直角坐标系中图形的两次平移与坐标的变化

合集下载

平面直角坐标系点的坐标移动规律

平面直角坐标系点的坐标移动规律

平面直角坐标系点的坐标移动规律平面直角坐标系中的点的坐标移动规律在平面直角坐标系中,点的坐标移动规律是描述点在平面上移动的方式和规则。

点的坐标由x轴和y轴上的数值组成,通过改变这些数值,我们可以改变点在平面上的位置。

点的坐标移动可以有多种方式,下面我们将介绍一些常见的移动规律。

1. 平移:平移是指点在平面上沿着某个方向移动一定的距离。

平移可以分为水平平移和垂直平移两种。

水平平移是指点在x轴方向上移动,垂直平移是指点在y轴方向上移动。

在平移过程中,点的x 轴和y轴坐标同时改变,但是它们的差值保持不变。

2. 旋转:旋转是指点围绕某个固定点旋转一定的角度。

旋转可以分为顺时针旋转和逆时针旋转两种。

顺时针旋转是指点沿着一个圆周顺时针方向旋转,逆时针旋转是指点沿着一个圆周逆时针方向旋转。

在旋转过程中,点的坐标随着旋转角度的变化而改变。

3. 缩放:缩放是指改变点到固定点的距离。

缩放可以分为放大和缩小两种。

放大是指点到固定点的距离变大,缩小是指点到固定点的距离变小。

在缩放过程中,点的x轴和y轴坐标同时改变,但是它们的比例保持不变。

4. 对称:对称是指点关于某条直线或某个点对称。

关于直线对称是指点在直线两侧对称,关于点对称是指点关于一个点对称。

在对称过程中,点的x轴和y轴坐标同时改变,但是它们的符号改变。

这些移动规律可以单独应用,也可以同时应用。

通过组合使用这些规律,我们可以描述点在平面上的任意移动方式。

在实际应用中,点的坐标移动规律被广泛应用于几何学、物理学、计算机图形学等领域。

在几何学中,点的坐标移动规律可以用来描述线段、角度、面积等几何概念。

在物理学中,点的坐标移动规律可以用来描述物体的运动轨迹和变形过程。

在计算机图形学中,点的坐标移动规律可以用来生成图像和动画效果。

点的坐标移动规律是描述点在平面上移动的方式和规则。

通过改变点的x轴和y轴坐标,我们可以改变点在平面上的位置。

这些移动规律可以单独应用,也可以同时应用,通过组合使用这些规律,我们可以描述点在平面上的任意移动方式。

平面直角坐标系下的图形变换

平面直角坐标系下的图形变换

平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。

在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。

析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。

图形在坐标中的平移(基础)知识讲解

图形在坐标中的平移(基础)知识讲解

图形在坐标中的平移(基础)知识讲解【学习目标】1. 能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移实质是点坐标的对应变换.2. 运用点的坐标的变化规律来进行简单的平移作图.【要点梳理】要点一、点在坐标中的平移在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.要点二、图形在坐标中的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、点在坐标中的平移1.写出下列各点平移后的点的坐标:(1)将A(-3,2)向右平移3个单位;(2)将B(1,-2)向左平移3个单位;(3)将C(4,7)向上平移2个单位;(4)将D(-1,2)向下平移1个单位.(5)将E(2,-3)先向右平移1个单位,再向下平移1个单位.【思路点拨】根据平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.【答案与解析】解:由题意可得:(1)平移后点的坐标为:(0,2);(2)平移后点的坐标为:(-2,-2);(3)平移后点的坐标为:(4,9);(4)平移后点的坐标为:(-1,1);(6)平移后点的坐标为:(3,-4).【总结升华】本题考查了点的平移及平移特征,掌握平移中点的变化规律是关键.2.(荆门)将点P向左平移2个单位,再向上平移1个单位得到P′(-1,3),则点P 的坐标是.【思路点拨】在平面直角坐标系中,图形的平移与图形上某点的平移相同,本题需注意的是已知新点的坐标,求原来点的坐标,注意平移的顺序的反过来的运用.