黑龙江省高考数学一轮专题:第11讲 函数与方程
2023届高考数学一轮复习讲义:第11讲 指数与指数函数

第11讲 指数与指数函数1.根式 (1)根式的概念①若 ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里 叫做根指数, 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x =±n a ,当n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1). ②na n=⎩⎨⎧a ,n 为奇数,|a |=⎩⎨⎧a ,a ≥0,-a ,a <0,n 为偶数.2.有理数指数幂(1)幂的有关概念①正分数指数幂:a mn =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a m n=1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于 ,0的负分数指数幂 . (2)有理数指数幂的运算性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②a r a s =a r -s(a >0,r ,s ∈Q ); ③(a r )s =a rs (a >0,r ,s ∈Q ); ④(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质 y =a x (a >0且 a ≠1)a >10<a <1图象定义域 值域性质过定点当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数在R 上是减函数➢考点1 指数幂的运算[名师点睛]1.对于指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:(1)必须是同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 1.(2022·全国·高三专题练习)(1)计算120.75013110.027()81()369-----++-;(2)若11226x x -+22x x -+的值.2.(2022·全国·高三专题练习)化简下列各式(其中各字母均为正数).(1)()211302270.00210528π---⎛⎫-+-+ ⎪⎝⎭; (2323211113342a b ab a b a b -⎛⎫ ⎪⎝⎭(3)22.53105330.06438π-⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦; (4)12112133265a b a b a b ---⎛⎫⋅⋅⋅ ⎪⎝⎭⋅.[举一反三]1.(2022·全国·高三专题练习)计算:100.256361.5()87-⨯-+2.(2022·全国·高三专题练习)(1)计算:1111200.253473(0.0081)3()81(3)88------⨯⨯⎡⎤⎡⎤⎢⎣+⎥⎢⎥⎣⎦⎦;(2211113322a b ---3.(2022·全国·高三专题练习)已知11223a a -+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++.4.(2022·全国·高三专题练习)已知11223x x -+=,求22332223x x x x--+-+-的值.5.(2022·全国·高三专题练习)分别计算下列数值: (1)()110340.06416π----+ (2)已知16x x -+=,()01x <<,求221122x x x x---+.6.(2022·全国·高三专题练习)化简: (1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0). (3)312211122211111a a aa a a a a -+--++++-.➢考点2 指数函数的图象及应用[名师点睛]1.对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.2.有关指数方程、不等式问题的求解,往往利用相应的指数型函数图像,数形结合求解. [典例]1.(2022·浙江·宁波诺丁汉附中模拟预测)函数()x x kf x a-=(0a >且1a ≠)的图象如图所示,则( )A .1,1k a >>B .1,1k a ><C .01,1k a <<<D .01,1k a <<>2.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)- B .(1,0) C .(0,0) D .(0,1)-[举一反三]1.(2022·全国·高三专题练习)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-2.(多选)(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .➢考点3 指数函数的性质及其应用[名师点睛]1.比较指数式的大小的方法:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.指数方程(不等式)的求解主要利用指数函数的单调性进行转化.3.涉及指数函数的综合问题,首先要掌握指数函数的相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断. 1.(2022·天津河西·一模)设0.3log 0.2a =,0.30.2b =,log b c a =,则a ,b ,c 的大小关系为( ). A .a b c << B .b a c << C .c a b <<D .c b a <<2.(多选)(2022·全国·高三专题练习)若指数函数x y a =在区间[1,1]-上的最大值和最小值的和为103,则a 的值可能是( ) A .12B .13C .3D .23.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.4.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为( )A .m 1≥B .1mC .01m <<D .01m <≤5.(2022·重庆市朝阳中学高三开学考试)已知函数4()2x x ag x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值; (2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.[举一反三]1.(2022·天津·一模)设3ln 2a =,0.80.5b =,0.50.8-=c ,则,,a b c 的大小关系为( )A .c b a <<B .b a c <<C .a b c <<D .c a b <<2.(2022·山西吕梁·二模)已知343344333,,444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭a b c ,则( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<3.(2022·全国·高三专题练习)已知函数212,022()3,02x a a a x x f x a x +⎧-+-≥⎪⎪=⎨⎪<⎪⎩在()000x x >处取得最小值,且()03-<f x a ,则实数a 的取值范围( ) A .[2,3)B .[1,3)C .[1,2)D .(1,3)4.(2022·上海市进才中学高三期中)设函数()2xf x =,若存在[]0,4x ∈使不等式()()22f a x f x +-≥成立,则实数a 的取值范围为______.5.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是________6.(2022·全国·高三专题练习)已知函数()936=-⋅++x x f x m m ,若方程()()0f x f x 有解,则实数m 的取值范围是_________.7.(2022·全国·高三专题练习)已知函数()x x f x a ka -=+(0a >且1a ≠)是定义在R 上的偶函数,且17(1)4f =. (1)求()f x 的解析式;(2)若函数()()22xxmg x f x m =-⋅+在[0,)+∞上的最小值是1,求m 的值.8.(2022·全国·高三专题练习)已知函数4()1(0,1)2x f x a a a a=->≠+且(0)0f =.(1)求a 的值;(2)若函数()(21)()x g x f x k =++有零点,求实数k 的取值范围. (3)当(0,1)x ∈时,()22x f x m >-恒成立,求实数m 的取值范围.9.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x xf x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔ (2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围第12讲 指数与指数函数1.根式 (1)根式的概念①若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x =±n a ,当n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1). ②na n=⎩⎨⎧a ,n 为奇数,|a |=⎩⎨⎧a ,a ≥0,-a ,a <0,n 为偶数.2.有理数指数幂(1)幂的有关概念①正分数指数幂:a mn =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a m n=1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②a r a s =a r -s(a >0,r ,s ∈Q ); ③(a r )s =a rs (a >0,r ,s ∈Q ); ④(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质 y =a x (a >0且 a ≠1)a >10<a <1图象定义域 R 值域(0,+∞) 性质过定点(0,1)当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数在R 上是减函数➢考点1 指数幂的运算[名师点睛]1.