第8讲 函数与方程
2017数学(理)一轮教学案:第二章第8讲 函数与方程

第8讲函数与方程考纲展示命题探究1函数零点的等价关系2零点存在性定理3二次函数y=ax2+bx+c(a>0)零点的分布根的分布图象满足条件(m <n<p为常数)x1<x2<mm<x1<x2续表根的分布图象满足条件(m<n<p为常数)x1<m<x2f(m)<0m<x1<x2<nm<x1<n<x2<p只有一根在或f(m)·f(n)<0 (m,n)之间4二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.注意点零点存在性定理的使用条件零点存在性定理只能判断函数在某区间上是否存在零点,并不能判断零点的个数,但如果函数在区间上是单调函数,则该函数在区间上至多有一个零点.1.思维辨析(1)函数f (x )=x 2-1的零点是(-1,0)和(1,0).( )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( )(3)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( )(4)只要函数有零点,我们就可以用二分法求出零点的近似值.( )(5)函数y =2sin x -1的零点有无数多个.( )(6)函数f (x )=kx +1在[1,2]上有零点,则-1<k <-12.( )答案 (1)× (2)× (3)√ (4)× (5)√ (6)×2.函数f (x )=2x +3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)答案 B解析 ∵f ′(x )=2x ln 2+3>0,∴f (x )=2x +3x 在R 上是增函数.而f (-2)=2-2-6<0,f (-1)=2-1-3<0,f (0)=20=1>0,f (1)=2+3=5>0,f (2)=22+6=10>0,∴f (-1)·f (0)<0.故函数f (x )在区间(-1,0)上有零点.3.(1)下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( )(2)若函数f (x )=x 2-4x +a 存在两个不同的零点,则实数a 的取值范围是________.答案 (1)C (2)(-∞,4)解析 (1)A ,B 图中零点两侧不异号,D 图不连续.故选C.(2)Δ=16-4a >0,解得a <4.[考法综述] 函数的零点、方程的根的问题是高考的热点,题型既有选择题、填空题,又有解答题.选择、填空题考查的主要形式有两种,一种是找零点的个数;一种是判断零点的范围,多为中等难度.解答题考查较为综合,在考查函数的零点、方程的根的基础上,又注重考查函数与方程、转化与化归、分类讨论、数形结合的思想方法.命题法 判断零点的个数及所在的区间典例 (1)已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)(2)函数f (x )=3cos πx 2-log 12x 的零点个数是( ) A .2B .3C .4D .5(3)函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)[解析] (1)∵f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=64-log 24=32-2<0,∴包含f (x )零点的区间是(2,4),故选C.(2)把求函数f (x )的零点个数问题转化为求函数y =3cos πx 2的图象与函数y =log 12x 的图象的交点个数问题,在同一个坐标系中画出这两个函数的图象,如图所示.函数y =3cos πx 2的最小正周期是4,当x=8时,y =log 12 8=-3,结合图象可知两个函数的图象只能有5个交点,即函数f (x )=3cos πx 2-log 12x 有5个零点. (3)因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x -a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.[答案] (1)C (2)D (3)C【解题法】 函数零点问题的解题方法(1)判断函数在某个区间上是否存在零点的方法①解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区间上.②利用零点存在性定理进行判断.③画出函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断.(2)判断函数零点个数的方法①直接法:解方程f (x )=0,方程有几个解,函数f (x )就有几个零点.②图象法:画出函数f (x )的图象,函数f (x )的图象与x 轴的交点个数即为函数f (x )的零点个数.③将函数f (x )拆成两个常见函数h (x )和g (x )的差,从而f (x )=0⇔h (x )-g (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数即为函数y =h (x )与函数y =g (x )的图象的交点个数.④二次函数的零点问题,通过相应的二次方程的判别式Δ来判断.(3)已知函数有零点(方程有根)求参数值(取值范围)常用的方法 ①直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围.②分离参数法:先将参数分离,转化成求函数的值域问题加以解决.③数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.1.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R .若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A.⎝ ⎛⎭⎪⎫74,+∞B.⎝ ⎛⎭⎪⎫-∞,74 C.⎝ ⎛⎭⎪⎫0,74 D.⎝ ⎛⎭⎪⎫74,2 答案 D解析 函数y =f (x )-g (x )恰有4个零点,即方程f (x )-g (x )=0,即b =f (x )+f (2-x )有4个不同的实数根,即直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点.又y =f (x )+f (2-x )=⎩⎪⎨⎪⎧ x 2+x +2,x <02,0≤x ≤2x 2-5x +8,x >2,作出该函数的图象如图所示,由图可得,当74<b <2时,直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点,故函数y =f (x )-g (x )恰有4个零点时,b的取值范围是⎝ ⎛⎭⎪⎫74,2. 2.函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( ) A .3B .2C .7D .0 答案 B解析 解法一:由f (x )=0得⎩⎨⎧ x ≤0,x 2+x -2=0或⎩⎨⎧ x >0,-1+ln x =0,解得x =-2或x =e.因此函数f (x )共有2个零点.解法二:函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.3.设f (x )=e x +x -4,则函数f (x )的零点位于区间( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)答案 C解析 ∵f (x )=e x +x -4,∴f ′(x )=e x +1>0,∴函数f (x )在R 上单调递增.对于A 项,f (-1)=e -1+(-1)-4=-5+e -1<0,f (0)=-3<0,f (-1)f (0)>0,A 不正确;同理可验证B 、D 不正确.对于C 项,∵f (1)=e +1-4=e -3<0,f (2)=e 2+2-4=e 2-2>0,f (1)f (2)<0.故f (x )的零点位于区间(1,2).4.设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1. (1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________.答案 (1)-1 (2)⎣⎢⎡⎭⎪⎫12,1∪[2,+∞) 解析 (1)若a =1,则f (x )=⎩⎨⎧ 2x -1,x <14(x -1)(x -2),x ≥1,作出函数f (x )的图象如图所示.由图可得f (x )的最小值为-1.(2)当a ≥1时,要使f (x )恰有2个零点,需满足21-a ≤0,即a ≥2,所以a ≥2,当a <1时,要使f (x )恰有2个零点,需满足⎩⎪⎨⎪⎧a <1≤2a 21-a >0,解得12≤a <1.综上,实数a 的取值范围为⎣⎢⎡⎭⎪⎫12,1∪[2,+∞). 5.函数f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln (x +1)|的零点个数为________.答案 2解析 因为f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln (x +1)|=2(1+cos x )·sin x -2sin x -|ln (x +1)|=sin2x -|ln (x +1)|,所以函数f (x )的零点个数为函数y =sin2x 与y =|ln (x +1)|图象的交点的个数.函数y =sin2x 与y =|ln (x +1)|的图象如图所示,由图知,两函数图象有2个交点,所以函数f (x )有2个零点.6.设x 3+ax +b =0,其中a ,b 均为实数.下列条件中,使得该三次方程仅有一个实根的是________.(写出所有正确条件的编号)①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2;④a =0,b =2;⑤a =1,b =2.答案 ①③④⑤解析 令f (x )=x 3+ax +b ,则f ′(x )=3x 2+a .