方法最全的数列求和PPT课件

合集下载

数列求和的几种方法PPT课件

数列求和的几种方法PPT课件
第2页/共11页
练习:(2003s)设f x 1 ,利用课本中
2x 2 推导等差数列前n项和的公式的方法,可求得
f 5 f 4 f 0 f 5 f 6
的值为 3 2 。
第3页/共11页
2、错位相减法
例2:求: 1 2
2 22
3 23
n 2n
1 an n 2n
问题:什么时候用错位相减的方法求数列和?
通过拆项,能将数列转化成两个或若干个等差或等比数 列的和或差的形式来求和。
第6页/共11页
4、拆项抵消
例4:求: 1 1
2
1 2
3
1
nn
1
1 11
an nn 1 n n 1
问题:什么时候用拆项抵消的方法求数列和?
将数列的每一项(实际就是通项)拆分成两项, 在求和时除前、后若干项外,中间各项能够相互抵消。
n
1 2
5 4
9 8
......
4n 2n
3.
5 求:S
n
1
3 2
5 4
7 8
......
(1)n1
2n 1 2n1
.
第10页/共11页
感谢观看!
第11页/共11页
1 2
1
1 3
1 ...... 2 2 3
1 n 1
. n
第9页/共11页
练习:
(1)求数列 :1 1,2 1,3 1 3 9 27
,, n
1 3n

和S

n
(2)求数列 :1 ,11,111,,111(n个1) 的和Sn.
(3)求:S
n
1 1
3
1

数列的求和方法(ppt)

数列的求和方法(ppt)
分组求和法:有一等比或者其他常见数列(即可用倒序相加,错位相减或 裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项 和。
错位相减法:形如An=BnCn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等 比数列,首项为c1,公比为q。对数列{An}进行求和,首先列出Sn,记为①式;再把① 式中所有项同乘等比数列{Cn}的公比q,即得qSn,记为②式;然后①②两式错开一位 做差,从而得到{An}的前n项和。这种数列求和方式叫作错位相减。
数列的求和方法(ppt)
演讲人
目录
01
数列概念
02
等差数列思维导图
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘 公比错项相减(等差×等比)、公式法、迭加法。
倒序相加法:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于 同一个常数,则求该数列的前n项和即可用倒序相加法。例如等差数列的求和公 式,就可以用该方法进行证明。
等差数列思维导图
一般地来说如果一个数列从第2项起,每一项与它的前一项的差等于同一个常 数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字 母d表示,前n项和用Sn表示。
谢谢
裂项相消法:裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互 抵消,从而求得其和。
乘公比错项相减(等差×等比):这种方法是在推导等比数列的前 n 项和公式时所用的 方法,这种方法主要用于求数列(anxbn)的前n项和,其中(an),(bn)分别是 等差数列和等比数列。
公式法:对等差数列、等比数列,求前n项和Sn可直接用等差、等 比数列的前n项和公式进行求解。运用公式求解的注意事项:首先 要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

方法最全的数列求和ppt课件

方法最全的数列求和ppt课件
相消法,即利用 anacn+1=dca1n-an1+1
(其中d=an+1-an).
12
常见的拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
4. 1 1 ( a b) a b ab
所以 的通项公式为: 19
(Ⅱ)设求数列
31
2
∴ Tn
(2n
1) 3n1 4
3
17
已知 an是递增的等差数列,
a2 , a4 是方程 x2 5x 6 0 的根。
(I)求 an的通项公式;
(II)(II)求数列
an 2n
的前
n
项和.
18
(I)方程
由题意得

的两根为 2,3, ,
设数列 的公差为 d,,

,故 d= ,从而

2 23 34
10 11 11 11
3分 4分 6分 8分
8
等比数列 an 的各项均为正数,且 2a1 3a2 1, a32 9a2a6.
(Ⅰ)求数列an 的通项公式.
(Ⅱ)设
bn
log3
a1
log3
a2
......
log3
an ,
求数列
1 bn
的前
n
项和.
9
(Ⅰ)设数列{an}的公比为 q,由 a32 9a2a6
5.
1
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
13