对于指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:(1)必须是同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 1.(2022·全国·高三专题练习)(1)计算120.75013110.027()81()369-----++-;(2)若11226x x -+22x x -+的值. 【解】(1)120.75013110.027()81()369-----++-=0.3﹣1﹣36+33+111033-=-36+27+113-=-5.(2)若11226x x -+∴x 1x ++2=6,x 1x+=4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.2.(2022·全国·高三专题练习)化简下列各式(其中各字母均为正数).(1)()211302270.00210528π---⎛⎫-+-+ ⎪⎝⎭; (2323211113342a b ab a b a b -⎛⎫ ⎪⎝⎭(3)22.53105330.06438π-⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦; (4)12112133265a b a b a b ---⎛⎫⋅⋅⋅ ⎪⎝⎭⋅. 【解】(1)原式()()21210523500125252-⎛⎫=-+ ⎪⎝⎭-+416710*********=++=-;(2)原式11223233311111122633311233a b a b a a b b ab a b +-++---⎛⎫ ⎪⎝⎭===; (3)原式253112536427110008-⎧⎫⎡⎤⎪⎪⎪⎪⎛⎫⎛⎫⎢⎥=--⎨⎬ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎪⎪⎣⎦⎪⎪⎩⎭1521335233435311010222⎛⎫⨯-⨯ ⎪⎝⎭⎡⎤⎡⎤⎛⎫⎛⎫=--=--=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦;(4)原式111111111533223262361566a b a baba b-----+-⋅==⋅1a=. [举一反三]1.(2022·全国·高三专题练习)计算:100.256361.5()87-⨯-+【解】100.256361.5()87-⨯-+1111323334432()1(2)223()23-=⨯+⨯+⨯-, 113322()2427()33=++⨯-, 110=.2.(2022·全国·高三专题练习)(1)计算:1111200.253473(0.0081)3()81(3)88------⨯⨯⎡⎤⎡⎤⎢⎣+⎥⎢⎥⎣⎦⎦;(2211113322a b ---【解】(1)原式111123()4()4(0.25)34231310112101()[3()]31032333333-⨯-⨯--⨯-⎛⎫=-⨯+=-⨯+=-= ⎪⎝⎭; (2)原式11111111153322132623615661a b aba ba aa b-----+--⋅⋅==⋅==⋅. 3.(2022·全国·高三专题练习)已知11223a a -+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++. 【解】(1)将11223a a -+=两边平方得1129a a -++=,所以117a a -+=.(2)将117a a -+=两边平方得22249a a -++=,所以2247a a -+=. (3)由(1)(2)可得22114716.171a a a a --+++==+++ 4.(2022·全国·高三专题练习)已知11223x x -+=,求22332223x x x x--+-+-的值.【解】设12x t =,则121x t-=,所以13t t +=,于是,333222321111x xt t t t t t -⎛⎫⎛⎫+=+=++- ⎪⎪⎝⎭⎝⎭,而2224242112x x t t t t -⎛⎫+=+=+- ⎪⎝⎭,将13t t+=平方得22129t t ++=,于是2217t t +=,所以原式()2222221272471137131513t t t t t t ⎛⎫+- ⎪-⎝⎭===--⎛⎫⎛⎫++-- ⎪⎪⎝⎭⎝⎭. 5.(2022·全国·高三专题练习)分别计算下列数值: (1)()110340.06416π----+ (2)已知16x x -+=,()01x <<,求221122x x x x---+.【解】(1)原式()()()11034340.423ππ--=--++-,()110.4123π--=-++-, 1π=-,(2)∵()()()221116x x x xx x x x -----=+-=-, ∴()()2211432,x x x x ---=+-=∵01x <<, ∴1x x --=-∴()2216x x x x ---=-=-又∵21112228x x x x --⎛⎫+=++= ⎪⎝⎭,∵01x <<,∴1122x x -+= ∴221122x x x x---+=12-.6.(2022·全国·高三专题练习)化简: (1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0). (3)312211122211111a a aa a a a a -+--++++-.【解】(1)原式6614342717399πππ=⨯+--=⨯+-+-=+ (2)原式=11121082232333354331127272333333a b a b a b a b a b ab a b a b a b -⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭===.(3)原式1122313122221211111a a a a a a a a a a a a a ⎛⎫⎛⎫-⋅++ ⎪ ⎪-+--+-+⎝⎭⎝⎭=--++1122111a a a a -=--=-.➢考点2 指数函数的图象及应用1.(2022·浙江·宁波诺丁汉附中模拟预测)函数()x x kf x a-=(0a >且1a ≠)的图象如图所示,则( )A .1,1k a >>B .1,1k a ><C .01,1k a <<<D .01,1k a <<>【答案】D 【解析】因为(0)f k =-,由图得10k -<-<, 所以01k <<,所以排除AB ,因为由图象可知当x →+∞时,()0f x →, 所以1a >,所以排除C , 故选:D2.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)- B .(1,0) C .(0,0) D .(0,1)-【答案】B 【解析】因为01a =,所以当10x -=,即1x =时,函数值为定值0,所以点P 坐标为(1,0).另解:因为()11x f x a -=-可以由x y a =向右平移一个单位长度后,再向下平移1个单位长度得到,由x y a =过定点(0,1),所以()11x f x a -=-过定点(1,0).故选:B[举一反三]1.(2022·全国·高三专题练习)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3 B .()3,1-- C .()(),31,-∞-⋃+∞ D .()3,1-【答案】D 【解析】当2x =时,()220255154f aa -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-. 故选:D2.(多选)(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .【答案】AC【解析】解:令()()()0f x x a x b =--=,解得1x a =、2x b =,根据二次函数图形可知,a 、b 两个数一个大于1,一个大于0且小于1,①当1a >,01b <<时,则()x g x a b =-在定义域上单调递增,且()001g a b b =-=-,即()001g <<,所以满足条件的函数图形为C ;②当1b >,01a <<时,则()x g x a b =-在定义域上单调递减,且()0010g a b b =-=-<,所以满足条件的函数图形为A ; 故选:AC➢考点3 指数函数的性质及其应用1.(2022·天津河西·一模)设0.3log 0.2a =,0.30.2b =,log b c a =,则a ,b ,c 的大小关系为( ). A .a b c << B .b a c << C .c a b << D .c b a <<【答案】D【解析】由指数函数的性质,可得...030002021<<=,所以01b <<, 根据对数的运算性质,可得0.30.3log 0.2log 0.31a =>=,所以1a >, 由01b <<,1a >,所以log log 10b b c a =<=,即0c <, 所以c b a <<. 故选:D2.(多选)(2022·全国·高三专题练习)若指数函数x y a =在区间[1,1]-上的最大值和最小值的和为103,则a 的值可能是( )A .12B .13C .3D .2【答案】BC【解析】当1a >时,函数x y a =在区间[1,1]-上为单调递增函数,当1x =时,max y a =,当1x =-时,1min y a -=,所以1103a a -+=,即231030a a -+=,解得3a =或13a =, 因为1a >,所以3a =;当01a <<时,函数x y a =在区间[1,1]-上为单调递减函数,当1x =时,min y a =,当1x =-时,1max y a -=,所以1103a a -+=,即231030a a -+=,解得3a =或13a =, 因为01a <<,所以13a =.综上可得,实数a 的值为3或13.故选:BC3.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.【答案】9,2⎛⎫-∞ ⎪⎝⎭【解析】①当2x ≤时,11x -≤,()221010x x f x --=-在(],2-∞上单调递增,()()20f x f ∴≤=,又()()()1120f x f f -≤<=, ()()10f x f x ∴+-<恒成立;②当23x <≤时,112x <-≤,()3120f x x x =--=-<, 又()()120f x f -≤=,()()10f x f x ∴+-<恒成立;③当34x <≤时,213x <-≤,()314f x x x =--=-,()1413f x x x -=--=-;()()110f x f x ∴+-=-<恒成立;④当4x >时,13x ->,()314f x x x =--=-,()1415f x x x -=--=-,()()1290f x f x x ∴+-=-<,解得:92x <,942x ∴<<; 综上所述:不等式()()10f x f x +-<的解集为9,2⎛⎫-∞ ⎪⎝⎭.