对于①,由a =b =-3,得f (x )=x 3-3x -3,f ′(x )=3(x +1)(x -1),f (x )极大值=f (-1)=-1<0,f (x )极小值=f (1)=-5<0,函数f (x )的图象与x 轴只有一个交点,故x 3+ax +b =0仅有一个实根;对于②,由a =-3,b =2,得f (x )=x 3-3x +2,f ′(x )=3(x +1)(x -1),f (x )极大值=f (-1)=4>0,f (x )极小值=f (1)=0,函数f (x )的图象与x 轴有两个交点,故x 3+ax +b =0有两个实根;对于③,由a =-3,b >2,得f (x )=x 3-3x +b ,f ′(x )=3(x +1)(x -1),f (x )极大值=f (-1)=2+b >0,f (x )极小值=f (1)=b -2>0,函数f (x )的图象与x 轴只有一个交点,故x 3+ax +b =0仅有一个实根;对于④,由a =0,b =2,得f (x )=x 3+2,f ′(x )=3x 2≥0,f (x )在R 上单调递增,函数f (x )的图象与x 轴只有一个交点,故x 3+ax +b =0仅有一个实根;对于⑤,由a =1,b =2,得f (x )=x 3+x +2,f ′(x )=3x 2+1>0,f (x )在R 上单调递增,函数f (x )的图象与x 轴只有一个交点,故x 3+ax +b =0仅有一个实根.7.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a .若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.答案 (-∞,0)∪(1,+∞)解析 令φ(x )=x 3(x ≤a ),h (x )=x 2(x >a ),函数g (x )=f (x )-b 有两个零点,即函数y =f (x )的图象与直线y =b 有两个交点,结合图象可得a <0或φ(a )>h (a ),即a <0或a 3>a 2,解得a <0或a >1,故a ∈(-∞,0)∪(1,+∞).8.已知函数f(x)=e x-ax2-bx-1,其中a,b∈R…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.解(1)由f(x)=e x-ax2-bx-1,有g(x)=f′(x)=e x-2ax-b.所以g′(x)=e x-2a.因此,当x∈[0,1]时,g′(x)∈[1-2a,e-2a].当a≤12时,g′(x)≥0,所以g(x)在[0,1]上单调递增,因此g(x)在[0,1]上的最小值是g(0)=1-b;当a≥e2时,g′(x)≤0,所以g(x)在[0,1]上单调递减,因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;当12<a<e2时,令g′(x)=0,得x=ln (2a)∈(0,1).所以函数g(x)在区间[0,ln (2a)]上单调递减,在区间(ln (2a),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln (2a))=2a-2a ln (2a)-b.综上所述,当a≤12时,g(x)在[0,1]上的最小值是g(0)=1-b;当12<a<e2时,g(x)在[0,1]上的最小值是g(ln (2a))=2a-2a ln (2a)-b;当a≥e2时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1.同理g(x)在区间(x0,1)内存在零点x2.所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤12时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点.当a≥e2时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点.所以12<a<e2.此时g(x)在区间[0,ln (2a)]上单调递减,在区间(ln (2a),1]上单调递增.因此x1∈(0,ln (2a)],x2∈(ln (2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0有a+b=e-1<2,有g(0)=1-b=a-e+2>0,g(1)=e-2a-b=1-a>0.解得e-2<a<1.当e-2<a<1时,g(x)在区间[0,1]内有最小值g(ln (2a)).若g(ln (2a))≥0,则g(x)≥0(x∈[0,1]),从而f(x)在区间[0,1]上单调递增,这与f(0)=f(1)=0矛盾,所以g(ln (2a))<0.又g(0)=a-e+2>0,g(1)=1-a>0,故此时g(x)在(0,ln (2a))和(ln (2a),1)内各只有一个零点x1和x2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增.所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1). 函数f (x )=x +1x 的零点个数为( ) A .0 B .1 C .2 D .3[错解][错因分析] 分析函数的有关问题时必须先求出函数的定义域.通过作图(图略),可知函数f (x )=x +1x 的图象不是连续不断的,而零点的存在性定理不能在包含间断点的区间上使用.[正解] 函数f (x )的定义域为{x |x ≠0},当x >0时,f (x )>0;当x <0时,f (x )<0.所以函数f (x )没有零点,故选A.[答案] A [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·武邑中学仿真]已知x 0是f (x )=⎝ ⎛⎭⎪⎫12x +1x 的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0答案 C解析 如图,在同一坐标系下作出函数y =⎝ ⎛⎭⎪⎫12x ,y =-1x 的图象,由图象可知当x ∈(-∞,x 0)时,⎝ ⎛⎭⎪⎫12x >-1x ,当x ∈(x 0,0)时,⎝ ⎛⎭⎪⎫12x <-1x ,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0,选C.2.[2016·枣强中学一轮检测]函数f (x )=x cos2x 在区间[0,2π]上的零点个数为( )A .2B .3C .4D .5答案 D解析 令f (x )=x cos2x =0,得x =0或cos2x =0.由cos2x =0,得2x =k π+π2(k ∈Z ),故x =k π2+π4(k ∈Z ).又因为x ∈[0,2π],所以x =π4,3π4,5π4,7π4.所以零点的个数为1+4=5.故选D.3.[2016·衡水中学周测]已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4) 答案 B解析 函数f (x )的导数为f ′(x )=1x ,所以g (x )=f (x )-f ′(x )=ln x -1x .因为g (1)=ln 1-1=-1<0,g (2)=ln 2-12>0,所以函数g (x )=f (x )-f ′(x )的零点所在的区间为(1,2).故选B.4. [2016·衡水中学模拟]设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数,当x ∈[0,π]时,0<f (x )<1;当x∈(0,π)且x ≠π2时,⎝ ⎛⎭⎪⎫x -π2f ′(x )>0,则函数y =f (x )-sin x 在[-2π,2π]上的零点个数为( )A .2B .4C .5D .8答案 B解析 ∵f (x )是最小正周期为2π的偶函数,∴f (x +2π)=f (x )=f (-x ),∴y =f (x )的图象关于y 轴和直线x =π对称,又∵0<x <π2时,⎝ ⎛⎭⎪⎫x -π2f ′(x )>0,∴0<x <π2时,f ′(x )<0.同理,π2<x <π时,f ′(x )>0.又∵0≤x ≤π时,0<f (x )<1,∴y =f (x )的大致图象如图所示.又函数y =f (x )-sin x 在[-2π,2π]上的零点个数⇔函数y =f (x )与y =sin x 图象的交点个数,由图可知共有四个交点,故选B.5.[2016·枣强中学热身]已知函数f (x )=⎝ ⎛⎭⎪⎫14x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4答案 C解析 函数f (x )=⎝ ⎛⎭⎪⎫14x -cos x 的零点个数为⎝ ⎛⎭⎪⎫14x -cos x =0⇒⎝ ⎛⎭⎪⎫14x=cos x 的根的个数,即函数h (x )=⎝ ⎛⎭⎪⎫14x与g (x )=cos x 的图象的交点个数.如图所示,在区间[0,2π]上交点个数为3,故选C.6.[2016·衡水二中期末]若函数f (x )=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是( )A .a >15B .a >15或a <-1 C .-1<a <15D .a <-1答案 B解析 当a =0时,f (x )=1,与x 轴无交点,不合题意,所以a ≠0,函数f (x )=3ax +1-2a 在区间(-1,1)内是单调函数,f (-1)f (1)<0,即(5a -1)(a +1)>0,解得a <-1或a >15,选择B.7.[2016·衡水二中预测]已知定义在R 上的函数y =f (x )对于任意的x 都满足f (x +1)=-f (x ),当-1≤x <1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有6个零点,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,15∪(5,+∞) B.⎝ ⎛⎭⎪⎫0,15∪[5,+∞) C.⎝ ⎛⎦⎥⎤17,15∪(5,7) D.⎝ ⎛⎭⎪⎫17,15∪[5,7) 答案 A解析 由f (x +1)=-f (x )得f (x +1)=-f (x +2),因此f (x )=f (x +2),即函数f (x )是周期为2的周期函数.函数g (x )=f (x )-log a |x |至少有6个零点可转化成y =f (x )与h (x )=log a |x |两函数图象交点至少有6个,需对底数a 进行分类讨论.若a >1,则h (5)=log a 5<1,即a >5.若0<a <1,则h (-5)=log a 5≥-1,即0<a ≤15. 所以a 的取值范围是⎝ ⎛⎦⎥⎤0,15∪(5,+∞). 8.[2016·枣强中学月考]定义域为R 的偶函数f (x )满足对任意x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18,若函数y =f (x )-log a (|x |+1)在(0,+∞)上至少有三个零点,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22B.