数列求和的基本方法和技巧ppt课件

数列求和的基本方法和技巧ppt课件
1
ppt精选版
数列求和基本方法:
公式法 分组求和法 错位相减法 裂项相消法 并项求合法
2
ppt精选版
一.公式法:即 直 接 用 求 和 公 式 , 求 数 列 的 前 n 和 S n
①等差数列的前n项和公式:
Sn
n(a1 2
an )
na1
n(n 1) 2
d
②等比数列的前n项和公式 ③ 1 23 n 1 n (n 1)
:Sn
na1(q a1(1
1) qn )
1 q
a1 anq 1 q
(q
1)
2
④ 12 22 32
n2
1n(n1)(2n1) 6
⑤ 13 23 33
n3
n (n 1) 2 2
ppt精选版
3
例1:求和:
1 . 4 6 8 … … + ( 2 n + 2 )
2.1111 1
37
ppt精选版
2.(2013·唐山统考)在等比数列{an}中,a2a3=32,a5=32. (1)求数列{an}的通项公式;
(2)设数列{an}的前 n 项和为 Sn,求 S1+2S2+…+nSn.
解:(1)设等比数列{an}的公比为 q,依题意得
a1q·a1q2=32, a1q4=32,
解得 a1=2,q=2,
20
ppt精选版
常见的裂项公式有:
1. 1 1 1 n(n1) n n1
2. 1 1(1 1 ) n(nk) k n nk
3. 1 1( 1 1) (2n1)2 (n1) 22n12n1
4. 1 1 ( a b) a b ab
5 . 1 1 [ 1 1 ] n (n 1 )n ( 2 ) 2n (n 1 ) (n 1 )n ( 2 )

数列求和方法总结PPT课件

数列求和方法总结PPT课件

有一类数列,既不是等差数列,也不是等比 数列,若将这类数列适当拆开,可分为几个等差、 等比或常见的数列,然后分别求和,再将其合并 即可.
-
6
例2:求数列的前n项和:1 1, 1 4, 1 7, , 1 3n 2,…
a a2
a n1
-
7
练习 : 求数列1 1 2
,3 1 4
,5
1 8
-
1
本节概要 数列求和的常用方法
-
2
等差数列前 n 项和公式:
Sn
n(a1 2
an )
na1
n(n 1) 2
d

等比数列前 n
项和公式:
Sn
na1(q a1(1
1) qn)
1 q
a1 anq 1 q
(q
1)

自然数方幂和公式:1 2 3 n 1 n(n 1) 2
12 22 32 n2 1 n(n 1)(2n 1) 6
2n 2n
…………………………………①
1 2
Sn
2 22
4 23
6 24
2n 2 n1
………………………………②
(设制错位)
①-②得(1
1 2
)S
n
2 2
2 22
2 23
2 24
2 2n
2n 2 n 1
2 1 2n 2n1 2n1

Sn
4
n2 2 n 1
-
17
这是推导等差数列的前n项和公式时所用的 方法,就是将一个数列倒过来排列,再把它与原 数列相加。
-
18

5.设
f
(x)
4 x , 则f 4x 2

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

跟踪训练2 (2023·重庆模拟)在①a1=1,nan+1=(n+1)·an,② 2a1 + 2a2 +…+2an =2n+1-2这两个条件中任选一个,补充在下面的问题中并作答. 问题:在数列{an}中,已知________. 注:如果选择多个条件分别解答,按第一个解答计分. (1)求{an}的通项公式;
(2)若bn=
2an 1 3an
,求数列{bn}的前n项和Sn.
由(1)可知 bn=2n3-n 1,
则 Sn=311+332+…+2n3-n 1,

13Sn=312+333+…+2n3-n 3+23nn-+11.

两式相减得23Sn=13+322+323+…+32n-23nn-+11=13+2911--313n1-1-23nn-+11
教材改编题
2.数列{an}的前 n 项和为 Sn.若 an=nn1+1,则 S5 等于
A.1
√B.56
C.16
D.310
因为 an=nn1+1=1n-n+1 1, 所以 S5=a1+a2+…+a5=1-12+12-13+…-16=56.
教材改编题
3.Sn=12+12+38+…+2nn等于
2n-n-1 A. 2n
第六章 数 列
§6.5 数列求和
考试要求
1.熟练掌握等差、等比数列的前n项和公式. 2.掌握非等差数列、非等比数列求和的几种常用方法.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练

一 部 分
落实主干知识
知识梳理
数列求和的几种常用方法
1.公式法
直接利用等差数列、等比数列的前n项和公式求和.

