直角三角形斜边上的中线的性质

合集下载

直角三角形斜边中线性质2

直角三角形斜边中线性质2

4.证明 如图,已知,在Rt△ABC中,∠ACB=90°,
∠A=30°. 求证:CD=1/2AB.
证明:取AB的中点D,
5结论
直角三角形的性质3推论: 在直角三角形中,如果一个锐角等 于30°,那么它所对的直角边等于 斜边的一半。
巩固练习
答案: 1.1cm. 2.没有. 3.12米.
ห้องสมุดไป่ตู้
归纳小结
直角三角形斜边上中线性质 是直角三角形的一个重要性质, 它为证明线段相等、角相等、线 段的倍分等问题提供了很好的思 路和理论依据。
数学发明创造的动力不是推理,而 是想象力的发挥。
——德摩
等于斜边的一半。
探索新知
4证明 已知:如图,在Rt△ABC中,∠ACB=90°,
CD是斜边AB上的中线。求证:AB=2CD.
证明:
5结论
直角三角形的性质3定理: 直角三角形斜边上的中线等于斜边 的一半。
应用拓展
1.探索:在直角三角形中,30°角所对的直角 边与斜边的关系。 2.发现:用两个含30°角的直角三角尺可以摆 出一个街边三角形。 3.猜想:在直角三角形中,如果一个锐角等于 30°,那么它所对应的直角边等于斜边的一半。
复习导入
我们已经知道:直角三角形的性质: 1.在直角三角形中,两个锐角互余。 2.在直角三角形中,两条直角边的平方 和等于斜边的平方(勾股定理)。 下面,我们来探索直角三角形的其他性 质。
探索新知
1.探索: 画Rt△ABC,并画出斜边AB上的中线CD,量 一量,看看CD与AB有什么关系。
2.发现: CD恰好是AB的一半。 3.猜想: 直角三角形斜边上的中线

“直角三角形斜边上的中线”的性质及其应用

“直角三角形斜边上的中线”的性质及其应用

“直角三角形斜边上的中线”的性质及其应用“直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明.一、有直角、有中点,利用垂直平分线性质【例1】如图,BD 、CE 是△ABC 的两条高,M 是BC 的中点,N 是DE 的中点.求证:MN 垂直平分DE .二、有直角、无中点,取中点,连线出中线【例2】如图,在Rt △ABC 中,∠C=90°,AD ∥BC ,∠CBE=21∠ABE ,求证:DE=2AB .三、有中点、无直角,造直角【例3】如图,梯形ABCD 中,AB ∥CD ,M 、N 是AB 、CD 的中点,∠ADC+∠BCD=270°,求证:MN=21(AB -CD ).四、逆用性质解题【例4】如图,延长矩形ABCD 的边CB 至E ,使CE=CA ,P 是AE 的中点.求证:BP ⊥DP .【习题练习】1、如图,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥DE 于D ,DE 交BC 于E ,求证:CD=21BE .2、如图,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是BC 的中点,求证:AB=2DM .3、如图,在四边形ABCD 中,∠DAB=∠DCB=90°,点M 、N 分别是BD 、AC 的中点.确定MN 、AC 的位置关系.直角三角形斜边上中线性质的应用一、直角三角形斜边上中线的性质1、性质:直角三角形斜边上的中线等于斜边的一半.如图,在Rt △BAC 中,∠BAC=90°,D 为BC 的中点,则BC 21AD =.2、性质的拓展:如图:因为D 为BC 中点,所以BC 21DC BD ==, 所以AD=BD=DC=BC 21, 所以∠1=∠2,∠3=∠4,因此∠ADB=2∠1=2∠2,∠ADC=2∠3=2∠4.因而可得如下几个结论:①直角三角形斜边上的中线将直角三角形分成两个等腰三角形;②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍.二、性质的应用1、21倍关系求值 例1、如图,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= .2、证明线段相等例2、如图,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB 21AD =,点E 、F 分别为边BC 、AC 的中点.(1)求证:DF=BE ;(2)过点A 作AG ∥BC ,交DF 于G .求证:AG=DG .3、证明角相等及角的倍分关系例3、已知,如图,在△ABC中,∠BAC 90°,BD、CE分别为AC、AB上的高,F为BC的中点,求证:∠FED=∠FDE.例4、已知:如图,在△ABC中,AD是高,CE是中线。

