工程问题试题答案及教案(奥数)
奥数思维拓展:工程问题(专项训练)-2024-2025学年六年级上册数学苏教版

奥数思维拓展:工程问题-数学六年级上册苏教版第一部分知识梳理工程问题工程问题公式(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时.(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间.(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5….特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便.)解答工程问题利用常见的数学思想方法,如代换法、比例法、列表法、方程法等.抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.第二部分典型例题1.加工一批零件,甲单独做要6天完成,乙单独做要5天完成,现甲乙丙丁四人合做一天完成了任务,已知丙丁两人比甲乙两人多做48个,那么这批零件一共有多少个?【解答】解:48÷[1﹣()﹣()]=48÷[1﹣]=48÷=180(个),答:这批零件一共有180个.2.甲、乙、丙三辆卡车要运送A、B两堆数量相同的货物,若单独运A堆货物,甲车需9时,乙车需12时,丙车需18时.开始时,甲帮乙运A堆,丙单独运B堆,一段时间后,甲又转向B堆帮丙运直至最后,两堆货物被同时运完.甲帮丙运了几时?【解答】解:2÷(++)=2÷=8(小时)(1﹣)÷=÷=5(小时)答:甲帮丙运了5时.第三部分跟踪训练1.有一批货物,如果用5辆大卡车和2辆小卡车正好运完,或者用2辆大卡车和8辆小卡车也正好运完,如果全用大卡车运,要几辆才能运完?2.一项工程甲、乙合作完成了全工程的,剩下的由甲单独完成,甲一共做了10天,这项工程由甲单独做需15天,如果由乙单独做,需多少天?3.一项工程,甲、乙、丙合作6天可完成;如果甲工作6天,乙、丙合作两天可完成这项工程的;如果甲、乙合作3天,丙工作6天,也可完成这项工程的.甲、乙、丙单独做各需多少天?4.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
工程施工奥数题(3篇)

第1篇在一个繁华的城市,有一座名为“智慧之城”的新城正在建设。
这座新城由多个施工单位共同承建,他们分别负责不同的区域。
为了确保工程顺利进行,施工单位们需要解决一道奥数题,这道题将决定整个工程能否按计划完成。
题目如下:智慧之城的建设共需1000块砖,其中红色砖500块,蓝色砖500块。
现在,每个施工单位负责运输一部分砖。
已知:1. 红色砖和蓝色砖的重量比为3:2。
2. 运输红色砖的施工单位有3家,运输蓝色砖的施工单位有2家。
3. 每家施工单位运输的砖块重量相等。
请问:每家施工单位运输多少块红色砖和蓝色砖?为了解决这道题目,施工单位们决定共同探讨。
他们首先分析了题目中的信息:(1)红色砖和蓝色砖的重量比为3:2,意味着每块红色砖的重量是蓝色砖的1.5倍。
(2)红色砖和蓝色砖各500块,共1000块,平均每家施工单位需运输250块砖。
(3)3家施工单位运输红色砖,2家施工单位运输蓝色砖。
接下来,他们开始尝试解题:假设每家施工单位运输红色砖x块,蓝色砖y块。
根据题目中的信息,可以列出以下方程组:1. 3x + 2y = 1000(总砖块数)2. 3x : 2y = 3 : 2(红色砖和蓝色砖的重量比)将第二个方程式中的比例关系转化为等式,得到:3x = 1.5y将此等式代入第一个方程式,得到:3(1.5y) + 2y = 10004.5y + 2y = 10006.5y = 1000解得:y = 1000 / 6.5y = 153.85(约等于154)由于施工单位不能运输分数块砖,他们将y值四舍五入为154。
根据等式3x =1.5y,可以计算出x的值:x = 1.5yx = 1.5 154x = 231因此,每家施工单位运输红色砖231块,蓝色砖154块。
施工单位们根据这个解决方案,合理分配了砖块运输任务,确保了智慧之城的建设按计划进行。
这道奥数题不仅锻炼了他们的思维能力,还让他们学会了如何运用数学知识解决实际问题。
小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1—45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满.2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效〉甲的工效〉乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少"。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16—x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成.乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量.根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1.所以1-9/10=1/10表示乙做6—4=2小时的工作量。