第讲数列的求和精选课件

第讲数列的求和精选课件
若一个数列是由等比数列或是等差数列组成,以 考查公式为主,可先分别求和,再将各部分合并,这就是我们说 的分组求和.
【互动探究】 1.(2019 年陕西)已知{an}是公差不为零的等差数列,a1=1,
且 a1,a3,a9 成等比数列. (1)求数列{an}的通项公式; (2)求数列{2 a n}的前 n 项和 Sn.
4.数列 112,214,318,…,n+21n,…的前 n 项和 Sn=______ __12_n_(n_+__1_)_+__1_-__21_n___.
5.数列{an}的通项公式 an=
1 n+
n+1,若前
n
项的和为
10,
则项数 n=___1_2_0___.
考点1 利用公式或分组法求和
例1:(2011 年重庆)设{an}是公比为正数的等比数列,a1=2, a3=a2+4.
数列求和常用的方法
1.公式法 (1)等差数列{an}的前
n
项和公式:Sn=nnaa1+ 12+nann2-,1d.
(2)等比数列{an}的前n项和Sn:①当q=1时,Sn=__n_a_1_;
a11-qn
a1-anq
②当 q≠1 时,Sn=____1_-__q___=____1_-__q__.
2.分组求和法 把一个数列分成几个可以直接求和的数列. 3.错位相减法 适用于一个等差数列和等比数列对应项相乘构成的数列求 和. 4.裂项相消法 有时把一个数列的通项公式分成两项差的形式,相加过程消 去中间项,只剩有限项再求和.
解析:(1)P1(-1,0),an=n-2,bn=2n-2. (2)f(n)=n2- n-2, 2,n为 n为奇偶数数,. 假设存在符合条件. ①若 k 为偶数,则 k+5 为奇数. 有 f(k+5)=k+3,f(k)=2k-2. 如果 f(k+5)=2f(k)-2,则 k+3=4k-6⇒k=3 与 k 为偶数矛 盾.故不符(舍去). ②若 k 为奇数,则 k+5 为偶数, 有 f(k+5)=2k+8,f(k)=k-2. ∴2k+8=2(k-2)-2 这样的 k 也不存在. 综上所述:不存在符合条件的 k.

数列求和(23张PPT)

数列求和(23张PPT)
n 1 n 1 n 1 n 1 (1 6n 5) (a1 an ) 2 2 4 ( 1 4 ) a ( 1 4 ) 2 2 2 2 1 4 2 1 4

2
n2
9n 3n 14 6
2
例2. (天津卷)已知数列
问题解决
a n 的通项公式如下:
0 n 1 n 2 n
n n ,
则 Sn
(n 1)C nC
n n 0 n
n1 n 1 n
3C 2C C
2 n 1 n n 2 n
0 n n n
(n 1)C nC 3C
Sn (n 2) 2
0 n n1 1 n 3 n
2C
n n
n1 n
n b a x n (2)令 n
( x R) ,求知数列
a n 的通项公式如下:

6n 5 an n 2
n为奇数 n为偶数

s 求数列的前 n 项的和 n

a n 1. (北京 卷) 已 知数列 是等差 数列, 且
1 Sn 3 2 k 3 k 2k 1 思考题.已知 k 1
n

1 Sn 4 求证:
问题解决
C 2 C 3 C ( n 1 ) C 例3.求和
0 n 1 n 2 n n n
C 2 C 3 C ( n 1 ) C S 【解析】设 n

6n 5 an n 2
n为奇数 n为偶数
n n (a1 an 1 ) n 3 2 2 2 9 n 15n 8 a ( 1 4 ) 2 2 Sn 6 2 1 4 n2 2 2 9n 3n 14 n为奇数 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3(an
3) bn 4
,记数列cn 的前 n
项和为Tn
,求Tn
.
解(Ⅰ)当 n=1 时, a1 S1 5 .
当 n≥2 时, an Sn Sn1 n2 4n n 12 4n 1 2n 3
验证 n 1 时也成立.∴数列an 的通项公式为: an 2n 3 ,
4
n 3n
∴ Tn c1 c2 c3 cn 1 3 2 32 3 33 n 3n …①
3Tn
1 32 2 33 3 33 n 3n1 …………………②

3a2
1 得 2a1

3a1q
1 ,所以 a1

1 3
故数列{an}的通项式为 an
=
1 3n
2分 3分 5分
(Ⅱ ) bn log3 a1 log3 a2 ... log3 an
(1 2 ... n)
n(n 1)
7分
2
1
2
11