⎝ ⎛⎭⎪⎫0,33C.⎝⎛⎭⎪⎫0,55D.⎝⎛⎭⎪⎫0,66答案 B解析 令x =-1,则f (-1+2)=f (-1)-f (1).又f (x )为定义域在R 上的偶函数,所以f (1)=0,即f (x +2)=f (x ),所以函数f (x )的周期为T =2,又f (-x +2)=f (-x )=f (x ),所以函数f (x )的图象关于x =1对称,根据f (x )=-2x 2+12x -18(x ∈[2,3])作出f (x )与函数y =log a (x +1)(x >0)的图象,则y =f (x )-log a (|x |+1)在(0,+∞)上至少有三个零点,也就是函数f (x )的图象与y =log a (x +1)(x >0)至少有三个交点,如图所示,则⎩⎨⎧0<a <1,log a (2+1)>-2,解得0<a <33.9.[2016·冀州中学期中]已知函数f (x )=e x -2x +a 有零点,则a的取值范围是________.答案 (-∞,2ln 2-2]解析 f ′(x )=e x -2,令f ′(x )=e x -2=0,得x =ln 2.当x >ln 2时,f ′(x )>0,当x <ln 2时,f ′(x )<0,所以当x =ln 2时,函数取得极小值,所以要使函数有零点,则f (ln 2)≤0,即e ln 2-2ln 2+a ≤0,解得a ≤2ln 2-2,所以a 的取值范围是(-∞,2ln 2-2].10.[2016·冀州中学月考]已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.答案 m >1解析 函数f (x )有三个零点等价于方程1x +2=m |x |有且仅有三个实根.当m =0时,不合题意,舍去;当m ≠0时,∵1x +2=m |x |⇔1m =|x |(x +2),作函数y =|x |(x +2)的图象,如图所示,由图象可知m 应满足0<1m <1,解得m >1.11.[2016·衡水中学猜题]若方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,则b -2a -1的取值范围是________.答案 ⎝ ⎛⎭⎪⎫14,1解析 令f (x )=x 2+ax +2b ,∵方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,∴⎩⎪⎨⎪⎧f (0)>0f (1)<0,f (2)>0∴⎩⎪⎨⎪⎧b >0a +2b <-1a +b >-2.根据约束条件作出可行域,得到△ABC 及其内部(如图)不含边界,其中A (-3,1),B (-2,0),C (-1,0),设E (a ,b )为区域内任意一点,则k =b -2a -1表示点E (a ,b )与点D (1,2)连线的斜率,k AD =14,k CD =1,结合图形可知14<b -2a -1<1.12.[2016·武邑中学猜题]已知函数f (x )=⎩⎨⎧2x -a 3,x ≤0ln x -2x +a ,x >0有三个不同的零点,则实数a 的取值范围是________. 答案 (1+ln 2,3]解析 要使函数f (x )有三个不同的零点,则当x ≤0时,f (x )=2x-a3=0有一个根,此时⎩⎨⎧a >0f (0)=1-a3≥0,解得0<a ≤3.而当x >0时,f (x )=ln x -2x +a =0需有两个不同的实根,令g (x )=2x -ln x ,g ′(x )=2-1x ,当x >12时,g ′(x )>0,函数g (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递增,当0<x <12时,g ′(x )<0,函数g (x )在⎝⎛⎭⎪⎫0,12上单调递减,∴g (x )min =g ⎝ ⎛⎭⎪⎫12=1-ln 12=1+ln 2,当x →0时,g (x )→+∞,当x →+∞时,g (x )→+∞,要使方程f (x )=0在区间(0,+∞)上有两个不同的实数根,则有a >1+ln 2.综上可知,a 的取值范围为(1+ln 2,3].能力组13.[2016·武邑中学周测]已知函数f (x )=⎩⎨⎧|2x-1|,x <2,3x -1,x ≥2.若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围为( )A .(1,3)B .(0,3)C .(0,2)D .(0,1)答案 D解析 画出函数f (x )的图象如图所示.观察图象可知,若方程f (x )-a =0有三个不同的实数根,则函数y =f (x )的图象与直线y =a 有三个不同的交点,此时需满足0<a <1,故选D.14.[2016·衡水中学仿真]已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫0,12解析 作出函数f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12,x ∈[0,3)的图象(如图),f (0)=12,当x =1时,f (x )极大值=12,f (3)=72,方程f (x )-a =0在[-3,4]上有10个根,即函数y =f (x )的图象和直线y =a 在[-3,4]上有10个交点.由于函数f (x )的周期为3,则直线y =a 与f (x )的图象在[0,3)上应有4个交点,因此有a ∈⎝ ⎛⎭⎪⎫0,12. 15.[2016·衡水中学一轮检测]函数f (x )对一切实数x 都满足f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,并且方程f (x )=0有三个不同的实根,则这三个实根的和为________.答案 32解析 由题意知,函数f (x )的图象关于直线x =12对称,方程f (x )=0有三个实根时,一定有一个是12,另外两个关于直线x =12对称,其和为1,故方程f (x )=0的三个实根之和为32.16. [2016·冀州中学仿真]已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).(1)若g (x )=m 有实数根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解 (1)∵g (x )=x +e 2x ≥2e 2=2e 等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因此,只需m ≥2e ,g (x )=m 就有实数根.(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )与f (x )的大致图象.∵f (x )=-x 2+2e x +m -1=-(x-e)2+m-1+e2,∴其图象的对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).。
高考数学一轮复习讲练测(新教材新高考)专题3-8函数与方程-学生版

专题3.8函数与方程练基础1.(2021·浙江高一期末)方程340x e x +-=(其中 2.71828e = )的根所在的区间为()A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .3,22⎛⎫⎪⎝⎭2.(2021·湖北黄冈市·黄冈中学高三其他模拟)若函数2()2af x x ax =+-在区间(-1,1)上有两个不同的零点,则实数a 的取值范围是()A .2(2,)3-B .2(0,)3C .(2,+∞)D .(0,2)3.(2021·江西高三其他模拟(理))已知函数()()213f x x =+-,若函数()()()2,02,0f x kx x g x f x kx x ⎧+-≥⎪=⎨----<⎪⎩,仅有1个零点,则实数k 的取值范围为()A .(],2-∞B .(],1-∞C .(],4-∞D .(],e -∞4.(2021·全国高三其他模拟)已知()21f x ax bx =++,有下列四个命题:1p :12x =是()f x 的零点;2p :2x =是()f x 的零点;3p :()f x 的两个零点之和为14p :()f x 有两个异号零点若只有一个假命题,则该命题是()A .1p B .2p C .3p D .4p 5.(2021·山东烟台市·高三二模)已知函数()f x 是定义在区间()(),00,-∞+∞ 上的偶函数,且当()0,x ∈+∞时,()()12,0221,2x x f x f x x -⎧<≤⎪=⎨-->⎪⎩,则方程()2128f x x +=根的个数为()A .3B .4C .5D .66.【多选题】(2021·湖北荆州市·荆州中学高三其他模拟)在下列区间中,函数()43xf x e x =--一定存在零点的区间为()A .11,2⎛⎫- ⎪⎝⎭B .(,3)e -C .10,2⎛⎫ ⎪⎝⎭D .11,e ⎛⎫- ⎪⎝⎭7.【多选题】(2021·辽宁高三月考)已知定义域为R 的函数()f x 满足()1f x -是奇函数,()1f x +为偶函数,当11x -≤≤,()2f x x =,则()A .()f x 是偶函数B .()f x 的图象关于1x =对称C .()0f x =在[]22-,上有3个实数根D .()()54f f >8.(2020·全国高三专题练习)函数f (x )=(x-2)2-lnx 的零点个数为______.9.(湖南高考真题)若函数op =|2−2|−有两个零点,则实数的取值范围是_____.10.(2020·全国高三专题练习)设函数y =x 3与y =x -2的图象的交点为(x 0,y 0),若x 0∈(n ,n +1),n ∈N ,则x 0所在的区间是________.练提升1.(2021·河南高三月考(文))已知函数()22,01,0x x x f x x x⎧+<⎪=⎨>⎪⎩,若关于x 的方程()()3f x a x =+有四个不同的实根,则实数a 的取值范围是()A.(,4-∞-B.()4++∞C.0,4⎡-⎣D.(0,4-2.(2021·临川一中实验学校高三其他模拟(文))已知实数a ,b 满足11a b ⎧≤⎪⎨≤⎪⎩,若方程2210x x a b --+-=的两个实根分别为1x ,2x ,则不等12101x x -<<<<成立的概率是()A .38B .316C .12D .343.(2021·浙江杭州市·杭十四中高三其他模拟)已知二次函数()()2,f x x ax b a b R =++∈有两个不同的零点,若()2210f x x +-=有四个不同的根1234x x x x <<<,且1234,,,x x x x 成等差数列,则-a b 不可能是()A .0B .1C .2D .34.