故答案为:9,2⎛⎫-∞ ⎪⎝⎭.4.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为( )A .m 1≥B .1mC .01m <<D .01m <≤【答案】A【解析】因为函数()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,则当0x ≥时,0x -≤,()()2xf x f x =-=,故对任意的R x ∈,()2x f x =, 对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,即222x x m -≥,即2x x m ≥-对任意的[],1x m m ∈+恒成立,且m 为正数,则()2x x m ≥-,可得2x m ≤,所以,12m m +≤,可得m 1≥. 故选:A.5.(2022·重庆市朝阳中学高三开学考试)已知函数4()2x x ag x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值; (2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.【解】解:(1)因为函数4()2x x ag x -=是奇函数,所以(0)0g =得1a =,则41()2x x g x -=,经检验()g x 是奇函数.又()()lg 101xf x bx =++是偶函数,所以(1)(1)f f -=得12b =-,则()1()lg 1012xf x x =+-,经检验()f x 是偶函数,∴112a b ==-,.(2)()()lg 101x h x =+,lg(109)(lg(109))lg[101lg(1010)m h m m +⎤+=+=+⎦,则由已知得,存在(]0,1x ∈,使不等式lg(1010)()m g x >+成立,因为411()222x x x x g x -==-,易知()g x 单调递增,∴max 3()(1)2g x g ==,∴323lg(1010)lg102m +<==∴1010m +<所以1m <,又109010100m m +>⎧⎨+>⎩,解得910m >-,所以9110m -<<.[举一反三]1.(2022·天津·一模)设3ln 2a =,0.80.5b =,0.50.8-=c ,则,,a b c 的大小关系为( )A .c b a <<B .b a c <<C .a b c <<D .c a b <<【答案】C 【解析】3ln ln e 12<=,0.800.50.51<=,0.500.80.81->=,c a ∴>,c b >;31ln22==,0.8110.50.52>=,b a ∴>;a b c ∴<<.故选:C.2.(2022·山西吕梁·二模)已知343344333,,444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭a b c ,则( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】因为函数34xy ⎛⎫= ⎪⎝⎭单调递减,故3143344⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭a b . 因为3433344433334444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫⎛⎫<⇒> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以c b <.又34331443331444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫⎛⎫<⇒< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以a c <.综上a c b <<, 故选B.3.(2022·全国·高三专题练习)已知函数212,022()3,02x a a a x x f x a x +⎧-+-≥⎪⎪=⎨⎪<⎪⎩在()000x x >处取得最小值,且()03-<f x a ,则实数a 的取值范围( ) A .[2,3) B .[1,3) C .[1,2) D .(1,3)【答案】C【解析】由函数()f x 在0(0,)x ∈+∞处取得最小值得()()0f x f x ≥,则0a >且002x a=> 当0x <时1233()2x a a f x +=>,又()20222a a f x f ⎛⎫==- ⎪⎝⎭,所以203222a a a >⎧⎪⎨-≤⎪⎩,得1a ≥.又()03-<f x a ,所以32af a ⎛⎫-< ⎪⎝⎭,即12332a a a -+<,整理得1221a -+>,102a -+>,解得2a <. 综上,12a ≤<. 故选:C .4.(2022·上海市进才中学高三期中)设函数()2xf x =,若存在[]0,4x ∈使不等式()()22f a x f x +-≥成立,则实数a 的取值范围为______.【答案】3,2⎡⎫+∞⎪⎢⎣⎭【解析】解:由()()22f a x f x +-≥,得2222a x x +-≥,两边同除2x , 即2222a x x -≥+⨯,又222x x -+⨯≥222x x -=⨯, 即12x =[]0,4∈时取等号,所以3222a ≥=,所以32a ≥.故答案为:3,2⎡⎫+∞⎪⎢⎣⎭5.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是________ 【答案】(),1-∞-【解析】函数的定义域为R ,()()322x x f x x f x --=--=-,所以函数()f x 是奇函数,并由解析式可知函数()f x 是增函数,原不等式可化为()()213f x f -<-,所以213x -<-,解得1x <-,故x 的取值范围是(),1-∞-. 故答案为:(),1-∞-6.(2022·全国·高三专题练习)已知函数()936=-⋅++x x f x m m ,若方程()()0f x f x 有解,则实数m 的取值范围是_________.【答案】4,)+∞【解析】由题意得:99(33)2120x x x x m m --+-+++=有解 令233(2),992x x x x t t t --+=≥+=-则22100t mt m ∴-++=有解,即2(2)10m t t -=+有解,显然2t =无意义2,2(0)t t y y ∴>-=>令2(2)101444y m y y y ++∴==++≥,当且仅当14y y =,即y4,)m ∴∈+∞故答案为:)4,∞⎡+⎣.7.(2022·全国·高三专题练习)已知函数()x xf x a ka -=+(0a >且1a ≠)是定义在R 上的偶函数,且17(1)4f =. (1)求()f x 的解析式;(2)若函数()()22xxmg x f x m =-⋅+在[0,)+∞上的最小值是1,求m 的值. 【解】(1)因为函数()f x 是定义在R 上的偶函数, 所以()()x x x x f x a ka f x a ka ---=+==+,整理得()()10x xk a a ---=,所以1k =,又因为17(1)4f =,可得117(1)4f a a =+=,所以4a =或14a =, 所以()44x xf x -=+.(2)由(1)可知()4422x x xm g x m x-=+-⋅+211(2)(2)222x x x xm =---+ 令122xx u =-,则2()2h u u mu =-+. 因为函数122xxu =-在[0,)+∞上是增函数,所以0u ≥, 因为函数()()2[0,)2xxmg x f x m =-⋅++∞上的最小值是1, 所以函数()h u 在[0,)+∞上的最小值是1. 当0m ≥时,2min()()2124m m h u h ==-+=,解得2m =或2m =-(舍去);当0m <时,min ()(0)21h u h ==≠,不合题意,舍去. 综上,2m =.8.(2022·全国·高三专题练习)已知函数4()1(0,1)2x f x a a a a=->≠+且(0)0f =.(1)求a 的值;(2)若函数()(21)()x g x f x k =++有零点,求实数k 的取值范围. (3)当(0,1)x ∈时,()22x f x m >-恒成立,求实数m 的取值范围. 【解】解:(1)对于函数4()1(0,1)2x f x a a a a=->≠+,由4(0)102f a =-=+, 解得2a =,故42()1122221xxf x =-=-++. (2)若函数()(21)()21221x x x g x f x k k k =++=+-+=-+ 有零点, 则函数2x y =的图象和直线1y k =-有交点,10k ∴->,解得1k <. (3)当(0,1)x ∈时,()22x f x m >-恒成立,即212221x xm ->-+恒成立. 令2x t =,则(1,2)t ∈,且323112(1)(1)1t m t t t t t t t +<-==++++.由于121t t ++ 在(1,2)上单调递减,∴1212712216t t +>+=++,76m ∴.即7,6m ⎛⎤∈-∞ ⎥⎝⎦ 9.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x xf x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.【解】(1)当2a =-时,()24222(213)x x x f x =-⨯-=--,令2,x t =由(0,)x ∈+∞, 可得(1,)t ∈+∞,令()2)1(3g t t =--,有()3g t >-,可得函数()f x 的值域为(3,)-+∞ 故函数()f x 在(),0-∞上不是有界函数;(2)由题意有,当(),0x ∈-∞时,24222,x x a -≤+⋅-≤ 可化为0424x x a ≤+⋅≤ 必有20x a +≥且422x x a ≤-, 令2x k =,由(),0x ∈-∞,可得()0,1k ∈, 由20x a +≥恒成立,可得0a ≥, 令()()401h t t t t=-<<, 可知函数()h t 为减函数,有()413h t >-=, 由422x x a ≤-恒成立, 可得3,a ≤故若函数()f x 在(,0)-∞上是以2为上界的有界函数, 则实数a 的取值范围为[]0,3。