【精选文档】三角形的中位线直角三角形斜边上的中线PPT

【精选文档】三角形的中位线直角三角形斜边上的中线PPT
3
命题思路 本题主要考查三角形的中位线的性质、直角三角形斜边上的中 线的性质. 失分警示 判断DF是△ABE的中位线是本题的解题关键.
实战预测 2.( 大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连 接CD,过E作EF∥DC交BC的延长线于F. (1)证明:四边形CDEF是平行四边形; (2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.
( 大庆)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连
定义:三角形两边中点之间的线段叫做三角形的中位线
性质
图形语言
文字语言
符号语言
三角形的中位线平行并且等于第 ∵DE是△ABC的中位线,∴DE∥B
三边的一半
1
C,DE= 2BC
即学即练 1.( 贵州贵阳,5,3分)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于 点F,如果EF=3,那么菱形ABCD的周长为 ( A )
试真题·练易
命题点一 三角形中位线的性质
1.( 昆明)如图,△ABC中,AB=8,D、E分别是BC、CA的中点,连接DE,则DE =4.
(=4.昆明2)如.图( ,△AB曲C中,A靖B=8,D)、如E分图别是,B把C、CA一的中张点,连三接DE角,则D形E 纸片ABC沿中位线DE剪开后,在平面上将△
精讲案·学易
类型一 三角形中位线的性质
例1( 曲靖)如图,在△ABC中,AB=13,BC=12,点D、E分别是AB、BC的中 点,连接DE、CD,如果DE=5 ,那么△ACD的周长是18.
2
命题思路 本题主要考查三角形的中位线的性质、勾股定理的逆定理、直
∴AF是等角腰△三ADE底角边D形E上的斜中线边, 上的中线的性质.