(2021·浙江湖州市·高三二模)“关于x ()x m m R =-∈有解”的一个必要不充分条件是()A .[]2,2m ∈-B .m ⎡∈⎣C .[]1,1m ∈-D .[]1,2m ∈5.(2021·辽宁高三月考)已知()f x 的定义域为[)0,+∞,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为()A .8B .9C .10D .116.(2021·浙江高三其他模拟)设b 是常数,若函数()()()212f x x bx x b =--+不可能有两个零点,则b 的取值情况不可能为()A .1b >或1b <-B .01b <<C .1D .1-7.(2021·江西抚州市·高三其他模拟(文))若函数f (x )满足11()2(2)f x f x +=+,当[0,2]x ∈时,()f x x =.若在区间(2,2]-内()()2g x f x mx m =--有两个零点则实数m 的取值范围是()A .12(,)(0,25-∞-⋃B .1,0,1825∞⎛⎫⎛⎤--⋃ ⎪ ⎥⎝⎭⎝⎦C .1,1852⎛⎫-⎪⎝⎭D .1,252⎛⎤-⎥⎝⎦8.【多选题】(2021·全国高三其他模拟)已知函数()f x 是R 上的奇函数,且满足()()()42f x f x f ++=,当()0,2x ∈时,()0f x >.则下列四个命题中正确的是()A .函数()2f x -为奇函数B .函数()2f x +为偶函数C .函数()f x 的周期为8D .函数()f x 在区间[]4,4-上有4个零点9.(2021·晋中市新一双语学校高三其他模拟(文))规定记号"Δ"表示一种运算,即()()22Δ12,,a b a b b a b =--∈R ,若0k >,函数()()Δf x kx x =的图象关于直线12x =对称,则k =___________.10.(2021·上海格致中学高三三模)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513, 2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____练真题1.(2018·全国高考真题(理))已知函数op =e ,≤0,ln ,>0,op =op ++.若g (x )存在2个零点,则a 的取值范围是A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)2.(2021年浙江省高考数学试题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则a=___________.3.(安徽高考真题)在平面直角坐标系中,若直线与函数的图像只有一个交点,则的值为.4.(2018·浙江高考真题)已知λ∈R,函数f (x )=−4,≥2−4+3,<,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.5.(2018·天津高考真题(理))已知>0,函数op =2+2B +s ≤0,−2+2B −2s >0.若关于的方程op =B恰有2个互异的实数解,则的取值范围是______________.6.(2019·江苏高考真题)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(0]9,上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.。
2021-2022年高考数学一轮复习 第二章 函数概念与基本初等函数1 第8讲 函数与方程习题 理

2021年高考数学一轮复习 第二章 函数概念与基本初等函数1 第8讲 函数与方程习题 理 新人教A 版一、填空题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点为________. 解析 由已知得b =-2a ,所以g (x )=-2ax 2-ax =-a (2x 2+x ).令g (x )=0,得x 1=0,x 2=-12. 答案 0,-122.(xx·青岛统一检测)函数f (x )=2x +x 3-2在区间(0,2)内的零点个数是________. 解析 因为函数y =2x ,y =x 3在R 上均为增函数,故函数f (x )=2x +x 3-2在R 上为增函数,又f (0)<0,f (2)>0,故函数f (x )=2x +x 3-2在区间(0,2)内只有一个零点. 答案 13.函数f (x )=|x |-k 有两个零点,则实数k 的取值范围是________.解析 函数f (x )=|x |-k 的零点就是方程|x |=k 的根,在同一坐标系内作出函数y =|x |,y =k 的图象,如图所示,可得实数k 的取值范围是(0,+∞).答案 (0,+∞)4.(xx·昆明三中、玉溪一中统考)若函数f (x )=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是________.解析 当a =0时,f (x )=1与x 轴无交点,不合题意,所以a ≠0;函数f (x )=3ax +1-2a 在区间(-1,1)内是单调函数,所以f (-1)·f (1)<0,即(5a -1)(a +1)>0,解得a <-1或a >15. 答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞ 5.已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是________.解析 依据零点的意义,转化为函数y =x 分别和y =-2x,y =-ln x ,y =x +1的交点的横坐标大小问题,作出草图(图略),易得x 1<0<x 2<1<x 3.答案 x 1<x 2<x 36.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________. 解析 求函数f (x )=3x -7+ln x 的零点,可以大致估算两个相邻自然数的函数值,如f (2)=-1+ln 2,由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.答案 2 7.(xx·湖北卷)函数f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.解析 f (x )=4cos 2x 2sin x -2sin x -|ln(x +1)|=2sin x ·⎝⎛⎭⎪⎫2cos 2x 2-1-|ln(x +1)|=sin 2x -|ln(x +1)|,令f (x )=0,得sin 2x =|ln(x +1)|.在同一坐标系中作出两个函数y =sin 2x 与函数y =|ln(x +1)|的大致图象如图所示.观察图象可知,两函数图象有2个交点,故函数f (x )有2个零点.答案 28.已知函数f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出f (x )=⎩⎨⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图.由函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1).答案 (0,1)二、解答题9.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解 (1)法一 ∵g (x )=x +e 2x ≥2e 2=2e ,图1等号成立的条件是x =e ,故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点.法二 作出g (x )=x +e 2x(x >0)的大致图象如图1. 可知若使y =g (x )-m 有零点,则只需m ≥2e.图2(2)若g (x )-f (x )=0有两个相异实根,即y =g (x )与y =f (x )的图象有两个不同的交点,在同一坐标系中,作出g (x )=x +e 2x(x >0)与f (x )=-x 2+2e x +m -1的大致图象如图2.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2.∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,y =g (x )与y =f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).10.已知关于x 的二次方程x 2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解 由条件,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,如图所示,得⎩⎪⎨⎪⎧ f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒ ⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56.即-56<m <-12. 故m 的取值范围是⎝ ⎛⎭⎪⎫-56,-12. 能力提升题组(建议用时:20分钟)11.若函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的取值为________.解析 当a =0时,函数f (x )=-x -1为一次函数,则-1是函数的零点,即函数仅有一个零点;当a ≠0时,函数f (x )=ax 2-x -1为二次函数,并且仅有一个零点,则一元二次方程ax 2-x -1=0有两个相等实根.∴Δ=1+4a =0,解得a =-14. 综上,当a =0或a =-14时,函数仅有一个零点. 答案 0或-1412.(xx·苏州调研)已知函数f (x )=⎩⎨⎧4,x ≥m ,x 2+4x -3,x <m ,若函数g (x )=f (x )-2x 恰有三个不同的零点,则实数m 的取值范围是________.解析 由题意得g (x )=⎩⎨⎧4-2x ,x ≥m ,x 2+2x -3,x <m , 又函数g (x )恰有三个不同的零点,所以方程g (x )=0的实根2,-3和1都在相应范围上,即1<m ≤2.答案 (1,2]13.(xx·湖南卷)已知函数f (x )=⎩⎨⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.解析 函数g (x )有两个零点,即方程f (x )-b =0有两个不等实根,则函数y =f (x )和y =b 的图象有两个公共点.