2014届高考数学一轮复习方案 第11讲 函数与方程课时作业 新人教B版

课时作业(十一) [第11讲 函数与方程](时间:45分钟 分值:100分)基础热身1.[2013·安庆四校联考] 图K11-1是函数f (x )的图象,它与x 轴有4个不同的公共点.给出下列四个区间之中,存在不能用二分法求出的零点的区间是( )图K11-1A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1]2.[2012·唐山期末] 设f (x )=e x+x -4,则函数f (x )的零点位于区间( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)3.若x 0是方程lg x +x =2的解,则x 0属于区间( ) A .(0,1) B .(1, 1.25) C .(1.25,1.75) D .(1.75,2)4.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m的取值范围是________.能力提升5.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( )A .大于0B .小于0C .等于0D .无法确定6.[2013·诸城月考] 设函数y =x 2与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)7.已知定义在R 上的函数f (x )=(x 2-3x +2)g (x )+3x -4,其中函数y =g (x )的图象是一条连续曲线,则方程f (x )=0在下面哪个范围内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)8.[2011·陕西卷] 方程|x |=cos x 在(-∞,+∞)内( ) A .没有根 B .有且仅有一个根 C .有且仅有两个根 D .有无穷多个根9.[2012·石家庄质检] 已知函数f (x )=⎝ ⎛⎭⎪⎫12x-sin x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .410.若方程2ax 2-x -1=0在(0,1)内恰有一解,则a 的取值范围是________. 11.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________.12.[2012·盐城二模] 若y =f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=2x-1,则函数g (x )=f (x )-log 3|x |的零点个数为________.13.[2013·扬州中学月考] 已知函数f (x )=|x 2-1|x -1-kx +2恰有两个零点,则k 的取值范围是________.14.(10分)已知函数f (x )=4x +m ·2x+1有且仅有一个零点,求m 的取值范围,并求出该零点.15.(13分)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两个实数根为x 1和x 2.(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证:x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围. 难点突破16.(12分)已知函数f (x )=⎩⎪⎨⎪⎧2x (0≤x ≤1),-25x +125(1<x ≤5).(1)若函数y =f (x )的图象与直线kx -y -k +1=0有两个交点,求实数k 的取值范围; (2)试求函数g (x )=xf (x )的值域.课时作业(十一)【基础热身】1.B [解析] 能用二分法求出的零点,其两侧函数值必须异号.2.C [解析] 知f (x )在R 上为单调增函数,又因为f (1)=e -3<0,f (2)=e 2-2>0,故函数f (x )的零点位于区间(1,2).故选C.3.D [解析] 构造函数f (x )=lg x +x -2,知f (x )在(0,+∞)上单调递增,由f (1.75)=f 74=-14+lg 74<0及f (2)=lg2>0知x 0属于区间(1.75,2). 4.(0,1) [解析] 画出函数f (x )的图象如图,令g (x )=f (x )-m =0,即f (x )与直线y =m 的图象的交点有3个,所以0<m <1.【能力提升】5.D [解析] 因为f (x )在(-2,2)上有一个零点,不能说明f (-2)·f (2)的符号;如f (x )=x 2,更不能判断f (-1)·f (1)的值.故选D.6.B [解析] 令f (x )=x 2-⎝ ⎛⎭⎪⎫12x -2,则该函数在(0,+∞)上是增函数,计算可得f (1)<0,f (2)>0,所以函数f (x )的零点在区间(1,2),即x 0∈(1,2).故选B.7.B [解析] f (x )=(x 2-3x +2)g (x )+3x -4=(x -1)(x -2)g (x )+3x -4,因为函数y =g (x )的图象是一条连续曲线,所以函数f (x )的图象也是连续曲线,又因为f (1)=-1<0,f (2)=2>0,故f (x )=0在区间(1,2)内必有实数根,故选B.8.C [解析] 求解方程|x |=cos x 在(-∞,+∞)内根的个数问题,可转化为求解函数f (x )=|x |和g (x )=cos x 在(-∞,+∞)内的交点个数问题.由f (x )=|x |和g (x )=cos x 的图象易知有两交点,即原方程有且仅有两个根.9.B [解析] 由12x -sin x =0得12x =sin x ,在同一坐标系中作出h (x )=12x,g (x )=sin x在[0,2π]上的图象,可以看出交点个数为2.故选B.10.(1,+∞) [解析] 当Δ=1+8a =0时,a =-18,此时方程2ax 2-x -1=0的解为x =-2∉(0,1),不合题意,故Δ>0.令f (x )=2ax 2-x -1,故必有f (0)f (1)<0,即(-1)· (2a -2)<0,所以a >1. 11.⎩⎨⎧⎭⎬⎫x⎪⎪⎪ -32<x <1) [解析] 由于函数f (x )=x 2+ax +b 的两个零点是-2和3,即方程x 2+ax +b =0的两个根是-2和3.因此⎩⎪⎨⎪⎧-2+3=-a ,-2×3=b ,解得a =-1,b =-6,故f (x )=x 2-x -6.所以不等式af (-2x )>0,变为-(4x 2+2x -6)> 0,解得-32<x <1.12.4 [解析] 数形结合,作出y =f (x )与y =log 3|x |在y 轴右侧的图象,有2个交点,又这两个函数都是偶函数,根据对称性知有4个交点.13.(0,1)∪(1,4) [解析] 函数定义域为{x ∈R |x ≠1},令g (x )=|x 2-1|x -1,h (x )=kx -2,化简得g (x )=⎩⎪⎨⎪⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,作出函数g (x )和h (x )的图象,如图,当k ∈(0,1)∪(1,4)时,图象有两个交点,即函数f (x )有两个零点.14.解:因为f (x )=4x +m ·2x+1有且仅有一个零点, 即方程(2x )2+m ·2x+1=0仅有一个实根. 设2x =t (t >0),则t 2+mt +1=0.当Δ=0时,即m 2-4=0,得m =-2或m =2,m =-2时,t =1;m =2时,t =-1不合题意,舍去,所以2x=1,x =0符合题意.当Δ>0,即m >2或m <-2时,t 2+mt +1=0有两正根或两负根, f (x )有两个零点或无零点,不合题意,所以这种情况不可能.综上可知,m =-2时,f (x )有唯一零点,该零点为x =0. 【难点突破】15.解:设g (x )=f (x )-x =ax 2+(b -1)x +1,则g (x )=0的两根为x 1和x 2.(1)由a >0及x 1<2<x 2<4,可得⎩⎪⎨⎪⎧g (2)<0,g (4)>0,即⎩⎪⎨⎪⎧4a +2b -1<0,16a +4b -3>0, 即⎩⎪⎨⎪⎧3+3·b 2a -34a <0,-4-2·b 2a +34a<0,两式相加得b 2a <1,所以x 0>-1.(2)由(x 1-x 2)2=b -1a 2-4a,可得2a +1=(b -1)2+1. 又x 1x 2=1a>0,所以x 1,x 2同号.∴|x 1|<2,|x 2-x 1|=2等价于⎩⎨⎧0<x 1<2<x 2,2a +1=(b -1)2+1或⎩⎨⎧x 2<-2<x 1<0,2a +1=(b -1)2+1,即⎩⎨⎧g (2)<0,g (0)>0,2a +1=(b -1)2+1或⎩⎨⎧g (-2)<0,g (0)>0,2a +1=(b -1)2+1.解之得b <14或b >74.16.解:(1)函数y =f (x )的图象与直线kx -y -k +1=0的图象有两个交点等价于直线kx -y -k +1=0分别与线段y =2x (0≤x ≤1)和线段y =-25x +125(1<x ≤5)都相交.直线kx -y -k +1=0与线段y =2x (0≤x ≤1)相交 ,则(-k +1)(-1)≤0,解得k ≤1. 直线kx -y -k +1=0与线段y =-25x +125(1<x ≤5)相交,则⎝ ⎛⎭⎪⎫5k -25-k +1(-1)≤0,解得k ≥-320.故当-320≤k ≤1时,函数y =f (x )的图象与直线kx -y -k +1=0有两个交点.(2)g (x )=xf (x )=⎩⎪⎨⎪⎧2x 2(0≤x ≤1),-25x 2+125x (1<x ≤5).当0≤x ≤1时,g (x )是增函数,所以0≤g (x )≤2;当1<x ≤5时,g (x )=-25x 2+125x =-25(x -3)2+185,在区间(1,3)上是增函数,在区间[3,5]上是减函数,所以2≤g (x )≤185.综上,函数g (x )=xf (x )的值域为⎣⎢⎡⎦⎥⎤0,185.。
高考数学一轮复习函数与方程

对于在区间[a,b]如图象连续不断且f(a)f(b)<0的函数y=f(x),通过不
断地把它的零点所在区间 一分为二 ,使所得区间的两个端点逐步逼近零
点,进而得到零点近似值的方法叫做二分法.