(完整word版)直角三角形斜边上的中线的性质及其应用

(完整word版)直角三角形斜边上的中线的性质及其应用

“直角三角形斜边上的中线”的性质及其应用“直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明.一、有直角、有中点,连线出中线,用性质例1.如图1,BD 、CE 是△ABC 的两条高,M 是BC 的中点, N 是DE 的中点.试问:MN 与DE 有什么关系?证明你的猜想.猜想:MN 垂直平分DE.证明:如图:连接ME 、MD ,在Rt△BEC 中,∵点M 是斜边BC 的中点,∴ME=21BC ,又NE =ND ,∴直线MN 是线段DE 的垂直平分线,∴NM⊥DE.即MN 垂直平分DE.评析:题目中给出了三角形的两条高与两个中点,联想“直角三角形斜边上的中线等于斜边的一半”,问题便迎刃而解.二、有直角、无中点,取中点,连线出中线,用性质例2.如图2,在Rt △ABC 中,∠C=900,AD ∥BC ,∠CBE=12∠ABE ,求证:DE=2AB分析:欲证DE=2AB ,则可寻DE 的一半,再让其与AB 相等, 取DE 的中点F ,连AF ,则AF=FD=12DE ,可证得△A FD , △ABF 均为等腰三角形,由此结论得证.证明:DE 的中点F ,连AF ,则AF=FD=12DE ,所以∠DAF=∠ADF ,又因为AD ∥BC ,所以∠CBE=∠ADF ,又因为∠CBE=12∠ABE ,所以∠ABF=∠AFB ,所以AF=AB ,即DE=2AB . 评析:本题是有直角、无中点的情况,这时要取直角三角形的斜边上的中点,再连结该点与直角顶点,然后用性质来解决问题.三、有中点、无直角,造直角,用性质例3.如图3,梯形ABCD 中,AB ∥CD ,M 、N 是AB 、CD 的中点,图1 B A DC EF图2BA CDP M NK 图3∠ADC+∠BCD=2700,求证:MN=12(AB-CD ). 证明:延长AD 、BC 交于P ,∵∠ADC+∠BCD=2700,∴∠APB=900,连结PN ,连结PM 交DC 于K ,下证N 和K 重合,则P 、N 、M 三点共线, ∵PN 、PM 分别是直角三角形△PDC 、△PAB 斜边上的中线,∴PN=CN=DN=12CD ,PM=BM=DM=12AB , ∵∠PNC=2∠PDN=2∠A ,∠PMB=∠PKC=2∠A ,∴∠PNC=∠PKC ,∴N 、K 重合, ∴MN=PM-PN=12(AB-CD ). 评析:本题只有中点,而没有直角,这时要想方设法构造直角,应用性质,而条件中正好有角的关系“∠ADC+∠BCD=2700 ”,这样问题就易以解决了四、逆用性质解题例4.如图4,延长矩形ABCD 的边CB 至E ,使CE=CA , P 是AE 的中点.求证:BP ⊥DP .证明:如图3,连结BD 交AC 于点O ,连结PO , ∵四边形ABCD 是矩形,∴AO=OC=OB=OD , ∵PA=PE ,∴PO=12EC ,∵EC=AC ,∴PO=12BD , 即OP=OB=OD ,∴BP ⊥DP .评析:“直角三角形斜边上的中线等于斜边的一半”这个性质是众所周知的,而它的逆定理往往被大家所忽视,本题就是利用这个性质构造△PBD ,证BD 边的中线等于BD 的一半.请同学们试一试吧!1.如图5,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥, 求证:CD=12BE . 2.如图6,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是中点,求证:AB=2DM .图4B图5ACM ·1.提示:结论中的BE 是直角三角形的斜边,由12BE 应想到“直角三角形斜边上的中线等于斜边的一半”,故应取BE 的中点F ,连结DF ,只需证明DC=DF ,即证∠C=∠DFC . 2.提示:取AB 的中点N ,连结DN 、MN 即可.直角三角形斜边上中线性质的应用直角三角形斜边上中线的性质是直角三角形的一个重要性质,同时也是常考的知识点.它为证明线段相等、角相等、线段的倍分等问题提供了很好的思路和理论依据。

直角三角形斜边中线定理 (3)

直角三角形斜边中线定理 (3)

直角三角形斜边中线定理直角三角形是一种特殊的三角形,其中一个角度为90度。

直角三角形的边可分为三种:斜边、邻边和对边。

直角三角形具有许多特性和性质,其中之一就是直角三角形斜边中线定理。

定理描述直角三角形斜边中线定理指出:直角三角形斜边上的中线等于斜边的一半。

换句话说,如果在一个直角三角形中,连接斜边的中点与直角顶点的直线段,那么这个直线段的长度等于斜边的一半。

下面是该定理的数学表达式:设直角三角形的斜边长度为c,斜边上的中线长度为m,则有:m = c / 2定理证明我们可以通过几何和代数的方法来证明直角三角形斜边中线定理。

几何证明设直角三角形的斜边为AC,斜边上的中线为BM,并连接顶点A和中点B。

首先,我们可以通过斜边上的中线构造一个三角形ABM。

根据直角三角形的性质,A和C分别为直角三角形ABM的直角顶点和斜边上的另一个顶点。

由于三角形ABM是直角三角形,我们可以利用勾股定理来求解等式AB和BM的关系。

根据勾股定理,直角三角形ABM的斜边AB的平方等于直角边AM的平方加上直角边BM的平方:AB² = AM² + BM²因为直角三角形ABM是等腰三角形(与斜边等长),所以直角边AM的长度等于斜边AC的一半(即AM=c/2),我们将其带入等式中化简:AB² = (c/2)² + BM²继续化简:AB² = c²/4 + BM²由于AB = AC(直角边)和AC = c(斜边),我们可以将AB替换为c,即:c² = c²/4 + BM²继续化简并整理:3c²/4 = BM²通过移项操作,得到:BM² = 3c²/4我们可以取开根号来求解BM的长度:BM = √(3c²/4) = (√3c) / 2接下来,我们将BM的长度与斜边的一半进行比较:BM = (√3c) / 2 c / 2我们可以发现,BM的长度等于斜边的一半(c/2),这证明了直角三角形斜边中线定理。