①若a <0,则当x ≤a 时,f (x )=x 3,函数单调递增;当x >a 时,f (x )=x 2,函数先单调递减后单调递增,f (x )的图象如图(1)实线部分所示,其与直线y =b 可能有两个公共点.②若0≤a ≤1,则a 3≤a 2,函数f (x )在R 上单调递增,f (x )的图象如图(2)实线部分所示,其与直线y =b 至多有一个公共点.③若a >1,则a 3>a 2,函数f (x )在R 上不单调,f (x )的图象如图(3)实线部分所示,其与直线y =b 可能有两个公共点.综上,a <0或a >1.答案 (-∞,0)∪(1,+∞)14.(xx·南通阶段检测)是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.解 令f (x )=0,则Δ=(3a -2)2-4(a -1)=9a 2-16a +8=9⎝ ⎛⎭⎪⎫a -892+89>0恒成立,即f (x )=0有两个不相等的实数根,∴若实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0,∴a ≤-15或a ≥1. 检验:(1)当f (-1)=0时,a =1,所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1.方程在[-1,3]上有两个实数根,不合题意,故a ≠1.(2)当f (3)=0时,a =-15, 此时f (x )=x 2-135x -65. 令f (x )=0,即x 2-135x -65=0, 解得x =-25或x =3. 方程在[-1,3]上有两个实数根,不合题意,故a ≠-15. 综上所述,a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-15∪(1,+∞).。
(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)

第8讲 函数与方程[基础达标]1.(2019·浙江省名校联考)已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y A .2个 B .3个 C .4个D .5个解析:选B.依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.2.(2019·温州十校联考(一))设函数f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.法一:因为f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,所以f (1)·f (2)<0,因为函数f (x )=ln x +x -2的图象是连续的,所以函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的区间,作出两函数的图象如图所示,由图可知,函数f (x )的零点所在的区间为(1,2).3.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:选C.作出g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.4.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x-tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( )A .大于1B .大于0C .小于0D .不大于0解析:选B.y 1=⎝ ⎛⎭⎪⎫1e x是减函数,y 2=-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上也是减函数,可知f (x )=⎝ ⎛⎭⎪⎫1e x-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递减. 因为0<t <x 0,f (t )>f (x 0)=0.故选B.5.(2019·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A .14 B .18 C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C.6.(2019·宁波市余姚中学期中检测)已知函数f (x )=|x |x +2-kx 2(k ∈R )有四个不同的零点,则实数k 的取值范围是( )A .k <0B .k <1C .0<k <1D .k >1解析:选D.分别画出y =|x |x +2与y =kx 2的图象如图所示,当k <0时,y =kx 2的开口向下,此时与y =|x |x +2只有一个交点,显然不符合题意; 当k =0时,此时与y =|x |x +2只有一个交点,显然不符合题意, 当k >0,x ≥0时, 令f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2-x =0, 即x (kx 2+2kx -1)=0, 即x =0或kx 2+2kx -1=0,因为Δ=4k 2+4k >0,且-1k<0,所以方程有一正根,一负根,所以当x >0时,方程有唯一解.即当x ≥0时,方程有两个解.当k >0,x <0时,f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2+x =0,kx 2+2kx +1=0,此时必须有两个解才满足题意,所以Δ=4k 2-4k >0,解得k >1, 综上所述k >1.7.(2019·金丽衢十二校高三联考)设函数f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1,则f (f (e))=________,函数y =f (x )-1的零点为________.解析:因为f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1, 所以f (e)=ln e =1,f (f (e))=f (1)=tan 0=0,若0<x ≤1,f (x )=1⇒tan[π2(x -1)]=1, 方程无解;若x >1,f (x )=1⇒ln x =1⇒x =e. 答案:0 e 8.已知函数f (x )=23x+1+a 的零点为1,则实数a 的值为________. 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-129.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________.解析:令g (x )=0,得f (x )=12,所以⎩⎪⎨⎪⎧x ≤0,2x =12或⎩⎪⎨⎪⎧x >0,|log 2x |=12,解得x =-1或x =22或x =2,故函数g (x )=f (x )-12的零点所构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2 10.(2019·杭州学军中学模拟)已知函数f (x )=|x 3-4x |+ax -2恰有2个零点,则实数a 的取值范围为________.解析:函数f (x )=|x 3-4x |+ax -2恰有2个零点即函数y =|x 3-4x |与y =2-ax的图象有2个不同的交点.作出函数y =|x 3-4x |的图象如图,当直线y =2-ax 与曲线y =-x 3+4x ,x ∈[0,2]相切时,设切点坐标为(x 0,-x 30+4x 0),则切线方程为y -(-x 30+4x 0)=(-3x 20+4)(x -x 0),且经过点(0,2),代入解得x 0=1,此时a =-1,由函数图象的对称性可得实数a 的取值范围为a <-1或a >1.答案:a<-1或a >111.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).12.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象(图略),由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54. [能力提升]1.(2019·杭州市富阳二中高三质检)已知函数f (x )=⎩⎪⎨⎪⎧e x-2(x ≤0)ln x (x >0),则下列关于函数y =f [f (kx )+1]+1(k ≠0)的零点个数的判断正确的是( )A .当k >0时,有3个零点;当k <0时,有4个零点B .当k >0时,有4个零点;当k <0时,有3个零点C .无论k 为何值,均有3个零点D .无论k 为何值,均有4个零点 解析:选C.令f [f (kx )+1]+1=0得,⎩⎪⎨⎪⎧f (kx )+1≤0,e f (kx )+1-2+1=0或⎩⎪⎨⎪⎧f (kx )+1>0ln[f (kx )+1]+1=0, 解得f (kx )+1=0或f (kx )+1=1e ;由f (kx )+1=0得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=0或⎩⎪⎨⎪⎧kx >0ln (kx )=-1; 即x =0或kx =1e ;由f (kx )+1=1e得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=1e 或⎩⎪⎨⎪⎧kx >0ln (kx )+1=1e ; 即e kx=1+1e (无解)或kx =e 1e -1;综上所述,x =0或kx =1e 或kx =e 1e -1;故无论k 为何值,均有3个解,故选C.2.(2019·宁波市高三教学评估)设函数f (x )=ax 2+bx +c (a ,b ,c ∈R 且a >0),则“f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-b 2a <0”是“f (x )与f (f (x ))都恰有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由已知a >0,函数f (x )开口向上,f (x )有两个零点,最小值必然小于0,当取得最小值时,x =-b2a ,即f ⎝ ⎛⎭⎪⎫-b 2a <0,令f (x )=-b2a ,则f (f (x ))=f ⎝ ⎛⎭⎪⎫-b 2a ,因为f ⎝ ⎛⎭⎪⎫-b 2a <0,所以f (f (x ))<0,所以f (f (x ))必有两个零点.