小学奥数--工程问题(含答案解析)

小学奥数--工程问题一.选择题(共8小题)1.三部同样的抽水机同时抽水,抽干一池水需用15小时,五部这样的抽水机抽干这一池水需用()小时.A.3 B.6 C.9 D.122.张师傅加工一批零件,原计划每天加工80个,5天加工完.实际张师傅只用4天就加工完了,实际每天比原计划多加工零件()个.A.20 B.16 C.8 D.43.完成一件工作,甲要小时,乙要小时,甲与乙的工作效率比是()A.2:6 B.5:3 C.3:5 D.6:24.水池有甲、乙两根出水管,单独打开甲进水管8小时可将满水池排空,单独打开乙出水管6小时可将满水池排空.如果按甲、乙、甲、…的顺序轮流打开1小时,将满水池排空需()小时.A.7 B.6C.4 D.35.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成.三人合做几小时可以完成这件工作的?()A.2 B.3 C.4 D.56.在A地植树1000棵,B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A地,乙在B地,丙在A与B两,同时开始,同时结束,丙在A地植树()棵.A.150 B.300 C.450 D.6007.甲乙两人合作打一份材料.开始甲每分钟打100 个字,乙每分钟打200 个字.合作到完成总量的一半时,甲速度变为原来的3 倍,而乙休息了5 分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000 B.6000 C.12000 D.180008.甲、乙两工程队共同修建一项工程,已知两队合作正好6天完成,如果甲队单独完成这项工程需要18天,那么乙队单独完成这项工程需要()天.A.9 B.10 C.12 D.15二.解答题(共5小题)9.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了多少天?10.有一桶水,一只小鸭可以饮用25天.如果和一只小鸡同饮,那么可以饮用20天.如果一只小鸡单独饮用,可以饮用几天?11.学校插花组同学要赶制花篮70个,已经做了5天,共做花篮40个.余下的要赶在2天做完,这样每天比原来平均多做个花篮.12.一个化肥厂原计划12天生产一批化肥,由于每天多生产2.5吨,结果9天就完成了这批化肥的生产任务.实际每天生产化肥多少吨?13.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?小学奥数--工程问题参考答案与试题解析一.选择题(共8小题)1.三部同样的抽水机同时抽水,抽干一池水需用15小时,五部这样的抽水机抽干这一池水需用()小时.A.3 B.6 C.9 D.12【分析】把抽干这一池水的工作量看作单位“1”,先求出每部抽水机的工作效率÷3=,再求出五部这样的抽水机抽干每小时的工作效率=;然后再除工作总量1即可.【解答】解:÷3==1=9(小时)答:五部这样的抽水机抽干这一池水需用9小时.故选:C.【点评】解答本题的关键是求出每部抽水机的工作效率,解答依据是工作时间,工作效率以及工作总量之间数量关系.2.张师傅加工一批零件,原计划每天加工80个,5天加工完.实际张师傅只用4天就加工完了,实际每天比原计划多加工零件()个.A.20 B.16 C.8 D.4【分析】原计划每天加工80个,需要5天完成,则需要加工零件的总数为80×5=400个,实际工作4天就加工完了,则平均每天加工80×5÷4个,再减去80就是实际每天多加工的零件数.【解答】解:80×5÷4﹣80=100﹣80=20(个)答:实际每天比原计划多加工零件20个.故选:A.【点评】首先根据计划工作时间及每天加工的个数,求出零件总数是完成本题的关键.3.完成一件工作,甲要小时,乙要小时,甲与乙的工作效率比是()A.2:6 B.5:3 C.3:5 D.6:2【分析】把工作总量看作“1”,根据工作总量÷工作时间=工作效率,分别求出甲、乙的工作效率,再写出对应的比,根据比的基本性质化成最简整数比.【解答】解:(1÷):(1÷)=5:3答:甲与乙的工作效率比是5:3.故选:B.【点评】掌握工作总量÷工作时间=工作效率是解决此题的关键.4.水池有甲、乙两根出水管,单独打开甲进水管8小时可将满水池排空,单独打开乙出水管6小时可将满水池排空.