直角三角形斜边上的中线定理

直角三角形斜边上的中线定理

直角三角形斜边上的中线定理
(原创版)
目录
1.直角三角形斜边上的中线定理的概念
2.直角三角形斜边上的中线定理的证明
3.直角三角形斜边上的中线定理的应用
正文
一、直角三角形斜边上的中线定理的概念
直角三角形斜边上的中线定理是指:在直角三角形中,斜边上的中线等于斜边的一半。

这里的中线是指连接斜边上某一点和对立顶点的线段。

这个定理在我国古代数学中被称为“勾股定理的逆定理”,因为它可以方
便地用来验证一个三角形是否为直角三角形。

二、直角三角形斜边上的中线定理的证明
为了证明这个定理,我们可以采用平行四边形的性质。

假设在直角三角形 ABC 中,斜边为 c,中线 CD 等于斜边的一半,我们需要证明 AD=DB。

过点 D 作 DE 平行于 AB,交 BC 于 E,那么四边形 ACDE 就是一
个平行四边形。

根据平行四边形的性质,AD=CE,而 CE=AB,所以 AD=AB。

同理,BD=CE,所以 BD=AB。

因此,AD=DB,证毕。

三、直角三角形斜边上的中线定理的应用
直角三角形斜边上的中线定理在实际应用中有很多好处,它可以帮助我们在没有直角的情况下,快速判断一个三角形是否为直角三角形。

同时,它还可以用来计算直角三角形斜边上的中线长度,这在一些实际问题中非常有用。

例如,假设我们有一个直角三角形,斜边长为 10,那么根据直角三
角形斜边上的中线定理,斜边上的中线长度就是 5。

这样,我们就可以快
速计算出中线的长度,而不需要进行复杂的数学运算。

专题12 直角三角形斜边上的中线(解析版)

专题12 直角三角形斜边上的中线(解析版)