【答案】(1,2).【解析】新点P′的横坐标是-1,纵坐标是3,点P′向右平移2个单位,再向下平移1个单位得到原来的点P,即点P的横坐标是-1+2=1,纵坐标为3-1=2.则点P的坐标是(1,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【答案】(0,﹣3).解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).类型二、图形在坐标中的平移3.(2015春•邵阳县期末)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣3,1),B(1,3).把线段AB平移后得到线段A′B′,A与A′对应,B与B′对应.若点A′的坐标是(﹣1,﹣1),则点B′的坐标为.【思路点拨】各对应点之间的关系是横坐标加2,纵坐标减2,那么让点B的横坐标加2,纵坐标减2即为点B′的坐标.【答案】(3,1).【解析】解:由A(﹣3,1)的对应点A′的坐标为(﹣1,﹣1 ),坐标的变化规律可知:各对应点之间的关系是横坐标加2,纵坐标减2,∴点B′的横坐标为1+2=3;纵坐标为3﹣2=1;即所求点B′的坐标为(3,1).故答案为(3,1).【总结升华】此题主要考查了坐标与图形的变化﹣平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.举一反三:【变式】按要求平移下面的图形.(1)将图形①先向右平移3个格,再向下平移5个格.(2)将图形②先向左平移2个格,再向上平移3个格.【答案】解:作图如下:4. 如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.【答案】D(2,2),E(3,-2).。

坐标与位置变化

坐标与位置变化
轴对称:原图形的坐标中,横(纵 )坐标保持不变,纵(横)坐标分别乘-1,则所得的图案与原图案关于横轴(纵轴)对称.
伸长:新图案的坐标变为原图案坐标的a倍,则将原图案伸长a倍,便可得新图案.
压缩:新图案的坐标变为原图案坐标的 (a>1),则将原图案压缩 ,便可得新图案.
【例5】 下面的方格 纸中画出了一个“小猪”的图案,已知每个小正方形的边长为1.
(2)如果将各顶点的纵坐标都加上3,横坐标不变,顺次连接各顶点,所得图形与原图形的位置有什么变化?
(3)将各顶点的横坐标都加上4,纵坐标都加上5,顺次连接各顶点,所得的图 形与原图形的位置有怎样的变化?
图1
解:(1)A,B,C,D,E点的横坐标都加上3,所得顶点的坐标分别是A1(1,0),B1(4,2),C1(5,1),D1(6,2),E1(5,0),依次连接各点得图形A1B1C1D1E1,图形A1B1C1D1E1相当于图形ABCDE向右平移了3个单位长度后得到的(如图2).
(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为_______,B4的坐标为_______.
(2)若按第(1)题中找到的规律将△OAB进行n次变换,得到△OAnBn,推测An的坐标为____________,Bn的坐标为________.
2.在直角坐标系 中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平 行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为( )
⑶写出点B′的坐标.
5.李老师从“淋浴龙头”受到启发 ,编了一个题目:在数轴上截取从0到3的线段 ,实数 对应 上的点 ,如图1;将 折成正三角形,使点 重合于点 ,如图2;建立平面直角坐标系,平移此三角形,使它关于 轴对称,且点 的坐标为(0,2), 与 轴交于点 ,如图3.当 时,求 的值.你解答这个题目得到的 值为( )

平面直角坐标系坐标变化

平面直角坐标系坐标变化

平面直角坐标系中的变换彳----------- 必标系屮的对称平而l'i角坐标系屮的变换坐标系中的平移\------------ 怡标系屮的面枳和规律问题编写思路:本讲求而积时主要让学生掌握将点坐标转化为线段长度的过程•让学生亲自动手在坐标系中画出某个点关于横轴、纵轴以及原点的对应点,并且让他们自己总结两个对称点的横.纵坐标关系。