如果按甲、乙、甲、…的顺序轮流打开1小时,将满水池排空需()小时.A.7 B.6C.4 D.3【分析】把这项工作的量看作单位“1”,先依据工作时间=工作总量÷工作效率,求出两根排水管合做需要的时间(求得的时间是带分数),由于两根排水管是轮流工作1小时,那么两根排水管轮流工作的时间就是所得的带分数整数部分,然后依据工作总量=工作时间×工作效率,求出两根排水管轮流工作完成的工作量,再求出剩余的工作量,依据工作时间=工作总量÷工作效率,求出甲最后完成需要的时间,最后加两根排水管轮流工作的时间即可解答.【解答】解:甲的工作效率为,乙的工作效率为,所以甲乙各排水3小时后一共完成,还剩下1﹣=,甲排水管只需再需排水1小时可全部完成,所以一共需要2×3+1=7小时.故选:A.【点评】解答本题的关键是求出两根排水管轮流工作的时间,解答的依据是等量关系式:工作时间=工作总量÷工作效率.5.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成.三人合做几小时可以完成这件工作的?()A.2 B.3 C.4 D.5【分析】根据题意,甲每小时能完成这件工作的,乙每小时能完成这件工作的,丙每小时能完成这件工作的,要完成这件工作的,用除以他们每小时的效率之和即可.【解答】解:÷()=÷=4=3答:三人合做3小时可以完成这件工作的.故选:B.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时把工作总量看做单位“1”,要完成工作的,再利用它们的数量关系解答即可.6.在A地植树1000棵,B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A地,乙在B地,丙在A与B两,同时开始,同时结束,丙在A地植树()棵.A.150 B.300 C.450 D.600【分析】总棵数1000+1250=2250棵不变,由甲、乙、丙去植树,每天能植树28+32+30=90棵,用2250除以90求出共同工作的时间,再乘甲每天的工作效率,求出甲共植树的棵数,再用1000减去它就是丙在A地植树的棵数.【解答】解:(1000+1250)÷(28+32+30)=2250÷90=25(天)1000﹣28×25=1000﹣700=300(棵)答:丙在A地植树300棵.故选:B.【点评】此题解答思路:先求出A、B两地植树需要的时间,再求出甲在A地植树的棵数,进而求出丙在A地植树的棵数,进一步解决问题.7.甲乙两人合作打一份材料.开始甲每分钟打100 个字,乙每分钟打200 个字.合作到完成总量的一半时,甲速度变为原来的3 倍,而乙休息了5 分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000 B.6000 C.12000 D.18000【分析】前一半时乙的工作量是甲的2 倍,所以后一半甲应是乙的2倍.后来甲乙的工作效率比3:2,甲后来应为4 份,乙应为2 份,说明乙休息5分钟时甲打了1 份,把后一半工作量分为6 份,这一份的量是100×3×5=1500字,故总工作量是12份即可求解.【解答】解:前一半甲乙的工作效率比是100:200=1:2,完成一半的工作总量,甲乙两人的工作量比是工作效率比即1:2,甲完成工作总量的,乙完成工作总量的,在后一半的工作中需要甲的总量是乙的2倍,后来甲乙的效率比为3:2,说明乙休息是甲完成了一份量所以甲的总量是4份,乙的总量是2份,也就是甲在5分钟完成300×5=1500(个),后来甲4份乙2份,占一半,总共份数为12份,1500×12=18000.故选:D.【点评】找到两人的工作倍数关系是本题的关键,同时设份数法是常用方法,结合比例问题.8.甲、乙两工程队共同修建一项工程,已知两队合作正好6天完成,如果甲队单独完成这项工程需要18天,那么乙队单独完成这项工程需要()天.A.9 B.10 C.12 D.15【分析】把一项工程的工作量看作单位“1”,由两队合作正好6天完成,可以求出两队的工作效率和为,甲的工作效率为,由此求得乙的工作效率,再进一步利用工作总量÷工作效率=工作时间解决问题.【解答】解:1÷(﹣)=1÷=9(天);答:乙队单独完成这项工程需要9天.故选:A.【点评】此题主要利用工作总量、工作时间、工作效率三者之间的关系解决问题.二.解答题(共5小题)9.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了多少天?【分析】把全部工作量看作“1”,则甲的工作效率为,乙的工作效率为;设甲做了x天,则乙就做了14﹣x天,由工作效率×工作时间=工作量,可得方程:x+(14﹣x)=1.【解答】解:设甲做了x天,则乙就做了14﹣x天,可得方程:x+(14﹣x)=1+﹣=1,=,x=8;答:甲先做了8天.【点评】本题是据工作效率×工作时间=工作量这一基本关系式设未知数来解决的.10.有一桶水,一只小鸭可以饮用25天.如果和一只小鸡同饮,那么可以饮用20天.如果一只小鸡单独饮用,可以饮用几天?【分析】把一桶水饮用量看作单位“1”,一只小鸭每天可以饮用它的,小鸡和小鸭的一天的饮用量是这通水的,所以小鸡一天的饮用量是﹣,用单位“1”除以(﹣),就是小鸡饮用的天数.