同理f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫b 2a <0⇒f ⎝ ⎛⎭⎪⎫-b 2a <0⇒x =-b2a ,因为x =-b2a 是对称轴,a >0,开口向上,f ⎝ ⎛⎭⎪⎫-b 2a <0,必有两个零点所以C 选项正确.3.(2019·瑞安市龙翔高中高三月考)若关于x 的不等式x 2+|x -a |<2至少有一个正数解,则实数a 的取值范围是________.解析:不等式为2-x 2>|x -a |,则0<2-x 2.在同一坐标系画出y =2-x 2(y ≥0,x ≥0)和y =|x |两个函数图象,将绝对值函数y =|x |向左移动,当右支经过(0,2)点时,a =-2;将绝对值函数y =|x |向右移动让左支与抛物线y =2-x 2(y ≥0,x ≥0)相切时,由⎩⎪⎨⎪⎧y -0=-(x -a )y =2-x2,可得x 2-x +a -2=0, 再由Δ=0解得a =94.数形结合可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫-2,94. 答案:⎝⎛⎭⎪⎫-2,944.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,g (x )=log 12x ,记函数h (x )=⎩⎪⎨⎪⎧g (x ),f (x )≤g (x ),f (x ),f (x )>g (x ),则函数F (x )=h (x )+x -5的所有零点的和为________.解析:由题意知函数h (x )的图象如图所示,易知函数h (x )的图象关于直线y =x 对称,函数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以x 1+x 22=5-x 1+x 22,所以x 1+x 2=5.答案:55.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解:(1)法一:因为g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点. 所以m 的取值范围是[2e ,+∞).法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使y =g (x )-m 有零点,则只需m ≥2e,即m 的取值范围是[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的大致图象.因为f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. 所以其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.所以m 的取值范围是(-e 2+2e +1,+∞).6.(2019·绍兴一中高三期中)已知函数f (x )=x |x -a |+bx . (1)当a =2,且f (x )是R 上的增函数,求实数b 的取值范围;(2)当b =-2,且对任意a ∈(-2,4),关于x 的方程f (x )=tf (a )有三个不相等的实数根,求实数t 的取值范围.解:(1)f (x )=x |x -2|+bx =⎩⎪⎨⎪⎧x 2+(b -2)x ,x ≥2-x 2+(b +2)x ,x <2,因为f (x )连续,所以f (x )在R 上递增等价于这两段函数分别递增, 所以⎩⎪⎨⎪⎧2-b2≤22+b 2≥2,解得,b ≥2.(2)f (x )=x |x -a |-2x =⎩⎪⎨⎪⎧x 2-(a +2)x ,x ≥a -x 2+(a -2)x ,x <a ,tf (a )=-2ta ,当2≤a <4时,a -22<a +22≤a ,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a 上单调递减,在(a ,+∞)上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f (a )=-2a ,所以⎩⎪⎨⎪⎧-2a <-2ta ,a 24-a +1>-2ta 对2≤a <4恒成立,解得0<t <1,当-2<a <2时,a -22<a <a +22,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a +22上单调递减,在⎝ ⎛⎭⎪⎫a +22,+∞上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f ⎝ ⎛⎭⎪⎫a +22=-a 24-a -1,所以-a 24-a -1<-2ta <a 24-a +1对-2<a <2恒成立,解得0<t <1,综上所述,0<t <1.。
2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第8讲函数与方程课件

解法二:(图象法)函数 f(x)的图象如图所示,
由图象知函数 f(x)共有 2 个零点.
2.已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)
=2|x|-1,则函数g(x)=f(x)-|lg x|的零点个数是( B )
A.9
B.10
C.11
D.18
[解析] 由函数y=f(x)的性质,画出函数y=f(x)的图象,如图,再
考向 2 函数零点个数的确定——师生共研
x2+x-2,x≤0, 1.函数 f(x)=-1+ln x,x>0 的零点个数为( B )
A.3
B.2
C.7
D.0
[解析] 解法一:(直接法)由 f(x)=0 得
x≤0,
x>0,
x2+x-2=0 或-1+ln x=0,
解得 x=-2 或 x=e.
因此函数 f(x)共有 2 个零点.
2.几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与__x_轴__有交点⇔函数y= f(x)有__零__点____.
3.函数零点的判定(零点存在性定理)
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并 且有___f_(_a_)f_(_b_)<__0_____,那么函数y=f(x)在区间(a,b)内有零点,即存 在c∈(a,b),使得___f_(c_)_=__0__,这个c也就是方程f(x)=0的根.
点所在的大致区间是( C )
1
A.e,1
C.(2,e)
B.(1,2) D.(e,+∞)
2 [解析] y=f(x)=ln x-x的定义域为(0,+∞),因为 y=ln x 与 y=
2
2
-x在(0,+∞)上单调递增,所以 f(x)=ln x-x在(0,+∞)上单调递增,
第22章《二次函数》讲义 第8讲 二次函数与方程(有答案)

第3讲 二次函数与方程、不等式1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.(1)、a+b+c 的符号:由x=1时抛物线上的点的位置确定:点在x 轴上方,则a+b+c 。
点在x 轴下方,则a+b+c 。
点在x 轴上,则a+b+c 。
(2)、a-b+c 的符号:由x=-1时抛物线上的点的位置确定:点在x 轴上方,则a -b+c 。
点在x 轴下方,则a -b+c 。
点在x 轴上,则a -b+c 。
(3)、2a±b 的符号: 由对称轴与X=1或X=-1的位置相比较的情况决定. (4)、b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0; 1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.1、二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①、当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. ②、当0∆=时,图象与x 轴只有一个交点;③、当0∆<时,图象与x 轴没有交点.(1)当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;(2)当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2、抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3、二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母考点1、待定系数法求二次函数解析式例1、已知点A(2,3)在函数y=ax2-x+1的图象上,则a等于()A.-1 B.1 C.2 D.-2例2、若一次函数y=x+m2与y=2x+4的图象交于x轴上同一点,则m的值为()A.m=2 B.m=±2 C.m=D.m=±例3、已知抛物线顶点为(1,3),且与y轴交点的纵坐标为-1,则此抛物线解析式是.例4、已抛物线过点A(-1,0)和B(3,0),与y轴交于点C,且BC=,则这条抛物线的解析式为.例5、二次函数y=2x2+bx+c的图象经过点(2,3),且顶点在直线y=3x-2上,则二次函数的关系式为:.例6、已知二次函数的图象经过点(0,-1)、(1,-3)、(-1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.例7、已知抛物线y=ax2+bx+c的顶点在直线y=x上,且这个顶点到原点的距离为又知抛物线与x轴两交点横坐标之积等于-1,求此抛物线的解析式.1、已知抛物线的顶点坐标是(2,1),且抛物线的图象经过(3,0)点,则这条抛物线的解析式是()A.y=-x2-4x-3 B.y=-x2-4x+3 C.y=x2-4x-3 D.y=-x2+4x-32、已知抛物线y=ax2+bx+c与x轴交点的横坐标的和为-4,积是-5,且抛物线经过点(0,-5),则此抛物线的解析式为( C )A.y=x2-4x-5 B.y=-x2+4x-5 C.y=x2+4x-5 D.y=-x2-4x-53、已知二次函数y=x2+bx+c的图象过A(c,0),对称轴为直线x=3,则此二次函数解析式为.4、抛物线y=ax2+bx+c中,已知a:b:c=l:2:3,最小值为6,则此抛物线的解析式为.5、已知y与x2+2成正比例,且当x=1时,y=6.(1)求y与x之间的函数关系式;(2)若点(a,12)在函数图象上,求a的值.6、如图,抛物线y=2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.