二:(1)对于点的平移:让学生亲自动手将某个点进行上、下、左、右平移,并且自己总结点的坐标变化规律。

对于任意的平移,可以将貝理解先上下平移、后左右平移的组合。

(2)对于图形的平移:让学生充分认识本质就是图形上的每个点都进行同一过程的平移,即对应点之间的平移过程完全一样。

从而将图形的平移转化成为点的平移。

并让学生体会平移前后的两个图形完全一样。

三、简单的数形结合:求三角形而积问题。

让学生充分掌握割补法求三角形而积,并理解为何要用割补法。

让学生熟练掌握并体会坐标与线段长的讣算关系。

四.找规律问题:老师可带着学生探索常见找规律问题的思路和方法.点P(-b)关于X轴的对称点是叫,-巧,即横坐标不变,纵坐标互为相反数.点P(a,b)关于y轴的对称点是P©,b),即纵坐标不变,横坐标互为相反数.点P(a.b)关于坐标原点的对称点是P'(—d),即横坐标互为相反数,纵坐标也互为相反数.【引例】在平而直角坐标系中,卩(-4 5)关于X 轴的对称点的坐标是 __________ 坐标是 ________ ,关于原点的对称点是 ___________【例1】(1)点P(3, -5)关于x 轴对称的点的坐标为()⑵点"-2, 1)关于y 轴对称的点的坐标为()⑶ 在平而直角坐标系中,点P(2, -3)关于原点对称点P 的坐标是 _____________ ⑷ 点P(2, 3)关于直线x = 3的对称点为 ________ ,关于直线y = 5的对称点为 ________ ⑸已知点P(“ + l,加-1)关于x 轴的对称点在第一彖限,求d 的取值范围.【例2】如图,在平而直角坐标系中,直线/是第一、三象限的角平分线.实验与探究:(1) 由图观察易知A(2, 0)关于直线/的对称点/V 的坐标为(0,2),请在图中分别标明3(5,3), C(-2,5)关于直线/的对称点X 、C'的位置,并写岀它们的坐标: B' __________ ,C ____________ ;归纳与发现:(2) 结合图形观察以上三组点的坐标,你会发现:坐标平而内任一点关于第一、三象限的角平分线/的对称点P 的坐标为 ______________ (不必证明): ⑶点A(a , b)在直线/的下方,则d, 〃的大小关系为 ________________ :若在直线/的上方,则 __________ ・h + d\丁 >・(选讲),关于y 轴的对称点的A. (—3, —5)B. (5, 3)C. (一3, 5) D ・(3, 5)B. (2,1)C. (2, -1)D. (-2, 1)点P(a ,b)和点Q(c , d)的中点是M(1)点平移:①将点(x, y)向右(或向左)平移4个单位可得对应点(x + a t y)或(x-“, y).②将点(x, y)向上(或向下)平移〃个单位可得对应点(x,>'+/?)或(x, y-h).⑵图形平移:①把一个图形%个点的横坐标都加上(或减去)一个正数d ,相应的新图形就是把原图形向右(或向左)平移Q个单位.②如果把图形各个点的纵坐标都加上(或减去)一个正数d ,相应的新图形就是把原图形向上(或向下)平移a个单位.注意:平移只改变图形的位置,图形的大小和形状不发生变化.【弓I例】点M(-3, -5)向上平移7个单位得到点M,的坐标为:再向左平移3个单位得到【例3】(1)平而直角坐标系中,将P(-2,l)向右平移4个单位,向下平移3个单位,得到P __________ ,□平而直角坐标系中,线段虫妨'是由线段佔经过平移得到的,点A(-1,-4)的对应点为人(1, -1),那么此过程是先向________ 平移____ 个单位再向______ 平移 _____ 个单位得到的,则点B (1, 1)的对应点$坐标为______________ .⑶将点P(m-2,” + 1)沿求轴负方向平移3个单位,得到P^i-rn, 2),则点P坐标是_____________⑷ 平而直角坐标系中,线段A'B'是由线段初经过平移得到的,点A(-2, 1)的对应点为A f (3. 4),点B 的对应点为B'(4,0),则点B 的坐标为()A ・(9,3) B. (一 1,一3) C ・(3, — 3) D. (一3, —1)【例4】二如下左图,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案 中左.右眼睛的坐标分别是(-4, 2), (-2, 2),右边图案中左眼的坐标是(3, 4),则右边 图案中右眼的坐标是 _____________________ .