专题12 直角三角形斜边上的中线【考点归纳】(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可一用来判定直角三角形.【好题必练】一、选择题1.(2020秋•贵阳期末)如图,在长为10的线段AB上,作如下操作:经过点B作BC⊥AB,使得BC=AB;连接AC,在CA上截取CE=CB;在AB上截取AD=AE,则AD的长为()A.5﹣5B.10﹣5C.10﹣10D.5+5【答案】A【解析】解:∵AB=10,BC=AB,∴BC=5,由勾股定理得:AC=5,∵CE=BC=5,∴AD=AE=AC﹣CE=5﹣5.故选:A.2.(2020秋•仪征市期末)A、B、C分别表示三个村庄,AB=1000米,BC=600米,AC=800米,为拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB中点B.BC中点C.AC中点D.∠C的平分线与AB的交点【答案】A.【解析】解:∵AB2=10002=1000000,BC2=6002=360000,AC2=8002640000,∴AB2=BC2+AC2,∴△ABC为以AB为斜边的直角三角形,当点P在AB的中点时,CP=AB=P A=PB,故选:A.3.(2020秋•莲湖区期末)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB 的长为4.8km,则M,C两点间的距离为()A.1.2km B.2.4km C.3.6km D.4.8km【答案】B.【解析】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,∴CM=AB,∵AB=4.8km,∴CM=2.4(km),即M,C两点间的距离为2.4km,故选:B.4.(2020秋•新华区校级月考)如图所示,在△ABC中,∠ACB=90°,D是AB的中点,DE⊥BC,E为垂足,AC=AB,图中为60°的角有()A.2个B.3个C.4个D.5个【答案】D.【解析】解:在Rt△ABC中,∠ACB=90°,AC=AB,∴∠B=30°.∵D是AB的中点,∴BD=CD.∴∠DCB=∠B=30°.又∵DE⊥BC于E,∴∠BDE=∠CDE=60°.∴∠ACD=90°﹣30°=60°.∴△ACD为等边三角形.∴∠ADC=∠DAC=∠ACD=∠CDE=∠BDE=60°.故选:D.5.(2020秋•嵊州市期中)直角三角形的两条直角边为3,4,则这个直角三角形斜边上的中线长为()A.5B.2.5C.3.5D.4.5【答案】B【解析】解:由勾股定理得:直角三角形的斜边长是=5,所以=2.5,故选:B.6.(2020秋•高州市期中)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=10,则CD=()A.2B.3C.4D.6【答案】D【解析】解:在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=10,∴AE=CE=10,∵AD=2,∴DE=8,∵CD为AB边上的高,在Rt△CDE中,CD===6,故选:D.二、填空题7.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=20,则CD=.【答案】10【解析】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AB=10,故答案为:10.8.如图,直角三角形ABC中,∠ACB=90°,∠B=36°,D是AB的中点,ED⊥AB交BC于E,连接CD,则∠CDE:∠ECD=.【答案】1:2.【解析】解:∵∠ACB=90°,∠B=36°,D是AB的中点,∴CD=DB,∴∠ECD=∠B=36°,∴∠CDB=180°﹣∠ECD﹣∠B=180°﹣36°﹣36°=108°,∵ED⊥AB,∴∠EDB=90°,∠CDE=∠CDB﹣∠EDB=108°﹣90°=18°,∠CDE:∠ECD=1:2.故答案为1:2.9.(2020春•南岗区校级期中)如图,已知在△ABC中,∠C=25°,点D在边BC上,且∠DAC=90°,AB=DC.则∠BAC的度数为°.【答案】105【解析】解:取CD的中点E,连接AE,在Rt△ADC中,DE=EC,∴AE=CD=ED=EC,∴∠EAC=∠C=25°,∴∠AED=∠EAC+∠C=50°,∵AE=ED,∴∠EAD=∠EDA=65°,∵AB=DC,AE=CD,∴AB=AE,∴∠BAE=80°,∴∠BAC=∠BAE+∠EAC=105°,故答案为:105.10.