【解答】解:1÷(﹣)=1÷=100(天);答:可以饮用100天.【点评】本题运用运用工效问题的解答方法进行解答,把一桶水的饮用量看作单位“1”,再运用工作总量除以工作效率等于工作时间进行解答即可.11.学校插花组同学要赶制花篮70个,已经做了5天,共做花篮40个.余下的要赶在2天做完,这样每天比原来平均多做7个花篮.【分析】先求出原来每天做多少个;再求出剩下了总数量,然后用剩下的总数量除以后来工作的天数,就是后来每天做的个数;然后用后来每天做的个数减去原来每天做的个数就是平均每天需要多做的个数.【解答】解:40÷5=8(个);(70﹣40)÷2,=30÷2,=15(个);15﹣8=7(个);答:每天比原来平均多做7个花篮.故答案为;7.【点评】本题利用工作效率=工作量÷工作时间求出两部分的工作效率,再用后来的工作效率减去原来的工作效率即可.12.一个化肥厂原计划12天生产一批化肥,由于每天多生产2.5吨,结果9天就完成了这批化肥的生产任务.实际每天生产化肥多少吨?【分析】设计划每天生产化肥x吨,实际每天生产x+2.5吨,根据原计划每天生产化肥的吨数×原计划的天数=实际每天生产化肥的度数×实际生产的天数,列出方程解答即可列式为:12x=9×(x+2.5),解答即可.【解答】解:设计划每天生产化肥x吨,实际每天生产x+2.5吨,12x=9×(x+2.5)12x=9x+22.512x﹣9x=22.53x=22.5x=7.5答:实际每天生产化肥7.5吨.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.13.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?【分析】把水池的容积看作单位“1”,12个注水管注水,8小时注满,每小时注水,9个注水管注水,24小时注满,每小时注水,12个注水管比9个注水管,每小时多注水,由此求出8个注水管每小时的工作效率,然后根据工作量÷工作效率=工作时间,据此列式解答.【解答】解:12个注水管注水,8小时注满,每小时注水,9个注水管注水,24小时注满,每小时注水,12个注水管比9个注水管,每小时多注水,那么8个注水管每小时注水:=,所以1(小时);答:用8个注水管注水,需要72小时注满水池.【点评】把水池的容积看作单位“1”,关键是求出8个注水管每小时的工作效率,再根据工作量÷工作效率=工作时间进行解答.。
10道小学奥数工程问题及答案解析

10道小学奥数工程问题及答案解析一、题目1一项工程,甲队单独做需要12天完成,乙队单独做需要15天完成。
两队合作需要多少天完成?二、题目2修建一条公路,甲队独做需要20天完成,乙队独做需要30天完成。
如果两队合作,多少天能修完这条公路的一半?三、题目3一项工程,甲队独做15天完成,乙队独做10天完成。
甲队先做5天后,乙队加入,两队合作还需多少天完成?一条水渠,甲队修建需要25天,乙队修建需要20天。
如果两队同时从两端开始修建,多少天能相遇并修完整条水渠?五、题目5一项工程,甲队独做需要18天完成,乙队独做需要24天完成。
如果甲队先做3天后,乙队加入,两队合作还需要多少天才能完成?六、题目6一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。
如果两队合作,需要多少天才能完成这项工程?一条公路,甲工程队修建需要20天,乙工程队修建需要30天。
如果两队从两端同时开始修建,多少天能修完整条公路?八、题目8一项工程,甲队独做12天完成,乙队独做15天完成。
甲队先做3天后,乙队加入,两队合作还需多少天完成?九、题目9修建一条水渠,甲队独做需要20天,乙队独做需要25天。
两队合作5天后,甲队离开,乙队还需多少天才能完成?十、题目10一个水池有甲、乙两个进水管,单开甲管15小时可将水池注满,单开乙管20小时可将水池注满。
如果两管同时打开,多少小时可以注满水池的3/4?以下是答案一、题目1一项工程,甲队单独做需要12天完成,乙队单独做需要15天完成。
两队合作需要多少天完成?答案:6.67天,约等于7天(因为天数不能为小数,所以向上取整)解析:甲队每天完成工程的1/12,乙队每天完成工程的1/15。
两队合作每天完成的工程比例为1/12 + 1/15 = 9/60 = 3/20。
因此,两队合作完成整个工程需要的时间为1 / (3/20) = 20/3天,约等于6.67天,向上取整为7天。
二、题目2修建一条公路,甲队独做需要20天完成,乙队独做需要30天完成。
【奥数专题】精编人教版小学数学6年级上册工程问题(试题)含答案与解析

【奥数专题】精编人教版小学数学6年级上册工程问题(试题)含答案与解析奥数专题:精编人教版小学数学6年级上册工程问题(试题)含答案与解析工程问题是小学数学中常见的题型之一,能够锻炼学生的逻辑思维和综合运算能力。
本文将为大家精编人教版小学数学6年级上册的工程问题试题,并附带详细的答案与解析,希望能够帮助到同学们更好地理解和掌握这一题型。