-如下右图是由若干个边长为1的小正方形组成的网格,请在图中作岀将“蘑菇”ABCDE 绕A点逆时针旋转奸 再向右平移2个单位的图形(其中C 、D 为所在小正方形边的中点).二如图,把图1中的04经过平移得到00(如图2),如果图1中04上一点P 的坐标为伽皿),那么平移后在图2中的对应点P 的坐标为 __________ ・大图形的总而积减去周用小三角形的面积.一般方法有割补法和等积变换法.找规律的题目一左要先找/7 = 1、2、3几个图形规律,再推广到“的情况.从简单情形入手,从中发现规律,猜想、推测.归纳出结论,这是创造性思维的特点.i/\ V1例题精讲A ・v图1 图2在平面直角坐标系或网格中求而积,一般将难以求解的图形分割成易求解的图形的面积,可以用F二兀一 - —【引例】如图,直角坐标系中,△ABC的顶点都在网格点上,英中点A坐k标为(2,-1),则△4BC 的而积为 _____________ 平方单位.二如上右图,AABC,将△ABC 向右平移3个单位长度,然后再向上平移2个单位长度,可 以得到△ ・ ① 画出平移后的△人妨6 :② 写出△ AB.C,三个顶点的坐标:(在图中标岀)③ 已知点P 在x 轴上,以B“ P 为顶点的三角形面积为4,求P 点的坐标.【探究1】如图所示,4(1,4),B(4,3),(7(5,0),求图形如C 的面积.【例5】□直角坐标系中,已知人(-1,0)、5(3, 0)两点,点C 在y 轴上,△ABC 的而积是4,则点C 的坐标是 ___________ ■0如右图,已知直角坐标系中A(-1,4)、B(0,2),平移线段初,使点B 移到点C(3,0),此时点A 记作点D ,贝IJ 四边形ABCD 的 而积是 ___________ .【例6】□如下左图,在平而直角坐标系中,四边形ABCD 各顶点的坐标分别为A(0,0), 8(9,0), C(7,5),D(2, 7)・求四边形ABCD 的而积.「41「J 1_1 T 丿r k —厂」I 厂 11- T 4—n T klrLIr典题精练L LIL」I- T -I- +• -1 ~J_L J•V A【探究2】如下图所示,A(-3,5), B(4,3),求图形OAB的而积.【教师备选】方法三、转化法:平行线,一边转到轴上【探究4】如图所示,求三角形AOB的而积.解析:过点A做0B的平行线,交y轴于点C,连接BC由一次函数知识可求出直线OB:y=-x t设直线AC:y=-x+b -2 - 2 求得y=l x+2 ,得C(0,2)由等积变换可知S厶AOB = S^Bg. ―― x 2x 4=4解析:过点A作BC的平行线交y轴于点D,连接DC利用一次函数求得BC:y=2x+2 ,设直线AD:y=2x+b 求得尸2x+7, D(0,7) 由等积变换可知S沁=S沁弓x 1 x 5=|【变式】已知,在平而直角坐标系中,A「B两点分别在才轴、y轴的正半轴上,且OB = OA = 3. ⑴直接写出点A、B的坐标:⑵若点C(-2, 2),求△BOC的面积;⑶点P是与〉,轴平行的直线上一点,且点P的横坐标为1.若的面积是6,求点P的坐标.【例7】□任平而直角坐标系中,横坐标、纵坐标都为整数的点称为整点,图中的正方形的四个顶点都在格点上,观察图中每一个正方形四条边上的整点的个数,请你猜测由里向外第10个正方形四条边上的整点个数共有_______ 个.□如图,在平而直角坐标系中,第1次将MAB变换成△ OA.B.,第二次将变换成第3次将MAB 变换成△0比尽・已知A(l, 3), 4(2, 3), 4(4, 3), A(8, 3), B(2, 0), $(4, 0) , BJ8, 0),耳(16, 0)观察每次变化前后的三角形,找岀规律,按此变化规律再将△OA&3变换成△ O儿则点比的坐标是 _____ ,点厲的坐标是 _____ ,点人的坐标是_______ ,点乞的坐标是 ___________ ・【例8】一个粒子在第一象限内及x轴、y轴上运动,在第lmin内它从原点运动到(1, 0),而后接着按如图所示方式在与X轴、轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2013min后,求这个粒子所处的位置坐标・【变式】将正整数按如图所示的规律在平而直角坐标系中进行排列,每个正整数对应一个整点坐标(X, y)9且x, y均为整数.如数5对应的坐标为(-1,1),则数_________________ 对应的坐标是(-2,3),数2012对应的坐标是__________________【拓展】数1950对应的坐标是______________ ・【教师备选】【备选1】类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1 个单位,用实数加法表示为3 + (-2) = 1.