环中。 首先整个天冬氨酸与新进入的羧基缩合形成一个酰胺键,然 后在腺苷琥珀酸裂解酶的作用下除去琥珀酸,生成氨基咪唑
核苷酸,反应需要 ATP。这两步反应使得来自天冬氨酸的一
个氨基氮变成了IMP中的N-1。 第 9 步反应类似于第 3 步反应,来自 N10 -甲酰四氢叶酸 的甲酰基转移到氨基咪唑氨甲酰核苷酸的氨基上,第10步反 应是一个闭环反应,形成嘌呤环中的嘧啶环。至此完成了 IMP整个嘌呤环的合成。 IMP从头合成消耗了大量的能量。在合成PRPP时,ATP 转换为AMP, 第2,4,5和7步反应也是通过ATP转换为ADP
15.4 嘌呤酸(IMP)
第一阶段:涉及15步反应,由PRPP 生成氨基咪唑核苷 酸(即嘌呤的咪唑 环)。 第二阶段:6-10步 反应,由氨基咪唑 核苷酸生成IMP。
IMP从头合成是在 PRPP基础上,依次连接: N-9 ,来自谷 氨酰胺;C-4、C-5和N-7,来自甘氨酸;C-8,来自10-甲酰四氢 C-2 ,来自 10- 甲酰四氢叶酸。在第 5 步反应先形成咪唑 5 员环,
核苷磷酸化酶
核苷+ H3PO4
嘌呤(或嘧啶)+1-磷酸戊糖
(核苷磷酸化酶存在广泛)
核苷酸生物合成有两条途径:
从头合成途径:实际上是由简单的前体分子(如氨基酸、
CO2和NH3等分子)生物合成核苷酸的杂环碱基的途径。
补救途径:是一条省能的、简单的生物合成核苷酸途径,
碱基不用从头合成,而是直接利用细胞内或饮食中核苷酸降解 生成的完整的嘌呤和嘧啶碱基,该途径实际上是核苷酸降解产
15.1 核酸的降解过程
核酸
核酸酶(磷酸二酯酶)
核苷酸
核苷酸酶(磷酸单酯酶)
核苷
核苷磷酸化酶
磷酸
参与补救合成
嘌呤或嘧啶
补救合成途 径的原料
氧化成尿酸等 物质排出体外
戊糖-1-磷 酸
磷酸戊糖途径进 一步分解
核苷酸的降解
核苷酸酶
核苷酸 + H2O
核苷水解酶
核苷+Pi
核苷 + H2O 嘌呤(或嘧啶)+戊糖 (核苷水解酶主要存在于植物和微生物体内,并且只能 对核糖核苷起作用,对脱氧核糖核苷不起作用。)
驱动的,另外由谷氨酸和氨合成谷氨酰胺也需要ATP。
15.5 AMP和GMP是 次黄嘌呤核苷酸的衍 生物
* AMP:Asp的氨基与IMP 中的 酮基缩合形成腺苷酸(基)琥 珀酸。然后在腺苷酸琥珀酸裂 解酶的作用下除去延胡索酸,
15.8 CTP是由UMP合成的 15.9 脱氧核糖核苷酸是通过核糖核苷酸还原合成的
15.10 嘌呤核苷酸降解产生尿酸
15.11 大多数动物可以降解尿酸 15.12肌肉中嘌呤核苷酸循环生成氨 15.13嘧啶可以降解生成乙酰CoA和琥珀酰CoA
核 苷 酸 代 谢
核苷酸是生物体内的重要物质,起着多方面的 作用:
相关文档
最新文档