1. 小明修建了一个半径为3米的圆形花坛,请问这个花坛的周长是多少米?答案与解析:圆的周长公式为C = 2πr,其中r为半径,π取近似值3.14。
代入已知数据,得C = 2 × 3.14 × 3 = 18.84(米),所以这个花坛的周长为18.84米。
2. 小红家的房屋正前方有一个边长为6米的正方形草坪,现在要在这个草坪上种植鲜花,请问这个草坪的面积是多少平方米?答案与解析:正方形的面积公式为A = a^2,其中a为边长。
代入已知数据,得A = 6^2 = 36(平方米),所以这个草坪的面积为36平方米。
3. 丽丽要制作一个高度为2米的三角形旗帜,其中底边长为4米,请问这个旗帜的面积是多少平方米?答案与解析:三角形的面积公式为A = 0.5 ×底边长 ×高,代入已知数据,得A = 0.5 × 4 × 2 = 4(平方米),所以这个旗帜的面积为4平方米。
4. 小华要铺设一条长为5米的沟渠,他计划将沟渠分为相等的5段,请问每段的长度是多少米?答案与解析:将沟渠分为相等的5段,则每段的长度为总长度除以段数,即5 ÷ 5 = 1(米)。
所以每段的长度为1米。
5. 小明用了21个园木将一条长20米的小路两侧都种满,请问每个园木之间的距离是多少米?答案与解析:将小路分为21段,则每个园木之间的距离为总长度除以段数减1,即20 ÷ (21-1) = 1(米)。
所以每个园木之间的距离为1米。
6. 小红需要用12个石板铺满一个长为3米的小路,请问每块石板的长度是多少米?答案与解析:将小路分为12段,则每块石板的长度为总长度除以段数,即3 ÷ 12 = 0.25(米)。
小学奥数思维训练-工程问题(通用,含答案)

保密★启用前小学奥数思维训练-工程问题学校:___________姓名:___________班级:___________考号:___________一、解答题1.一项工程,由甲队做30天完成,由乙队做20天完成。
(1)两队合做5天可以完成工程的几分之几?(2)两队合做10天,还剩下工程的几分之几?(3)两队合做几天完成?2.一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?3.一项工程单独做甲队要8天完成,乙队要10天完成,两队合作几天能完成这项工程的34?4.一项工程,甲、乙合做6天可以完成。
甲独做18天可以完成,乙独做多少天可以完成?5.加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。
如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?6.一件工程,甲、乙合作6天可以完成。
现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。
这件工程如果由甲单独做,需要几天完成?7.有一项工作,小华做需3天,小芳做需4天,小梅做需5天,如果三人合作,需几天完成?8.有一项工程,甲队单独做需要10天,甲、乙两队合做需要4天,乙单独做需要几天?9.一项工程,甲队独做60天完成,乙队独做40天完成,现先由甲队独做10天后,乙队也参加工作。
还需几天完成?10.一批货物,用一辆卡车运18次运完,用一辆大车运30次运完。
现在用同样的3辆卡车和5辆大车一起运,几次可以运完?11.一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完?12.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?13.一项工程,甲独做要10天,乙独做要15天,丙独做要20天。
三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假?14.快车和一辆慢车同时从甲、乙两地相对开出,经过12小时相遇,相遇后,慢车又行了18小时达到甲地。
六年级奥数.应用题.工程问题(ABC级). 学生版

一、 基本概念(1) 工作总量完成某一项工程所需的所有工作的数量和,常用“1”来表示.(2) 工作时间(3) 工作效率单位时间内所完成的工作量二、 基本关系工作量 = 工作效率×工作时间【提示】三者之间的关系,可以类比路程、速度和时间的关系.三、 常用工具和方法(1) 基本关系(2) 整体化归思想(3) 对比分析的方法(1) 重点:利用整体化归思想和对比分析方法解决较为复杂的工程问题(2) 难点:复杂问题中整体化归思想、比例思想、方程思想与对比分析方法的综合运用重难点知识框架工程问题一、 根据基本关系解题【例 1】 一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【巩固】 一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【例 2】 一项工程,甲队单独完成需40天。