若坐标平而上的点作如下平移:沿*轴方向平移的数屋为d (向右为正,向左为负,平移冋 个单位),沿y 轴方向平移的数量为方(向上为正,向下为负,平移问个单位),则把有序 数对{“,b}叫做这一平移的“平移量”;“平移量” {a, b}与“平移量” {c, d}的加法运算 法则为{“,b} + {c, d} = {a+c, b + d}. 解决问题:(1) 计算:{3, 1} + {1, 2};(2) 动点P 从坐标原点O 出发,先按照"平移量”{3, 1}平移到A,再按照"平移量”{1, 2} 平移到若先把动点P 按照“平移量” {1, 2}平移到C,再按照“平移量” {3, 1}平 移,最后的位置还是点B 吗?在图1中画出四边形OABC.(3) 如图2, 一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头0(5, 5),最后回到出发点O,请用“平移量”加法算式表示它的航行过程.37 36 35 34 3332 31 30 297 16 15 1413 12 11 18 19 61 2 2() 78 ,10 27 2122 23 2425 26图1【备选2】观察下列有规律的点的坐标:儿(1, 1), 4(2, -4), 4(3, 4),人(4, 一2),人(5, 7),肩6, -寸,4(7, 10), 4(8, —1)依此规律,人|的坐标为______________ ,州2的坐标为 ______________________________【备选3】一个动点P在平而直角坐标系中作折线运动,第一次从原点运动到(b 1)>然后按图中箭头所示方向运动,每次移动三角形的一边长•即(1, 1)-* (2, 0) - (3, 2) - (4, 0)-(5, 1)—........... ,按这样的运动规律,经过第17次运动后,动点P的坐标是___________ ,经过第2011次运动后,动点P的坐标是 __________ .【备选4】如图,在长方形网格中,每个小长方形的长为2,宽为1, B 两点在网格格点上,若点C也在网格格点上,以A、3、C为顶点的三角形面积为2,则满足条件的点C个数是( )A. 5B. 4B AD・2【备选5】在平而直角坐标系中,已知八(2・-2),任y轴上确左点P.使8"为等腰三角形,则符合条件的点P共有( )A. 2个B. 3个C. 4个D. 5个题型一坐标系中的对称巩固练习【练习1】□在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是( )A. (—5,—2)B. (一2, —5)C. (一2,5)D. (2, —5)□已知点P(x, y), n),如果x +加=0, y + 〃= 0 ,那么点P, Q ( )A・关于原点对称 B.关于x轴对称C・关于y轴对称D・关于过点(0,0), (1,1)的直线对称□已知:lx-ll+(.y + 2『=0,则(x, y)关于原点对称的点为_________________ .□已知点P(" + 3b,3)与点0(-5,“ + 2b)关于x轴对称,贝比= ______________ , b = _________ .题型二坐标系中的平移巩固练习【练习2】⑴线段CD是由线段初平移得到的,点A(-l, 5)的对应点是C(4, 2),则点B(4, -1)的对应点D的坐标为__________ ・⑵在平面直角坐标系中有一个已知点A ,现在x轴向下平移3个单位,y轴向左平移2个单位,单位长度不变,得到新的坐标系,在新的坐标系下点A的坐标为(-1,2),在旧的坐标系下,点A的坐标为_______ ・【练习3】如图,在平而直角坐标系中,若每一个方格的边长代表一个单位.□线段DC是线段经过怎样的平移得到的?□若C点的坐标是(4, 1), A点的坐标是(-1,-2),你能写岀B、D两点的坐标吗?□求平行四边形ABCD的而积.题型三坐标系中的面积和规律问题巩固练习【练习4】□已知A(0,—2), B(5,0), C(4,3),求△ABC的而积.□已知:A(4,0), 3(1-斗0), 0(1, 3), ZVWC 的而积=6,1)A B求代数式2A-2-5X + X2+4X-3X2 -2 的值.【练习5】如图,长为1,宽为2的长方形ABCQ以右下角的顶点为中心顺时针旋转90°,此时A点的坐标为________ :依次旋转2009次,则顶点A的坐标为___________ ・。