目录
4.用二分法求函数y=f(x)零点x0的近似值的一般步骤
(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0;
目录
(多选)有如下说法,其中正确的有
(
)
A.函数f(x)的零点为x0,则函数f(x)的图象经过点(x0,0)时,函数值一定
变号
B.连续不断的函数,相邻两个零点之间的所有函数值保持同号
C.函数f(x)在区间[a,b]上连续,若满足f(a)·f(b)<0,则方程f(x)=0
在区间[a,b]上一定有实根
c)(x-a)的两个零点分别位于区间 (
)
A.(a,b)和(b,c)内
B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(-∞,a)和(c,+∞)内
解析:A 函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b
<c,则a-b<0,a-c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f
知,当直线y=2mx的斜率在kOA,kOB之间时,有三个交点,即kOA<2m<
1
1
1
1
kOB,因为kOA=- ,kOB=1,所以- <2m<1,解得- <m< .
3
3
6
2
答案 (2)A
目录
|解题技法|
利用函数零点求参数(范围)的方法
目录
考向2 探究函数多个零点(方程根)问题
− 2 −2, ≤ 0,
高考数学专题讲座 第11讲 直线与圆

高考数学专题讲座 第11讲 直线与圆考纲要求:(1)理解直线斜率的概念,掌握两点的直线的斜率,掌握直线方程的点斜式\两点式\一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行于垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单应用. (5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程.理解圆的参数方程. 基础达标1.若直线l 的倾斜角为π+arctan(-12),且过点(1,0),则直线l 的方程为________________.x +2y -1=02.已知定点A (0,1),点B 在直线x +y =0上运动,当线段AB 最短时,点B 的坐标是________________. (-12,12)3.已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数.当这两条直线的夹角在(0,π12)内变动时,a 的取值X 围是 ( C ) A .(0,1)B .(33,3)C .(33,1)∪(1,3) D .(1,3) 4.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是 ( C )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=45.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠π2+k π,k ∈Z )的位置关系是 ( C )A .相交B .相切C .相离D .不确定6.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0.当直线l 被C 截得的弦长为23时,则a = ( C ) A . 2 B .2-2C .2-1 D .2+1 例题选讲例1.(1)过点M (2,1)作直线l 与x 轴、y 轴的正半轴分别交于A 、B 两点.① 若△AOB 的面积取得最小值,求直线l 的方程,并求出面积的最小值;② 直线l 在两条坐标轴上截距之和的最小值;③若|MA |·|MB |为最小,求直线l 的方程.解:(1)①由于已知直线l 在坐标轴上的截距,故选用直线的截距方程:1=+bya x (i ) 由已知a >0,b >0.故S △AOB =21ab (ii ) 由已知,直线(i)经过点(2,1).故112=+b a ,就是a +2b =ab ,a =12-b b (∵b ≠1) (iii) ∵a >0, b >0, ∴a >1. 将(iii)代入(ii),得S =12-b b =1112-+-b b =b +1+11-b =(b -1)+11-b +2.当b >1时 S ≥211)1(-⋅-b b +2=4. 等号当且仅当 b -1=11-b 即b =2时成立.代入(iii)得a =4. ∴所求的直线方程为24yx +=1,即x②解一:a +b =2b b -1+b =2(b -1)+2b -1+b = = 2b -1+b -1+当b >1时 , a +b ≥2(2b -1)(b -1)等号当且仅当 b -1=2b -1, 即解二:a +b =(a +b )×1=(a +b )(2a +1b )=3等号当且仅当2b a =a b ,即a 2=2b 2③由于直线l 绕点M 运动,故可选∠OAB 2θsin M y =1sin θ, |MB |=θcos M x =2cos θ,|MA |·|MB |=1sin θ×2cos θ=4s in2θ,∴当sin2θ=1时,|MA |·|MB |有最小值4, 此时tan θ=1,所求直线l 的方程为x +y -3=0.(2)已知圆C :(x +2)2+y 2=1,P (x ,y )为圆上任意一点.①求y -22x -2的最大值、最小值;②求x -2y的最大值、最小值.解:(1)令k =y -2x -1,则k 表示经过P 点和A (1,2)两点的直线的斜率,故当k 取最大值或最小值时,直线P A :kx -y +2-k =0和圆相切,此时d =|-2k +2-k |1+k 2=1,解得k =3±34,所以y -22x -2的最大值为3+38,最小值为3-38;(2)方法一:令x -2y =t ,可视为一组平行线系,由题意,直线应与圆C 有公共点,且当t 取最大值或最小值时,直线x -2y -t =0和圆相切,则d =|-2-t |5=1,解得t =-2±5,所以x -2y 的最大值为-2+5,最小值为-2-5;方法二:因为P (x ,y )为圆C :(x +2)2+y 2=1上的点,令x =-2+cos θ,y =sin θ,θ∈[0,2π),所以x -2y =-2+cos θ-2 sin θ=-2+5cos(θ+φ)( φ=arctan2),当θ+φ=2π,即θ=2π-arctan2时,cos(θ+φ)=1,x -2y 取到最大值为-2+5,当θ+φ=π,即θ=π-arctan2时,cos(θ+φ)=-1,x -2y 取到最大值为-2+5;例2.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x -2y =0的距离为55.求该圆的方程. 解:设圆P 的圆心为P (a ,b ),半径为γ,则点P 到x 轴,y 轴的距离分别为|b |,|a |.由题设知圆P 截x 轴所得劣弧对的圆心角为90º,知圆P 截x 轴所得的弦长为r 2.故r 2=2b 2又圆P 被y 轴所截得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又因为P (a ,b )到直线x -2y =0的距离为55,所以5552b a d -=, 即有 a -2b =±1, 由此有⎩⎨⎧=-=-121222b a a b ⎩⎨⎧-=-=-121222b a a b 解方程组得⎩⎨⎧-=-=11b a ⎩⎨⎧==11b a 于是r 2=2b 2=2,所求圆的方程是(x +1)2+(y +1)2=2,或(x -1)2+(y -1)2=2.思考:求在满足条件①、②的所有圆中,圆心到直线l :x -2y =0的距离最小的圆的方程.解法一:设圆的圆心为P (a ,b ),半径为r ,则点P 到x 轴,y 轴的距离分别为│b │, │a │. 