在Rt△ABC中,∠ACB=90°,如果斜边AB上的中线CD=4cm,那么斜边AB=cm.【答案】8【解析】解:∵在Rt△ABC中,斜边AB上的中线CD=4cm,∴AB=2CD=8cm.故答案为:8.11.已知:如图,四边形ABCD中,∠ABC=∠ADC=90°,AC与BD相交于点O,E、F分别是AC、BD的中点.则∠EFO=.【答案】90°【解析】解:连接EB、ED,∵∠ABC=90°,E是AC的中点,∴BE=AC,同理,DE=AC,∴EB=ED,又F是BD的中点,∴EF⊥BD,∴∠EFO=90°,故答案为:90°.三、解答题12.如图,在△ABC中,AB=AC,BD平分∠ABC,AD⊥BD于点D.(1)若∠C=74°,求∠BAD的度数;(2)点E为线段AB的中点,连接DE.求证:DE∥BC.【答案】(1)解:∵AB=AC,∴∠ABC=∠C=74°,∵BD平分∠ABC,∴∠ABD=∠ABC=37°,∵AD⊥BD,∴∠BAD=90°﹣37°=53°;(2)证明:在Rt△ADB中,点E为线段AB的中点,∴ED=EB∴∠EBD=∠EDB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠EDB=∠CBD,∴DE∥BC.【解析】(1)根据等腰三角形的性质得到∠ABC=∠C=74°,根据角平分线的定义、三角形内角和定理计算即可;(2)根据直角三角形的性质得到ED=EB根据等腰三角形的性质得到∠EBD=∠EDB,根据平行线的判定定理证明结论.13.如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于G,CD=AE.(1)求证:CG=EG.(2)已知BC=13,CD=5,连结ED,求△EDC的面积.【答案】(1)证明:连接DE,在Rt△ADB中,点E是AB的中点,∴DE=AB=AE,∵CD=AE,∴DE=DC,又DG⊥CE,∴CG=EG.(2)解:作EF⊥BC于F,∵BC=13,CD=5,∴BD=13﹣5=8,∵DE=BE,EF⊥BC,∴DF=BF=4,∴EF===3,∴△EDC的面积=×CD×EF=×5×3=7.5.【解析】(1)连接DE,根据直角三角形的性质得到DE=AB=AE,根据等腰三角形的性质证明结论;(2)作EF⊥BC于F,根据题意求出BD,根据等腰三角形的性质求出DF,根据勾股定理求出EF,根据三角形的面积公式计算,得到答案.14.如图,在△ABC中,AD是高,CE是中线,DG垂直平分CE,连接DE.(1)求证:DC=BE;(2)若∠AEC=72°,求∠BCE的度数.【答案】(1)证明:∵DG垂直平分CE,∴DE=DC,∵AD是高,CE是中线,∴DE是Rt△ADB的斜边AB上的中线,∴DE=BE=AB,∴DC=BE;(2)∵DE=DC,∴∠DEC=∠DCE,∴∠EDB=∠DEC+∠BCE=2∠BCE∵DE=BE∴∠B=∠EDB,∴∠B=2∠BCE,∴∠AEC=3∠BCE=72°,∴∠BCE=24°.【解析】(1)根据线段垂直平分线的性质得到DE=DC,根据直角三角形斜边上的中线是斜边的一半得到DE=BE=AB,证明结论;(2)根据等腰三角形想的性质得到∠DEC=∠DCE,根据三角形的外角性质列式计算即可.15.如图.△ABC中,∠C=2∠B,D是BC上一点,且AD⊥AB,点E是BD的中点,连结AE.(1)求证:BD=2AC;(2)若AE=6.5,AD=5,那么△ABE的周长是多少?【答案】(1)证明:∵AD⊥AB,∴∠BAD=90°,又点E是BD的中点,∴EA=BD=EB,∴∠EAB=∠EBA,∴∠AEC=2∠B,又∠C=2∠B,∴∠AEC=∠C,∴AE=AC,∴BD=2AC;(2)解:∵∠BAD=90°,点E是BD的中点,∴BD=2AE=13,EA=EB=6.5,由勾股定理得,AB===12,∴△ABE的周长=AB+AE+BE=12+6.5+6.5=25.【解析】(1)根据直角三角形的性质得到EA=BD=EB,根据等腰三角形的性质和三角形的外角的性质证明;(2)根据直角三角形的性质分别求出BC和BE,根据勾股定理求出AB,根据三角形的周长公式计算.16.已知:如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.【答案】证明:连接DM,BM,∵∠ABC=∠ADC=90°,M是AC的中点,∴DM=AC,BM=AC,∴DM=BM,又N是BD的中点,∴MN⊥BD.【解析】连接DM,BM,根据直角三角形的性质得到DM=AC,BM=AC,得到DM=BM,根据等腰三角形的三线合一证明.11/ 11。