2( )
Sn n(n 1) n n 1 S1 S2 S3
S10
(1 1) (1 1) (1 1) ( 1 1 ) =1- 1 =10
2 23 34
10 11 11 11
3分 4分 6分 8分
等比数列 an 的各项均为正数,且 2a1 3a2 1, a32 9a2a6.
(Ⅰ)求数列an 的通项公式; (Ⅱ)设 bn 3an 2n ,求数列bn 的前 n 项和为 Tn.
1、看通项,是什么数列,用哪个公式; 2、注意项数 3、注意公比
解: (Ⅰ)设等差数列{an}的公差为 d,
a1+ 2d=5, 由题意,得 10a1+102×9d=100,
解得 a1=1, d= 2,
bn n(n 1)
n n 1
1 b1
1 b2
... 1 bn

2
(1

1 2
)

(
1 2

1) 3

...

(
1 n

n
1
1)
2n n 1
所以数列{ 1 } 的前 n 项和为 2n
bn
n 1
10 分
1.特别是对于 anacn+1,其中{an}
是各项均不为0的等差数列,通常用裂项
相消法,即利用 anacn+1=dca1n-an1+1
(其中d=an+1-an).
常见的拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
3.
1
1( 1 1 )
({an}、{bn}为等差或等比数列。)
反思与小结:
要善于从通项公式中看本质:一个等差{2n} +一 个等比{2n} ,另外要特别观察通项公式,如果通项公 式没给出,则有时我们需求出通项公式,这样才能找规 律解题.
探究二:
已知等差数列an 的前 n 项和为 Sn n N* ,a3 5, S10 100, .
已知数列an 是等差数列,且 a1 2 , a1 a2 a3 12 . (Ⅰ)求数列an 的通项公式及前 n 项和 S n ;
(Ⅱ)求 1 1 1 1 的值.
S1 S2 S3
S10
. 解:(Ⅰ)由题意知: a1 a2 a3 3a2 12 ,
(Ⅰ)求数列an 的通项公式.
(Ⅱ)设
bn

log3
a1

log3
a2
......
log3
an ,
求数列

1 bn

的前
n
项和.
(Ⅰ)设数列{an}的公比为 q,由 a32 9a2a6
得 a33

9a42
所以 q2

1 9

由条件可知 an
>
0
,故 q

1 3

2a1
既{anbn}型
等差
等比
已知数列an 前项 n 和 sn n2 4n (n N*) ,数列bn 为等比数列,
首项 b1 2 ,公比为 q (q 0) ,且满足 b2 , b3 4q, b4 成等差数列.
(1)求数列an ,bn 的通项公式;
(2)设 cn

(2n 1)(2n 1) 2 2n 1 2n 1
4. 1 1 ( a b) a b ab
5.
1Байду номын сангаас
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
错位相减法:
如果一个数列的各项是由一 个等差数列与一个等比数列 对应项乘积组成,此时求和 可采用错位相减法.
a2 4 , d a2 a1 2
2分
数列an 的通项公式为: an a1 (n 1)d 2 2(n 1) 2n
数列an 的前 n
项和为:
Sn

n(a1 2
an )

n(2
2
2n)

n(n
1)
(Ⅱ) 1 1 1 1 1 1 1 1
数列的求和
献给玉潭中学最棒的你
一.公式法:
①等差数列的前n项和公式:
Sn

n(a1 2
an )

na1

n(n 1) 2
d
②等比数列的前n项和公式
Sn

na1(q a1(1
1) qn )
1 q

a1 anq 1 q
(q
1)
分组求和法
项的特征 cn=an+bn
∵ b2,b3 4q,b4 成等差数列, b1 2. 所以 2(b3 4q) b2 b4 ,
即 q2 2q 3 0 ,因为 q 0,q 3.

q b1
3 2,∴数列
bn

的通项公式为:
bn

2 3n1
(Ⅱ)∵ cn

3 an
3bn
所以 an=2n-1.
(Ⅱ)因为 bn= 3an
+2n= 9n 3
+2n,
所以 Tn=b1+b2+…+bn
= 9 92 9n +2(1+2+…+n) 3
= 3(9n 1) +n2+n 8
3分 4分 5分
8分
裂项求和法:
把数列的通项拆成两项之差,即数 列的每一项都可按此法拆成两项之 差,在求和时一些正负项相互抵消, 于是前n项的和变成首尾若干少数 项之和,这一求和方法称为分裂通 项法.(见到分式型的要往这种方 法联想)
相关文档
最新文档