由题设知圆P 截x 轴所得劣弧对的圆心角为90°,知圆P 截X 轴所得的弦长为r 2,故r 2=2b 2, 又圆P 截y 轴所得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又点P (a ,b )到直线x -2y =0的距离为52b a d -=,所以5d 2=│a -2b │2 =a 2+4b 2-4ab≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1,当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值. 由此有⎩⎨⎧=-=12,22a b b a 解此方程组得⎩⎨⎧==;1,1b a 或⎩⎨⎧-=-=.1,1b a 由于r 2=2b 2知2=r .于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2. 解法二:同解法一,得52b a d -=∴d b a 52±=-得2225544d bd b a +±= ①将a 2=2b 2-1代入①式,整理得01554222=++±d db b②把它看作b 的二次方程,由于方程有实根,故判别式非负,即△=8(5d 2-1)≥0,得 5d 2≥1.∴5d 2有最小值1,从而d 有最小值55. 将其代入②式得2b 2±4b +2=0.解得b =±1.将b =±1代入r 2=2b 2,得r 2=2.由r 2=a 2+1得a =±1. 综上a =±1,b =±1,r 2=2. 由b a 2-=1知a ,b 同号. 于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2.例3.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB |=2|OA |,且点B 的纵坐标大于零.(1)求向量AB →的坐标;(2)求圆x 2-6x +y 2+2y =0关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线y =ax 2-1上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值X 围.[解](1)设⎩⎨⎧=-=+⎪⎩⎪⎨⎧=⋅==,034100,0||||||2||},,{22v u v u OA AB OA AB v u AB 即则由得 },3,4{.86,86-+=+=⎩⎨⎧-=-=⎩⎨⎧==v u AB OA OB v u v u 因为或 所以v -3>0,得v =8,故AB ={6,8}.(2)由OB ={10,5},得B (10,5),于是直线OB 方程:.21x y =由条件可知圆的标准方程为:(x -3)2+y(y+1)2=10, 得圆心(3,-1),半径为10. 设圆心(3,-1)关于直线OB 的对称点为(x,y )则,31,231021223⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-+=-⋅-+y x x y y x 得故所求圆的方程为(x -1)2+(y -3)2=10. (3)设P (x 1,y 1), Q (x 2,y 2) 为抛物线上关于直线OB 对称两点,则.23,022544,02252,,2252,202222222212212121212121>>-⋅-=∆=-++⎪⎪⎩⎪⎪⎨⎧-=-=+⎪⎪⎩⎪⎪⎨⎧-=--=+-+a aa a a ax a x x x a a x x ax x x x yy y y x x 得于是由的两个相异实根为方程即得 故当23>a 时,抛物线y=ax 2-1上总有关于直线OB 对称的两点.4.已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,(1)如果|AB |=423,求直线MQ 的方程;(2)求动弦AB 的中点P 的轨迹方程. 解:(1)由324||=AB ,可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中,523||||||2222=-=-=MO MQ OQ ,故55-==a a 或, 所以直线AB 方程是;0525205252=+-=-+y x y x 或 (2)连接MB ,MQ ,设),0,(),,(a Q y x P 由点M ,P ,Q 在一直线上,得(*),22xy a -=-由射影定理得|,|||||2MQ MP MB ⋅= 即(**),14)2(222=+⋅-+a y x 把(*)及(**)消去a ,并注意到2<y ,可得).2(161)47(22≠=-+y y x说明:适时应用平面几何知识,这是快速解答本题的要害所在。
《函数》第11讲 函数与方程

专题:定义先行 答案:0
作业选讲
10.关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上
有解,求实数m的取值范围.
解 设f(x)=x2+(m-1)x+1,x∈[0,2],
①若f(x)=0在区间[0,2]上有一解,
∵f(0)=1>0,则应有f(2)≤0, 又∵f(2)=22+(m-1)×2+1, ∴m≤-3/2
作业选讲
10.关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上
有解,求实数m的取值范围. ②若f(x)=0在区间[0,2]上有两解,则
0 2 ( m 1 ) 40 m 1 0 2 , . 3 m 1 2 4 (m 1) 2 1 0 f (2) 0 m 3或m 1 3 3 m 1 , m 1, 2 3 m 2
结论
y=f(x)在(a,b)
内至少有一
个零点
3.零点分布问题 例题3.m为何值时,对于f (x)=x2+2mx+3m+4, ①有且仅有一个零点? ②有两个零点且均比-1大? 解析(1) f(x)=x2+2mx+3m+4有且仅有一个零点 ⇔方程f(x)=0有两个相等实根 ⇔Δ=0,即4m2-4(3m+4)=0, 即m2-3m-4=0, ∴m=4或m=-1.
A. c ≤ 3 C. 6<c ≤9 B. 3<c ≤6 D. 9<c
[训练]. 已知函数 f(x)=|x2+3x|, x∈R.
若方程 f(x)-a|x-1|=0 恰有 4个 互异的实数根, 则a的取值范围为____.
2 f ( x ) | 4 x x | a 有4个零 若函数 点,求实数a的取值范围。
高考数学一轮复习 第11讲函数与方程课件 理 新人教课标A

第11讲 │要点探究
D [解答] 由题得 f′(x)=13-1x=x-3x3,令 f′(x)>0,得 x>3;令 f′(x)<0,得 0<x<3;f′(x)=0,得 x=3,故知函数 f(x) 在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点 x =3 处有极小值 1-ln3<0.又 f(1)=31,f(e)=3e-1<0,f1e=31e+ 1>0,故选择 D.
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/182022/1/182022/1/181/18/2022 •7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/182022/1/18January 18, 2022 •8、教育者,非为已往,非为现在,而专为将来。2022/1/182022/1/182022/1/182022/1/18
(2)∵f(-1)=-1<0,f(2)=5>0, ∴f(x)=x3-x-1 在 x∈[-1,2]上存在零点. (3)∵f(1)=log2(1+2)-1=log23-1>0,f(3)=log2(3+2)-3= log25-3<0,∴f(1)·f(3)<0,故 f(x)=log2(x+2)-x 在 x∈[1,3]上 存在零点.