考点2、函数与方程例1、如果抛物线y=x2+(k-1)x+4与x轴有且只有一个交点,那么正数k的值是()A.3 B.4 C.5 D.6例2、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则以下关于m的结论正确的是()A.m的最大值为2 B.m的最小值为-2C.m是负数D.m是非负数例3、设抛物线y=x2+kx+4与x轴有两个不同的交点(x1,0),(x2,0),则下列结论中,一定成立的是()A.x12+x22=17 B.x12+x22=8 C.x12+x22<17 D.x12+x22>8例4、已知抛物线y=x2-2ax+a+2的顶点在x轴上,则方程的实数根的积为.☆例5、已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若m为整数,且抛物线y=mx2-(3m-1)x+2m-2与x轴两交点间的距离为2,求抛物线的解析式;(3)若直线y=x+b与(2)中的抛物线没有交点,求b的取值范围.1、抛物线y=x2-2x-3与坐标轴的交点个数为()A.0个B.1个C.2个D.3个2、如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是()A.b=0 B.S△ABE=c2 C.ac=-1 D.a+c=03、二次函数y=ax2+bx+c的图象与x轴相交于(-1,0)和(5,0)两点,则该抛物线的对称轴是.4、已知抛物线y=x2+kx+4-k交x轴于整点A、B,与y轴交于点C,则△ABC的面积为.5、已知关于x的函数y=ax2+x+1(a为常数)(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.考点3、二次函数与不等式(组)例1、如图,是二次函数和一次函数y2=mx+n的图象,观察图象,写出y1>y2时x的取值范围是()A.-2<x<1 B.x<-2或x>1 C.x>-2 D.x<1例2、若函数y=mx2+mx+m-2的值恒为负数,则m取值范围是()例3、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(1,3)及部分图象(如图所示),其中图象与横轴的正半轴交点为(3,0),由图象可知:①当x 时,函数值随着x的增大而减小;②关于x的一元二次不等式ax2=bx+c>0的解是.例4、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于 A(-2,4)、B(8,2)两点,则能使关于x的不等式ax2+(b-k)x+c-m>0成立的x的取值范围是.例5、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.1、抛物线y=ax2+bx+c(a>0)和直线y=mx+n(m≠0)相交于两点P(-1,2),Q(3,5),则不等式-ax2+mx+n>bx+c的解集是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32、已知:二次函数y=x2-4x+a,下列说法中错误的个数是()①当x<1时,y随x的增大而减小②若图象与x轴有交点,则a≤4③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3.A.1 B.2 C.3 D.43、直线y=-3x+2与抛物线y=x24、已知函数y=x2-2x-3的图象,根据图象回答下列问题.(1)当x取何值时y=0.(2)方程x2-2x-3=0的解是什么?(3)当x取何值时,y<0?当x取何值时,y>0?(4)不等式x2-2x-3<0的解集是什么?5、如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,-3),一次函数y2=mx+n的图象过点A、C.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的另一个交点A的坐标;(3)根据图象写出y2<y1时,x的取值范围.1、一抛物线和抛物线y=-2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为()A.y=-2(x-1)2+3 B.y=-(2x+1)2+3C.y=-2(x+1)2+3 D.y=-(2x-1)2+32、已知关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是1,-1,给出下列结论:①a+b+c=0;②b=0;③a=1.c=-1.其中正确的是()A.①②B.①③C.②③D.①②③3、已知:二次函数y=x2-4x-a,下列说法中错误的个数是()①若图象与x轴有交点,则a≤4②若该抛物线的顶点在直线y=2x上,则a的值为-8③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-1⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.A.1 B.2 C.3 D.44、二次函数y=ax2+bx+c的图象如图所示,则这个二次函数的关系式为,5、如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1.若抛物线与x轴一个交点为A(3,0),则由图象可知,不等式ax2+bx+c≥0的解集是:.6、若关于x的方程3x2+5x+11m=0的一个根大于2,另一根小于2,则m的取值范围是.7、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(-2,4),B(8,2),则能使y1<y2成立的x的取值范围是.8、已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点,则这条抛物线的对称轴是.9、如图,抛物线y=ax2+bx+c经过A(-4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(-4,0)、C(0,3)两点.(1)写出方程ax2+bx+c=0的解;(2)若ax2+bx+c>mx+n,写出x的取值范围.10、已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与x轴的交点B及与y轴的交点C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.11、如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).(1)求直线AB的解析式;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)结合(1)(2)及图象,直接写出使一次函数的值大于二次函数的值的x的取值范围.1、若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<bC.x1<a<b<x2 D.a<x1<b<x22、已知直线与x轴交于点A,与y轴交于点B,C是x轴上一点,如果∠ABC=∠ACB,求:(1)点C的坐标;(2)图象经过A、B、C三点的二次函数的解析式.3、在直角坐标平面内,二次函数图象的经过A(-1,0)、B(3,0),且过点C(0,3).(1)求该二次函数的解析式;(2)若P是该抛物线上一点,且△ABC与△ABP面积相同,求P的坐标.1、抛物线y=x2-mx+m-2与x轴交点的情况是()A.无交点B.一个交点C.两个交点D.无法确定2、已知函数y=ax2+bx+z的图象如图所示,那么函数解析式为()A.y=-x2+2x+3 B.y=x2-2x-3 C.y=-x2-2x+3 D.y=-x2-2x-33、如图,已知直线y=kx+b(k>0)与抛物线y=x2交于A、B两点(A、B两点分别位于第二和第一象限),且A、B两点的纵坐标分别是1和9,则不等式x2-kx-b>0的解集为()A.-1<x<3 B.x<-1或x>3C.1<x<9 D.x<1或x>9(2)(3)4、已知二次函数y=2x2-(4k+1)x+2k2-1的图象与x轴交于两个不同的点,则关于x的一元二次方程2x2-(4k+1)x+2k2-1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定5、已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,F B.E,G C.E,H D.F,G6、已知抛物线y=(m-1)x2+x+1与x轴有交点,则m范围是.7、已知二次函数的图象关于直线x=3对称,最大值是0,在y轴上的截距是-1,这个二次函数解析式为.8、如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c=0④ax2+bx+c=0的两根分别为-3和1;⑤8a+c>0.其中正确的命题是.9、如图二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)观察图象,当x取何值时,y<0?y=0?y>0?10、已知函数y=ax2+bx+c的图象如图所示,试根据图象回答下列问题:(1)求出函数的解析式;(2)写出抛物线的对称轴方程和顶点坐标?(3)当x取何值时y随x的增大而减小?(4)方程ax2+bx+c=0的解是什么?(5)不等式ax2+bx+c>0的解集是什么?11、如图,抛物线y=-x2+3x-n经过点C(0,4),与x轴交于两点A、B.(1)求抛物线的解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值.12、如图,△AOB是边长为2的等边三角形,过点A的直线y=点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线的解析式.参考答案第8讲二次函数与方程、不等式考点1、待定系数法求二次函数解析式例1、B例2、D例3、例4、例5、例6、例7、1、D2、C3、4、5、6、考点2、函数与方程例1、C例2、A例3、D例4、例5、解:(1)证明:分两种情况讨论.①当m=0时,方程为x-2=0,∴x=2,方程有实数根;②当m≠0,则一元二次方程的根的判别式△=[-(3m-1)]2-4m(2m-2)=9m2-6m+1-8m2+8m=m2+2m+1=(m+1)2∴不论m为何实数,△≥0成立,∴方程恒有实数根;综合①、②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根.(2)设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标.令y=0,则mx2-(3m-1)x+2m-2=0∴抛物线y=mx2-(3m-1)x+2m-2不论m为任何不为0的实数时恒过定点(2,0).∵|x1-x2|=2,∴|2-x2|=2,当m=1时,y=x2-2x,把(2,0)代入,左边=右边,m=1符合题意,∴抛物线解析式为y=x2-2x答:抛物线解析式为y=x2-2x;1、D2、D3、4、5、考点3、二次函数与不等式(组)例1、B例2、C例3、例4、例5、1、C2、A3、4、5、1、C2、A3、B4、5、6、7、8、9、10、11、1、C2、3、1、C2、A3、B4、B5、C6、7、8、9、10、11、12、31。