若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成. 如果乙队单独完成此工程,则需______天.【巩固】 一项工程,甲队单独做20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?二、 运用整体化归思想解题【例 3】 有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时。
甲、乙同时开始各搬运一个仓库的货物。
开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完。
则丙帮甲 小时,帮乙 小时。
例题精讲【巩固】一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?【例4】一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的112倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地.其他工人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天,那么这批工人有多少人?【巩固】甲、乙、丙三队要完成A,B两项工程,B工程的工作量是A工程工作量再增加14,如果让甲、乙、丙三队单独做,完成A工程所需要的时间分别是20天,24天,30天.现在让甲队做A工程,乙队做B工程,为了同时完成这两项工程,丙队先与乙队合做B工程若干天,然后再与甲队合做A工程若干天.问丙队与乙队合做了多少天?【例5】一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?【巩固】蓄水池有甲、丙两条进水管和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有16的水,若按甲、乙、丙、丁、甲、乙、丙、丁……的顺序轮流打开1小时,问多少时间后水开始溢出水池?三、运用对比分析方法解题【例6】一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?【巩固】一项工程,甲、乙合作需要9天完成,乙、丙合作需要12天,由丙单独做需要36天完成,那么如果甲、丙合作,完成这项工程需要多少天?【例7】一项工程,如果甲先做5天,那么乙接着做20天可以完成;如果甲先做20天,那么乙接着做8天可以完成.如果甲、乙合作,那么多少天可以完成?【巩固】一件工作甲先做6小时,乙接着做12小时可以完成;甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?【例8】一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天. 问这项工程由甲独做需要多少天?【巩固】抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的15.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?【例9】放满一个水池,如果同时打开1,2,3号阀门,则20分钟可以完成;如果同时打开2,3,4阀门,则21分钟可以完成;如果同时打开1,3,4号阀门,则28分钟可以完成;如果同时打开1,2,4号阀门,则30分钟可以完成.问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?【例10】某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才能完成;如果由第二、四、五小队合干需要8天才能完成;如果由第一、三、四小队合干需要42天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?【例11】规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?【巩固】公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙、……的顺序轮流打开1小时,恰好在打开水管整数小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【例12】一项工程,甲、乙合作3125小时可以完成,若第1小时甲做,第2小时乙做,这样交替轮流做,恰好整数小时做完;若第1小时乙做,第2小时甲做,这样交替轮流做,比上次轮流做要多13小时,那么这项工作由甲单独做,要用多少小时才能完成?【巩固】甲、乙、丙三人完成一件工作,原计划按甲、乙、丙顺序每人轮流工作一天,正好整数天完成,若按乙、丙、甲的顺序每人轮流工作一天,则比原计划多用12天;若按丙、甲、乙的顺序每人轮流工作一天,则比原计划多用13天.已知甲单独完成这件工作需10.75天.问:甲、乙、丙一起做这件工作,完成工作要用多少天?四、综合运用多种思想解题【例13】一批零件平均分给甲、乙两人同时加工,两人工作5小时,共完成这批零件的23。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程问题1、基本概念及关系。