【推荐必做】黑龙江省齐齐哈尔市高考数学一轮复习 第11讲 函数与方程学案(无答案)理

考情 分析
函数零点的个数 函数零点的应用
【重温教材】必修 1
第 86 页至第 92 页
【相关知识点回顾】 完成练习册【知识聚焦】
【探究点一】函数零点所在区间的判断:【练习册】029 页 【探究点二】零点个数的讨论:【练习册】029 页 【探究点三】函数零点的应用:【练习册】029 页
1.已知函数 f(x)=ax -3x +1,若 f(x)存在唯一的零点 x0,且 x0>0,则 a 的取值范围是( A.(2,+∞) C.(-∞,-2) B.(1,+∞) D.(-∞,-1)
5.下列函数中,既是偶函数又存在零点的是 A.y=cos x B.y=sin x
C.y=ln x
( ) 2 D.y=x +1
6. 函数 f ( x) 4 cos
2
x cos( x) 2sin x ln( x 1) 的零点个数为________. 2 2
7.若 a,b 是函数 f ( x) x px q( p 0, q 0) 的两个不同的零点,且 a,b, 2 这三个数可适当排
3
2
)
2. 已 知 函 数 f ( x)
x 2 (4a 3) x 3a, x 0 log a ( x 1) 1, x 0
2 3
(a>0, 且 a≠1) 在 R 上 单 调 递 减 , 且 关 于 x 的 方 程 ( D. , 3 3 )
2
值范围为________.
精选部编版考试卷案,为您推荐下载!
2
最新人教部编版文档
二、履 我认 里 年 一 的 去 过 在 。 面 方 责 职 行 成所 完 极 积 , 责 职 位 岗 理 经 副 行 履 真 作任 工 项 各 的 办 交 理 经 门 部 和 导 领 、严 营 经 促 全 安 抓 狠 到 做 力 努 , 务 润实 利 本 成 真 、 量 质 促 训 培 抓 项工 各 的 部 饮 餐 使 , 定 稳 促 伍 队 抓 。 色 起 新 了 有 比 相 期 前 与 作 1促 全 安 抓 狠 、 和实 点 特 作 工 年 去 厅 餐 合 结 。 营 经 经验 的 误 失 作 工 年 前 取 吸 , 况 情 际 即泄 ” 防 七 “ 厅 餐 了 出 提 点 重 , 训 教 食 防 、 露 气物 煤 盗 火 : 工意 员 件 事 量 质 大 重 防 、 毒 中 取的 采 我 。 纪 法 违 工 员 防 、 伤 受 外 场合 种 各 用 利 , 育 教 强 加 : 是 施 措 工安 员 高 提 断 不 , 识 知 全 安 讲 宣 复 反 大意 痹 麻 想 思 员 人 因 免 避 , 识 意 全 管理 强 加 ; 故 事 全 安 不 的 现 出 而 , 认安 须 必 都 工 员 有 所 部 饮 餐 求 要 , 标 全 执准 格 严 , 责 职 位 岗 行 履 真 、人 乱 混 理 管 因 免 避 , 程 规 作 操 和 加强 ; 故 事 全 安 不 的 现 出 而 , 控 失 员 的环 题 问 现 出 易 容 中 作 工 对 , 查 检 点, 重 的 作 工 查 检 理 管 我 为 做 , 节 出现 而 时 及 不 患 隐 现 发 因 免 避 极 积 ,餐 施 措 上 以 过 通 。 故 事 全 安 不 的 现门 出 有 没 , 里 年 一 去 过 在 部 饮 部顺 为 , 患 隐 的 大 较 和 故 事 全 安 要精 主 把 理 经 为 , 务 任 年 全 成 完 利 了一 造 创 , 上 设 建 面 全 门 部 到 入 投 力 。 件 条 定 训促 培 抓 严 2、 老VIP宴 、 岗 到 工 员 新 对 针 。 量 质 工 的 日 节 大 重 、 待 接 会 级作 晋 规性 常 些 一 与 参 、 织 组 次 多 , 排 安 容和 内 、 划 计 对 并 , 训 培 的 日常 对 针 ; 新 更 善 完 了 行 进 目 题 核 考 《餐 了 理 整 我 , 题 问 的 到 遇 中 务 服 务 服 厅 工克 员 助 帮 , 》 办 么 怎 120个 ,最 素 因 等 缺 欠 识 常 、 足 不 验 经 服 员工 了 高 提 , 误 失 作 工 避 规 地 度 限 大 次组 首 经 助 协 ; 力 能 的 题 问 理 处 业知 专 饮 餐 馆 宾 翔 鸿 “ 了 展 开 、 织 ,增 感 誉 荣 体 集 工 员 了 高 提 ” 赛 竞 识 好氛 良 的 超 帮 赶 学 、 比 了 强 训 培 展 开 门 部 后 以 为 也 , 围 积累 ,临 杂 繁 作 工 常 日 厅 餐 对 针 ; 验 经 了 在作 , 点 特 一 这 多 务 任 作 工 性 时 时间 一 第 在 量 尽 , 理 管 式 动 走 行 执 中 处理 速 迅 够 能 题 问 现 发 , 况 情 握 掌 办公 在 少 很 我 来 年 一 , 报 汇 示 请 和 部服 饮 餐 为 , 上 以 过 通 。 作 工 室 自己 了 挥 发 , 升 提 和 定 稳 的 量 质 务 。 用 作 能 职 的 本促 成 抓 真 3、 加强 , 示 指 的 理 经 门 部 照 按 。 润 利 “出 取 采 , 理 管 的 品 耗 易 值 低 了 等措 ” 录 记 损 向 去 用 、 字 签 有 见的 可 处 随 巾 香 、 机 火 打 餐 像 , 施 餐具 强 加 ; 制 控 效 有 了 到 得 象 现 别是 特 餐 的 耗 损 常 正 非 对 , 理 管 ,制 ” 源 溯 根 追 “ 重 贵 、 具 餐 新 , 度 偿并 赔 外 和 部 内 了 行 执 格 严 2 共 章 文 本 常 六 “ 学 所 合 结
高考数学第一轮总复习 第11讲 函数与方程

课时作业(十一) [第11讲 函数与方程](时间:30分钟 分值:80分)1.[2013·青岛模拟] 函数f (x )=1-x log 2x 的零点所在的区间是( )A .(14,12)B . (12,1) C .(1,2) D .(2,3) 2.x 0是函数f (x )=2sin x -πln x (x ∈(0,π))的零点,x 1,x 2∈(0,π),x 1<x 2,则下列结论正确的是( )①x 0∈(1,e); ②x 0∈(e ,π);③f (x 1)-f (x 2)<0; ④f (x 1)-f (x 2)>0.A .①③B .①④C .②③D .②④3.若a >2,则函数f (x )=13x 3-ax 2+1在(0,2)内零点的个数为( ) A .3 B .2 C .1 D .04.[2013·北京西城区二模] 已知函数f (x )=e |x |+|x |.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,+∞)C .(-1,0)D .(-∞,-1)5.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点的个数为( ) A .0 B .1 C .2 D .36.[2013·广州一模] 已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则下列不等式中成立的是( )A .f (a )<f (1)<f (b )B .f (a )<f (b )<f (1)C .f (1)<f (a )<f (b )D .f (b )<f (1)<f (a )7.[2013·泰安一检] 设函数f (x )=x 3-4x +a (0<a <2)有三个零点x 1,x 2,x 3,且x 1<x 2<x 3则下列结论正确的是( )A .x 1>-1B .x 2<0C .x 3>2D .0<x 2<18.[2013·淮北一检] 方程|sin x |=kx (k >0)有且仅有两个不同的非零实数解θ,φ(θ>φ),则以下有关两根关系的结论正确的是( )A .sin φ=φcos θB .sin φ=-φcos θC .cos φ=θsin θD .sin θ=-θsin φ9.[2013·南京模拟] 在用二分法求方程x 3-2x -1=0的一个近似解时,现已将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.10.[2013·北京朝阳区一模] 函数f (x )是定义在R 上的偶函数,且满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=2x .若在区间[-2,3]上方程ax +2a -f (x )=0恰有四个不相等的实数根,则实数a 的取值范围是________.11.