斜边中线定理知识点总结

斜边中线定理知识点总结

斜边中线定理知识点总结一、斜边中线定理的定义斜边中线定理是指在一个直角三角形中,三角形的斜边上的中线等于斜边的一半。

即斜边中线的长度等于斜边的长度的一半。

这个定理在数学中有着很重要的应用,特别是在直角三角形的计算中。

二、斜边中线定理的证明证明斜边中线定理的过程非常简单,我们可以通过勾股定理和平行线的性质来证明。

首先,我们假设在一个直角三角形ABC中,AB为斜边,C为直角的顶点,M为AB的中点。

我们要证明MC等于AB的一半。

根据勾股定理可知,在直角三角形ABC中,有AB^2=AC^2+BC^2。

根据平行线的性质,可以得出MC平行于BC。

因此,根据斜边中线定理的定义,我们可以得出MC=AB/2。

通过上面的证明过程,我们可以得出斜边中线定理的结论。

三、斜边中线定理的应用1. 直角三角形的计算在解决直角三角形相关问题时,斜边中线定理是一个常用的工具。

通过斜边中线定理,我们可以快速计算出直角三角形中斜边上的中线的长度,从而简化计算过程。

2. 辅助几何问题的解决在解决一些几何问题时,斜边中线定理也是一个重要的工具。

通过斜边中线定理,我们可以快速计算出斜边上的中线的长度,从而解决一些与直角三角形相关的几何问题。

四、斜边中线定理的拓展斜边中线定理在一定条件下也具有拓展的能力。

例如,我们可以将斜边中线定理与其他定理进行结合,从而得出一些更加复杂的几何问题的解决方法。

在解决与直角三角形相关的问题时,我们可以将斜边中线定理与勾股定理、正弦定理、余弦定理等进行结合,从而得出更加复杂的计算方法。

五、斜边中线定理的实际应用1. 在实际测量中,斜边中线定理可以帮助我们快速计算出直角三角形斜边上的中线的长度,从而简化实际测量的过程。

2. 在建筑设计中,斜边中线定理可以帮助我们解决一些关于直角三角形的设计问题,从而提高建筑设计的效率。

3. 在工程测量中,斜边中线定理可以帮助我们解决一些土木工程中的几何问题,从而提高工程测量的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D O
1 若已知AB=8㎝,AD=6㎝,
A
则AC= 10 ㎝ OB= 5 ㎝
பைடு நூலகம்
2 若已知∠CAB=40°,则∠OCB= 50°,∠OBA= ∠AOB= 100° , ∠AOD= 80°。
C
B
40°,
3 若已知AC=10㎝,BC=6㎝,则矩形的周长= 28 ㎝
矩形的面积= 48 ㎝2
2 4 若已知 ∠DOC=120°,AD=6㎝,则AC= 12
阳原县第二中学 李国华
温故知新
性质:
角 平行四边形的对角相等 边 平行四边形的对边平行且相等 对角线 平行四边形的对角线互相平分
对称性 中心对称图形
角 矩形的四个角都是直角
性质:
边 矩形的对边平行且相等 对角线 矩形的对角线互相平分且相等
对称性 中心对称图形,轴对称图形
温故知新
• 四边形ABCD是矩形

D C
2 若∠C=30°,AB=5㎝,则AC= 10 ㎝,
1 BD= 5
㎝,∠BDC= 120° 。
做一做
1、如图,在△ABC中,D,E,F,分别 是BC、AC、AB边的中点,AH⊥BC于H, FD=8㎝,求HE的长。
A
F
E

B
DHC
2、已知:如图BE、CF是△ABC的两条高,M为 BC的中点,分别连ME、MF. 求证: (1)ME= 1 BC (2)ME=MF
线?
A
D 由此你能得到什么结论?
O
B
C
得出结论
直角三角形的性质:
直角三角形斜边上的中线等于斜边
的一半。
A
数学语言:
O
在Rt三角形ABC中
∵∠ABC=90° BO是AC边的中线
B
C BOAOCO1AC
2
牛刀小试
A
已知△ABC是Rt△,∠ABC=90° ,
BD是斜边AC上的中线

B
1 若BD=3㎝则AC= 6
2
(3)若点N为EF的中点,连接MN,试判断MN与EF 的位置关系,并说明理由。
A
.N E
F
B
C
M
课后作业
课本第103页习题19.2第9题 做在作业本上; 作业纸上的1、2、3题。
❖不经历风雨,怎么见彩虹 ❖没有人能随随便便成功!
A A
O
O
B
图1
C
B
C
图2
四个学生正在做投圈游戏,他们分别站在一 个矩形的四个顶点处,目标物放在对角线的交 点处,这样的队形对每个人公平吗?为什么?
A
D
O
B 公平,因为OA=OC=OB=OD C
如图,在任意的矩形ABCD中,AC,
BD相交于O,那么BO与AC有怎样的数
量关系?
Rt⊿ABC中,BO是一条什么

四个学生正在做投圈游戏,他们分别站在一 个矩形的四个顶点处,目标物放在对角线的交 点处,这样的队形对每个人公平吗?为什么?
A
D
O
B 公平,因为OA=OC=OB=OD C
自主探究
在Rt△ABC中,∠ABC=90°,BO是AC边上的中线。 1、如图1,当∠ACB=30°,则BO与AC有什么数 量关系? 2、如图2,当∠ACB=45°,则BO与AC有什么数 量关系?
相关文档
最新文档