工作量:“1”,单人工作效率,1a (0a >),两人合作完成时间:111()a b÷+(a 、b 都大于1) 2、常规工程问题例:一项工程,单独做,甲要10天,乙要15天,丙要12天。
(1)甲乙合作几天完成?(2)甲乙丙三人合作几天完成? 111()1015÷+ 1111()101512÷++ (3)甲先做2天,余下的乙、丙合作还要几天完成?111(12)()101512-⨯÷+ (4)甲乙合作两天,余下的甲丙合作还要几天?11111()2()10151012⎡⎤-+⨯÷+⎢⎥⎣⎦ (5)甲乙丙三人合作几天完成全工程的34? 11131()1015124⎡⎤÷++⨯⎢⎥⎣⎦或3111()4101512÷++ 练:一项工作,甲乙合作8天完成,乙丙合作9天完成,丙、甲合做18天完成,那么,丙单独做,多少天才能完成?1117()2891848++÷=……三人工效和,71148848-=……丙工效,114848÷=(天) 答:丙独做48天才能完成。
3、“假设法”解题例:制作一批零件,师徒2人合作8天完成,若果师傅单独做12天可以完成,现在由徒弟做了若干天后,再由师傅继续做,全部完成共用了15天。
求师徒各工作了多少天?11181224-=……徒弟工效,假设这15天都是徒弟做,则只能完成1524,还剩(111524-⨯),这恰好对应,师徒工效差。
111(115)()9241224-⨯÷-=(天)……师傅 15-9=6(天)……徒 答:师傅工作了9天,徒弟工作了6天。
练:一项工程,单独做甲要20天,乙要12天,如果先由甲做若干天,然后乙继续做完,一共用了14天,那么,甲乙两人各做了多少天?假设14天都由乙做,则11141126⨯=,比总工作量1多了116, 所以111()561220÷-=(天)……甲 14-5=9(天)……乙 答:甲做了5天,乙做了9天。
4、“代填法”解题例:某工程先由甲做了63天,再由乙做28天即可完成,如果由甲乙合作,需要48天完成,现在甲做42天,然后由乙接着做完,那么,乙还需要多少天?因为甲乙合作48天完成任务,那么,甲单做63天比合作48天多了15天,乙单独做28天比合作48天少了20天,所以甲15天的工作量等于乙20天的工作量,即:甲乙工作效率(量)的比是4:3,现在甲先做了42天,比63天少了21天,这21天的工作量如果让乙做则要21×43=28天。
4(6342)28563-⨯+=(天) 答:乙还要56天。
4、特殊工程问题有些工程题中,工作效率、工作时间和工作总量三者之间的数量关系很不明显,这时我们就可以考虑运用一些特殊的思路,如综合转化、整体思考等方法来解题例1:修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。
两队合作,每天工作6小时,几天可以完成?把前两个条件综合为“甲队40小时完成”,后两个条件综合为“乙队60小时完成”。
则1÷[15×8+110×6]÷6=4(天)或1÷[(15×8+110×6)×6]=4(天)答:4天可以完成。
例2:有两个同样的仓库A和B,搬运一个仓库里的货物,甲需要10小时,乙需要12小时,丙需要15小时。
甲和丙在A仓库,乙在B仓库,同时开始搬运。
中途丙转向帮助乙搬运。
最后,两个仓库同时搬完,丙帮助甲、乙各多少时间?设搬运一个仓库的货物的工作量为“1”。
总整体上看,相当于三人共同完成工作量“2”①三人同时搬运了2÷(110+112+115)=8(小时)②丙帮甲搬了(1-110×8)÷115=3(小时)③丙帮乙搬了8-3=5(小时)答:丙帮甲搬了3小时,帮乙搬了5小时。
例3:一件工作,甲独做要20天完成,乙独做要12天完成。
这件工作先由甲做了若干天,然后由乙继续做完,从开始到完工共用了14天。
这件工作由甲先做了几天?解法一:根据两人做的工作量的和等于单位“1”列方程解答,很容易理解。
解:设甲做了x天,则乙做了(14-x)天。
1 20x+112×(14-x)=1X=5解法二:假设这14天都由乙来做,那么完成的工作量就是112 ×14,比总工作量多了112 ×14-1=16,乙每天的能够做量比甲每天的工作两哦了112 -120 =130 ,因此甲做了16 ÷130=5(天) 例4:甲、乙两人合作加工一批零件,8天可以完成。
中途甲因事停工3天,因此,两人共用了10天才完成。
如果由甲单独加工这批零件,需要多少天才能完成?解法一:先求出乙的工作效率,再求出甲的工作效率。
最后求出甲单独做需要的天数。
① 甲、乙同时做的工作量为18 ×(10-3)=78② 乙单独做的工作量为1-78 =18③ 乙的工作效率为18 ÷3=124④ 甲的工作效率为18 -124 =112⑤ 甲单独做需要的天数为1÷112=12(天) 解法二:从题中得知,由于甲停工3天,致使甲、乙两人多做了(10-8=)2天。