[2013·济南模拟] f (x )=|2x -1|,f 1(x )=f (x ),f 2(x )=f [f 1(x )],…,f n (x )=f [f n -1(x )],则函数y =f 4(x )的零点个数为________.12.(13分)已知a 是实数,函数f (x )=2ax 2+2x -3-a .若函数y =f (x )在区间[-1,1]上有零点,求实数a 的取值范围.13.(1)(6分)[2013·牡丹江地区六县市联考] 已知函数f (x )=1+x -x 22+x 33-x 44+…-x 20122012+x 20132013,g (x )=1-x +x 22-x 33+x 44-…+x 20122012-x 20132013.若函数f (x )有唯一零点x 1,函数g (x )有唯一零点x 2,则有( )A .x 1∈(0,1),x 2∈(0,1)B .x 1∈(-1,0),x 2∈(0,1)C .x 1∈(0,1),x 2∈(1,2)D .x 1∈(-1,0),x 2∈(1,2)(2)(6分)[2013·合肥一中测试] 函数f (x )的定义域为D ,若存在闭区间[a ,b ]⊆D ,使得函数f (x )满足:f (x )在区间[a ,b ]上是单调函数;f (x )在区间[a ,b ]上的值域为[2a ,2b ],则称区间[a ,b ]为y =f (x )的“和谐区间”.下列函数中存在“和谐区间”的有________(只需填符合题意的函数序号).①f (x )=x 2(x ≥0);②f (x )=e x (x ∈R );③f (x )=4x x 2+1(x ≥0);④f (x )=log a (a x -18)(a >0,a ≠1).课时作业(十一)1.C 2.B 3.C 4.B 5.C 6.A 7.D 8.B9.(1.5,2) 10.(25,23) 11.8 12.⎩⎨⎧⎭⎬⎫a⎪⎪⎪ a >1或a ≤-3-72) 13.(1)D (2)①③④。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省高考数学一轮专题:第11讲函数与方程
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2016高一下·太康开学考) 方程log2x+x=3的解所在区间是()
A . (0,1)
B . (1,2)
C . (3,+∞)
D . [2,3)
2. (2分)(2019·定远模拟) 对于函数和,设,,若存在,使得,则称与互为“零点相邻函数”.若函数与互为“零点相邻函数”,则实数的取值范围是()
A .
B .
C .
D .
3. (2分) (2019高三上·沈河月考) 已知,关于的下列结论中错误的是()
A . 的一个周期为
B . 在单调递减
C . 的一个零点为
D . 的图象关于直线对称
4. (2分) (2020高一上·梅河口期末) 函数f(x)=x2-3x-4的零点是()
A .
B .
C . 1,-4
D . 4,-1
5. (2分)已知f(x)=ax2+bx+c(a>0),分析该函数图象的特征,若方程f(x)=0一根大于3,另一根小于2,则下列推理不一定成立的是()
A . 2<﹣<3
B . 4ac﹣b2<0
C . f(2)<0
D . f(3)<0
6. (2分) (2019高一上·绵阳期中) 在用二次法求方程3x+3x-8=0在(1,2)内近似根的过程中,已经得到f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()
A .
B .
C .
D . 不能确定
7. (2分)右面是“二分法”解方程的流程图.在①~④处应填写的内容分别是()
A . f(a)f(m)<0;a=m;是;否
B . f(b)f(m)<0;b=m;是;否
C . f(b)f(m)<0;m=b;是;否
D . f(b)f(m)<0;b=m;否;是
8. (2分)已知函数y=f(x)的定义域为R,对任意的实数x都满足f(x+2)=f(x),当x∈[﹣1,1]时,f (x)=x2 ,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()
A . 10个
B . 9个
C . 8个
D . 2个
9. (2分) (2016高一上·定兴期中) 函数f(x)=lnx 的零点所在的区间是()
A . (1,2)
B . (1,e)
C . (e,3)
D . (3,+∞)
10. (2分) (2020高一上·温州期末) 设函数,则在下列区间中,函数存在零点的是()
A .
B .
C .
D .
11. (2分) (2019高二下·吉林期中) 若函数恰好有三个单调区间,则实数的取值范围是()
A .
B .
C .
D .
12. (2分) (2019高一上·凤城月考) 已知则的最小值为()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分)(2017·山南模拟) 函数f(x)= ,若方程f(x)=mx﹣恰有四个不相等的实数根,则实数m的取值范围是________.
14. (1分) (2020高一上·南宁期末) 用二分法研究函数f(x)在区间(0,1)内的零点时,计算得f(0)<0,f(0.5)<0,f(1)>0,那么下一次应计算x=________时的函数值.
15. (1分) (2016高一上·辽宁期中) 设f(x)的图象在区间[a,b]上不间断,且f(a)f(b)<0,用二分法求相应方程的根时,若f(a)<0,f(b)>0,f()>0,则取有根的区间为________.
16. (1分)某方程有一无理根在区间D=(1,3)内,若用二分法求此根的近似值,则将D至少等分________ 次后,所得近似值可精确到0.1.
三、解答题 (共6题;共55分)
17. (5分)在一个风雨交加的夜里,从某水库闸门到防洪指挥部的电话线路发生了故障.这是一条长10 km 的线路,电线杆的间距为100 m.请你设计一个方案,能够迅速查出故障所在.
18. (5分)某公司在统计2012年的经营状况时发现,若不考虑其他因素,该公司每月获得的利润y(万元)与月份之间满足函数关系式:f(x)=
(Ⅰ)求该公司5月份获得的利润为多少万元?
(Ⅱ)2012年该公司哪个月的月利润最大?最大值是多少万元?
19. (10分) (2016高一上·西城期末) 已知函数f(x)=3x , g(x)=|x+a|﹣3,其中a∈R.
(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;
(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.
20. (10分)设a为实数,且1<x<3,试讨论关于x的方程x2+3+a=5x的实数解的个数.
21. (10分) (2016高一上·三亚期中) 已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2﹣2x.
(Ⅰ)写出函数y=f(x)的解析式;
(Ⅱ)若方程f(x)=a恰有3个不同的解,求a的取值范围.
22. (15分) (2018高一上·北京期中) 若函数满足:在区间内有且仅有一个实数,使得成立,则称函数具有性质M .
(1)判断函数是否具有性质M ,说明理由;
(2)若函数具有性质M ,求实数a的取值范围;(3)若函数具有性质M ,求实数m的取值范围.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、
考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、
考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
二、填空题 (共4题;共4分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、
考点:
解析:
答案:16-1、
考点:
解析:
三、解答题 (共6题;共55分)答案:17-1、
考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、
考点:解析:
答案:20-1、考点:
解析:
答案:21-1、考点:
解析:
答案:22-1、答案:22-2、
答案:22-3、考点:
解析:。