2022八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移授课课件新版沪科版78

2022八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移授课课件新版沪科版78

平面直角坐 标系
图形在坐标 系中的平移
2. 在平面直角坐标系中,把图形向左(右)平移,点的___纵_ 坐标不变;向上(下)平移,点的___横_坐标不变;所得图形与 原图形相比,__形__状__大__小不变.
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月22日星期二2022/3/222022/3/222022/3/22 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/222022/3/222022/3/223/22/2022 3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/222022/3/22March 22, 2022
并写出点B′,C′的坐标; (2)试说明三角形ABC经过怎样的平移
得到三角形A′B′C′; (3)若三角形ABC内部一点P的坐标为(a,b),则点P的 对应点
P′的坐标是___________.
感悟新知
导引:根据一对对应点的坐标可确定平移的方向和平移的距
离, 图形边上的点和图形内部的点平移方式相同.
感悟新知
知1-练
3 已知点M(a-1,5),现在将平面直角坐标系先向左 平移3个单位,再向下平移4个单位,此时点M的坐 标为(2,b-1),则a=________,b=________.
感悟新知
知识点 2 图形在坐标系中的平移
知2-讲
思考
把平面直角坐标系中的一个图形,按下面的要求
平移,那么,图形上任一个点的坐标(x,y)是如何 变
(2)三角形A2B2C2与三角形ABC的大小、形状完全相同, 三角形A2B2C2可以看作是将三角形ABC向上平移4个单 位长度得到的.

2016年山东省菏泽市中考数学试卷(含答案解析)