由此可知,甲3天的工作量相当于这批零件的2÷8=1/43÷[(10-8)÷8]=12(天)或3×[8÷(10-8)]=12(天)答:甲单独做需要12天完成。
【水管问题】从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.例1 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?甲每分钟注入水量是 乙每分钟注入水量是因此水池容积是答:水池容积是27立方米. 例2 一个蓄水池装了一根进水管和三根放水速度一样的出水管.单开一根进水管20分钟可注满空池.单开一根出水管,45分钟可以放完满池水.现有32池的水,如果四管齐开,多少分钟后池水还剩52? 解: 1620134515232=⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-(分). 练习1、一项工程,师徒2人合作12天可以完成,徒弟单独做要30天才能完成,那么,师傅单独做多少天可以完成?111()1230÷- =1120÷ =20(天)答:师傅独做要20天。
2、甲乙2人合作一件工作6天完成,两人合作4天后,余下的由乙单独做又用了5天,刚好完成任务。
问:甲单独做这件工作要多少天?12463⨯= 21133-=……乙5天工作量 1113515⨯=……乙工效,11161510-=……甲工效 答:甲单独做这件工作要10天。
3、一项工程,由甲单独做要8小时才能完成,由乙独做要12小时才能完成。
现在,先由甲单独做,几小时后因事离开,由乙将余下的工程完成,前后一共用了192小时,求甲乙个工作了多少小时? 假设这192小时都是乙在做,则1119912224⨯=,比这项工程1少做了。
19512424-=,511()524812÷-=(小时)……甲 1195422-=(小时)……乙 答:甲工作了5小时,乙工作了142小时。
4、一件工作,甲做5小时以后由乙来做,3小时可以完成,乙做了9小时后由甲来做,也是3小时可以完成,那么,甲做1小时以后由乙来做,还要多少小时可以完成?甲做5小时,乙做3小时甲做3小时,乙做9小时则甲多做2小时,乙少做6小时。
或:(3-1)×3+9=15(小时)(5-1)×3+3=15(小时)所以甲的工作效率是乙的6÷2=3倍,(即甲做了1小时的工作量,乙就要做3小时)。
或 甲乙工作时间比是2:6=1:3甲乙工作效率比是3:1答:乙还要15小时才能完成。
5:放满一个水池的水,如果同时开放①②③号阀门,15小时放满;如果同时开放①③⑤号阀门,12小时可以放满;如果同时开放②④⑤号阀门,8小时可以放满。
问:同时开放这五个阀门几小时可以放满这个水池?从整体入手,比较条件中各个阀门出现的次数可知,①③号阀门各出现3次,②④⑤号阀门各出现2次。
如果115 +110 +112 +18 再加一个18,则是五个阀门各放3小时的总水量。
1÷[(115 +110 +112 +18 +18 )÷3]=1÷[12÷3]=6(小时)【直视小升初】(05七中育才)甲、乙、丙三人合修一围墙,甲、乙合修6天修好围墙的31,乙、丙合修2天修好余下的41,剩下的三人又修了5天才完成,共得工资1800元。
现在需要按各人完成工作量的多少合理分配,每人应得多少元?(06七中育才)师傅两人共同加工一批零件,5天后加工了总数的52。
这批零件如果全部由师傅加工,需要15天完成。
如果全部由徒弟加工需要多少天可以完成?(06七中育才)一项工程,若甲、乙两人合作,6天完成65;单独工作时,甲完成31与乙完成21所用的时间相等。
单独做时甲、乙各需要几天完成?(07七中育才)一项工程,单独完成,甲队需要15天,乙队需要20天。
现在甲、乙两队合作,因中途甲、乙两队各休息了几天,所以用了12天才完成了全工程。
又已知甲队休息了3天,求乙队休息了多少天?(09嘉祥外国语)一项工程,甲、乙两队合作10天可以完成,乙、丙两队合作12天可以完成,甲、丙两队合作15天可以完成,如果由一个队来完成,至少需要多少天?(09嘉祥外国语奖学金)有甲、乙两项工作,张师傅单独完成甲项工作要9天,单独完成乙项工作要12天;廖师傅单独完成甲项工作要3天,单独完成乙项工作要15天。
如果两人合作完成这两项工作,最少需要多少天?(10嘉祥外国语)一项工程,由甲队承担,需工期80天,工程费用100万;由乙队承担,需工期100天,工程费用80万。
为了节省工期和费用,实际施工时,甲、乙两队合作若干天后,撤出一个队伍,由另一个队伍继续到工程完成。
结算时,共支出工程费用86.5万元。
那么甲、乙两队合作了多少天?(10嘉祥外国语奖学金)甲工程队每工作6天休息一天,乙工程队每工作5天休息两天。
一项工程,甲队单独做需要97天,乙队单独做需要75天。
如果两队合作,从2002年3月3日开工,几月几日可以完工?。