2021届数学大一轮复习【福建专用,理】课时作业,第二章 第8讲 函数与方程 Word版含答案

第8讲函数与方程一、选择题1.“a<-2”是“函数f(x)=ax+3在区间[-1,2]上存在零点x0”的( ) A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析当a<-2时,函数f(x)=ax+3在区间[-1,2]上单调递减,此时f(-1)=3-a>0,f(2)=3+2a<0,所以函数f(x)=ax+3在区间[-1,2]上存在零点x;当函数f(x)=ax+3在区间[-1,2]上存在零点x0时,有f(-1)f(2)<0,即2a2-3a-9>0,解得a>3或a<-3 2 .答案 A2.下列函数图像与x轴均有公共点,其中能用二分法求零点的是( )解析能用二分法求零点的函数必需在含零点的区间(a,b)内连续,并且有f(a)·f(b)<0.A、B、D中函数不符合.答案 C3.函数f(x)=2x-2x-a的一个零点在区间(1,2)内,则实数a的取值范围是().A.(1,3) B.(1,2)C.(0,3) D.(0,2)解析由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a-3)<0,解之得0<a<3. 答案 C 4.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为().A.6 B.7 C.8 D.9解析当0≤x<2时,令f(x)=x3-x=0,得x=0或x=1.依据周期函数的性质,由f(x)的最小正周期为2,可知y=f(x)在[0,6)上有6个零点,又f(6)=f(3×2)=f(0)=0,∴f(x)在[0,6]上与x轴的交点个数为7.答案 B5.函数f(x)=x-cos x在[0,+∞)内().A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点解析令f(x)=0,得x=cos x,在同一坐标系内画出两个函数y=x与y=cos x的图象如图所示,由图象知,两个函数只有一个交点,从而方程x=cos x只有一个解.∴函数f(x)只有一个零点.答案 B6.已知函数f(x)=x e x-ax-1,则关于f(x)零点叙述正确的是( ).A.当a=0时,函数f(x)有两个零点B.函数f(x)必有一个零点是正数C.当a<0时,函数f(x)有两个零点D.当a>0时,函数f(x)只有一个零点解析f(x)=0⇔e x=a+1x在同一坐标系中作出y=e x与y=1x的图象,。
函数、方程、不等式之间的关系

函数、方程、不等式之间的关系很多学生在学习中把函数、方程和不等式看作三个独立的知识点。
实际上,他们之间的联系非常紧密。
如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。
★函数与方程之间的关系。
先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。
对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。
如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。
我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。
所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。
这个方程的解也就是原先的函数图像与x 轴交点的横坐标。
这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。
举例说明如下:例如函数23y x =-的图像如右所示:该函数与x 轴的交点坐标为3(,0)2,也就是在函数解析式23y x =-中,令0y =即可。
令0y =也就意味着将一元一次函数23y x =-变成了一元一次方程230x -=,其解和一次函数与x 轴的交点的横坐标是相同的。
接下来推广到二次函数:例如函数2252y x x =-+的图像如右图所示:很容易验证,该函数图象与x 轴的交点的横坐标正是方程22520x x -+=的解。
如果右边的函数图象是通过列表、描点、连线的方式作出来的,虽然比较精确,但过程十分繁琐。
在实际中,很多时候并不要求我们把函数图象作得很精准。
有时候只需要作出大致图像即可。
既然上面讲述了函数图象与对应的方程之间的关系,我们可不可以通过利用方程的根来绘制对应的函数图象呢函数2252y x x =-+对应的方程是22520x x -+=,先求出这个方程的两个解。
很容易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为12和2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲《函数与方程》
【学习目标】理解零点与方程实数解的关系,掌握函数的概念,性质,图像和方法的综合问题,熟悉导数与零点的结合,方程,不等式,数列与函数结合的问题。
【基础知识回顾】:
1、
2.用二分法求方程近似解的一般步骤:
【基础知识自测】
1、已知不间断函数)(x f 在区间[]b a ,上单调,且)()(b f a f ∙<0,则方程0)(=x f 在区间⎣⎦b a ,上 ( ) (A ) 至少有一实根 ( B ) 至多有一实根 (C )没有实根 ( D )必有唯一的实根
2、函数x
x f x 2ln )(-
=的零点所在的大致区间是( )
(A ) (1,2) ( B ) (2,3) ( C ) (e,3) ( D )(e,+∞) 4、若函数)(x f 的图像与函数)(x g 的图像有且只有一个交点,则必有( )
(A )、函数)(x f y =有且只有一个零点 (B )、函数)(x g y =有且只有一个零点 C 、函数)()(x g x f y +=有且只有一个零点 D 、函数)()(x g x f y -=有且只有一个零点
5、已知y=x(x-1)(x+1)的图像如图所示,令f(x)=x(x-1)(x+1)+0.01,则下列关于f(x)=0的解得叙述正确的是
① 有三个实根 ② 当x>1时,恰有一实根
③当0<x<1时,恰有一实根 ④当-1<x<0时,恰有一实根 ⑤当-x<-1时,恰有一实根
【典型例题剖析】
一、确定函数的零点
例1、判断方程0243
=--x x 在区间[]0,2-内至少有几个实数解,并说明理由。
跟踪练习:已知函数f(x)的图像是连续不断的,有如下的x,f(x)对应填表:
则函数在区间[]61,
上的零点至少有( )
A 2个
B 3个
C 4个
D 5个 二、用二分法解决函数的零点问题
例2、用二分法求函数f(x)=13--x x 在区间⎥
⎦⎤
⎢⎣
⎡23,1内的一个零点。
(精确到0.1)
跟踪练习:已知函数f(x)=4323-+-a ax ax 在区间(-1,1)上有零点
(1) 求实数a 的取值范围。
(2) 若a=
17
32,用二分法求方程f(x)=0,在(-1,1)上的根。
三.函数与方程综合问题
例3、已知二次函数c bx ax x f ++=2)(。
(1) 若a>b>c,且0)1(=f ,试证明)(x f 必有两个零点; (2) 若对R x x ∈2,1且,21x x <)()(21x f x f ≠,方程)]()([2
1)(21x f x f x f +=
有两个不等
实根,证明必有一实根属于(2,1x x )。
跟踪练习:若方程,cos sin 3a x x =+在x ∈[]π2,0上有两个不同的实数解21,x x ,求a 的取值
范围,以及此时21x x +的值。
《第八讲 函数与方程》当堂检测
班级 姓名 分数
1.函数
x
x f x
9lg )(-
=的零点所在的大致区间为( )
A (6,7)
B (7,8)
C (8,9)
D (9,10)
2.已知函数f(x)=2log )2(-+-x x
a ,若f(x)存在零点,则实数a 的取值范围是( ) A [)(]∞+-∞-,,44 B [)∞+,1 C [)∞+,2 D [)∞+,4 3.若函数f(x)=x a -x-a(a>0且a 1≠)有两个零点,则实数a 的取值范围是 4.已知函数f(x)=x 2
1log
,则方程)
()
2
1
x f x
=(的实根个数是
5.已知二次函数12)2(24)(22+----=p p x p x x f 在区间[]1,1-内至少存在一个实数c,使f(c)>0,求实数p 的取值范围。
《第八讲 函数与方程》课后定时达标训练
命题人:陈强 审核 :董茂庆 2010.9
1.已知函数f(x)=ax+b 有一个零点2,那么函数g(x)=ax bx -2的零点是( ) A 0,2 B 0,
2
1 C 0,2
1-
D 2,2
1-
2.已知函数f(x)为偶函数,其图像与x 轴有四个交点,则该函数的所有零点之和为 ( ) A 0 B 2 C 1 D 4 3.关于x 的方程12-x =k,给出下列四个命题:
①存在实数k ,使得方程恰有1个零根; ②存在实数k ,使得方程恰有1个正根; ③存在实数 k ,使得方程恰有1个正根,一个负根;④存在实数k ,使得方程没有实根 ④存在实数k ,使得方程没有实根 其中真命题的个数是( )
A 1
B 2
C 3
D 4 4.设函数)0(ln 3
1)(>-=
x x x f x
,则y=f(x) ( )
A 在区间)1,1(e ,),1(e 内均有零点
B 在区间)1,1(e
,),1(e 内均无零点 C 在区间)1,1
(e
内有零点,在区间),1(e 内无零点 D 在区间)1,1(e 内无零点,在区间),1(e 内有零点
5.关于x 的二次方程01)1(2
=+-+x m x 在区间[]2,0上有解,则实数m 的取值范围为 。
6.设函数32)(2--=x x x f ,(1)求函数f(x)的零点; (2)讨论方程k x x =--322(k R ∈)解得情况。
7.已知函数ax
(;(1)求证:当1<a<4时,方程f(x)=0在(1,2)内有根=3
)
x
x
f-
(2)若f(x)在[)∞
1上是单调函数,求实数a的取值范围。
,
+。