2016年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置)1.(3分)下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和 D.0和02.(3分)以下微信图标不是轴对称图形的是()A.B.C.D.3.(3分)如图所示,该几何体的俯视图是()A.B.C.D.4.(3分)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣35.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.56.(3分)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④7.(3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:38.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.3二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.(3分)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为.10.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.11.(3分)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是岁.12.(3分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.13.(3分)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.14.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=.三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)15.(6分)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.16.(6分)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.17.(6分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C 之间的距离.18.(6分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)19.(7分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.20.(7分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.21.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.22.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.23.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.2016年山东省菏泽市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置)1.(3分)下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和 D.0和0【分析】根据倒数的定义可知,乘积是1的两个数互为倒数,据此求解即可.【解答】解:A、4×(﹣4)≠1,选项错误;B、﹣3×≠1,选项错误;C、﹣2×(﹣)=1,选项正确;D、0×0≠1,选项错误.故选C.【点评】主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.(3分)以下微信图标不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选D.【点评】本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.3.(3分)如图所示,该几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.【点评】本题考查了三视图的知识,掌握俯视图是从物体的上面看得到的视图是解题的关键.4.(3分)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3【分析】根据a的取值范围,先去绝对值符号,再计算求值.【解答】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.【点评】此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.5.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.(3分)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.【解答】解:根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC==5,①正确,②正确,④正确;③不正确;故选:B.【点评】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.7.(3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:3【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A 作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9.故选A.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.8.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.3【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC ﹣S△BAD=a2﹣b2=(a2﹣b2)=×6=3.故选D.【点评】本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.(3分)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 4.51×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于45100000有8位,所以可以确定n=8﹣1=7.【解答】解:45100000这个数用科学记数法表示为4.51×107.故答案为:4.51×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.10.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.【点评】本题考查了平行线的性质:两直线平行,内错角相等.11.(3分)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是15岁.【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案.【解答】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数,∵15岁的有21人,∴这个班同学年龄的中位数是15岁;故答案为:15.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.12.(3分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= 6.【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.【点评】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.13.(3分)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD=CE=a,∠DCE=45°,再利用正方形的性质得CB=CD=a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF=CE=a,然后在Rt△BEF中根据正切的定义求解.【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a,在Rt△BEF中,tan∠EBF===,即tan∠EBC=.故答案为.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了等腰直角三角形的性质.14.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=﹣1.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)15.(6分)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.【解答】解:原式=﹣2×+2+1=+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(6分)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.【分析】首先利用平方差公式和完全平方公式计算,进一步合并,最后代入求得答案即可.【解答】解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2=﹣4xy+3y2=﹣y(4x﹣3y).∵4x=3y,∴原式=0.【点评】此题考查整式的化简求值,注意先化简,再代入求得数值即可.17.(6分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C 之间的距离.【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD可得出方程,解出x的值后即可得出答案.【解答】解:如图,作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=20(1+),CD+BD=BC,即x+x=20(1+),解得:x=20,∴AC=x=20(海里).答:A、C之间的距离为20海里.【点评】此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.18.(6分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)【分析】设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【解答】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:=2×,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意,答:A4薄型纸每页的质量为3.2克.【点评】本题主要考查分式方程的应用,根据题意准确找到相等关系并据此列出方程是解题的关键.19.(7分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.【解答】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【点评】此题是平行四边形的判定与性质题,主要考查了平行四边形的判定和性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG 是平行四边形.20.(7分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.【分析】(1)将A坐标代入一次函数解析式中即可求得a的值,将A(﹣1,4)坐标代入反比例解析式中即可求得m的值;(2)解方程组,即可解答.【解答】解:(1)∵点A的坐标是(﹣1,a),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A的坐标是(﹣1,4),代入反比例函数y=,∴m=﹣4.(2)解方程组解得:或,∴该双曲线与直线y=﹣2x+2另一个交点B的坐标为(2,﹣2).【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象上点的坐标特征,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.21.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.【分析】(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可.(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.【解答】解:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)解法一:延长PO交圆于G点,∵PF×PG=PC2,PC=3,PF=1,∴PG=9,∴FG=9﹣1=8,∴AB=FG=8.解法二:设⊙O的半径为x,则OC=x,OP=1+x∵PC=3,且OC⊥PC∴32+x2=(1+x)2解得x=4∴AB=2x=8【点评】本题考查切线的判定、切割线定理、等角的余角相等等知识,解题的关键是熟练运用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.22.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.【分析】(1)锐锐两次“求助”都在第一道题中使用,第一道肯定能对,第二道对的概率为,即可得出结果;(2)由题意得出第一道题对的概率为,第二道题对的概率为,即可得出结果;(3)用树状图得出共有6种等可能的结果,锐锐顺利通关的只有1种情况,即可得出结果.【解答】解:(1)第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;(3)锐锐将每道题各用一次“求助”,分别用A,B表示剩下的第一道单选题的2个选项,a,b,c表示剩下的第二道单选题的3个选项,树状图如图所示:共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.【点评】本题考查了等腰三角形的性质、全等三角形的判定及性质、解直角三角形以及角的计算,解题的关键是:(1)通过角的计算结合等腰三角形的性质证出△ACD≌△BCE;(2)找出线段AD、DE的长.本题属于中档题,难度不大,但稍显繁琐,解决该题型题目时,利用角的计算找出相等的角,再利用等腰三角形的性质找出相等的边或角,最后根据全等三角形的判定定理证出三角形全是关键.24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【分析】(1)根据待定系数法即可解决问题.(2)求出直线BC与对称轴的交点H,根据S△BDC =S△BDH+S△DHC即可解决问题.(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b 经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.【解答】解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC =S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.【点评】本题考查待定系数法确定二次函数解析式、二次函数性质等知识,解题的关键是求出对称轴与直线BC交点H坐标,学会利用判别式确定两个函数图象的交点问题,属于中考常考题型.。

平面直角坐标系变化规律

平面直角坐标系变化规律一、平面直角坐标系中的平移变化规律1. 点的平移- 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x + a,y)(或(x - a,y));- 将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y + b)(或(x,y - b))。

- 例如:点A(2,3)向右平移3个单位长度,得到点A'(2 + 3,3)=(5,3);点A(2,3)向下平移2个单位长度,得到点A''(2,3 - 2)=(2,1)。

2. 图形的平移- 图形的平移实际上就是图形上各个点的平移。

例如,三角形ABC三个顶点A(x_1,y_1)、B(x_2,y_2)、C(x_3,y_3),将三角形ABC向右平移a个单位长度,再向上平移b个单位长度,则A点变为A'(x_1 + a,y_1 + b),B点变为B'(x_2+a,y_2 + b),C点变为C'(x_3 + a,y_3 + b),新的三角形A'B'C'就是原三角形ABC平移后的图形。

二、平面直角坐标系中的对称变化规律1. 关于x轴对称- 点(x,y)关于x轴对称的点的坐标为(x,-y)。

- 例如:点P(3,4)关于x轴对称的点P'(3,-4)。

- 对于图形来说,图形关于x轴对称,就是图形上所有点关于x轴对称后得到的新图形。

如三角形ABC关于x轴对称,A(x_1,y_1)变为A''(x_1,-y_1),B(x_2,y_2)变为B''(x_2,-y_2),C(x_3,y_3)变为C''(x_3,-y_3),新的三角形A''B''C''就是三角形ABC关于x轴对称后的图形。

2. 关于y轴对称- 点(x,y)关于y轴对称的点的坐标为( - x,y)。

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件


横坐标减4,纵坐标减4,
所以点P的对应点P′的坐标是(m-4,n-4).
(3)△ABC的面积为
3×5-1×1×5- 1×2×2- 1×3×3=6
2
2
2
例3、如图,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0), 现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度, 得到A,B的对应点C,D.连接AC,BD,CD. (1)点C的坐标为______,点D的坐标为______, 四边形ABDC的面积为________;
图形的平移
学习目标
1.掌握平面直角坐标系中图形的两次平移与一次平移的转 化,以及平移引起的点的坐标的变化规律; 2.了解平面直角坐标系是数与形之间的桥梁,感受代数与 几何的相互转化,初步建立空间观念.
新课导入
在坐标系中,将坐标作如下变化时,图形将怎样变化?
1. (x,y)(x,y+4) 2. (x,y)(x,y -2)
(1)分别写出下列各点的坐标:A′_______;B′______;C′_______;
(2)若点P(m,n)是△ABC内一点,求平移后△A′B′C′内的对应点P′的坐标;
(3)求△ABC的面积.
解:(1)由题图可知A′(-3,-4),B′(0,-1),C′(2,-3).
(2)点A(1,0)的对应点A′的坐标是(-3,-4),
,-1),则a,b的值为(A
)
A.a=-2,b=-3 C.a=2,b=-3
B.a=-2,b=3 D.a=2,b=3
3.在平面直角坐标系中,点A′(2,-3)可以由点A(-2,3)通过两次平移得到 ,正确的是(D )
A.先向左平移4个单位长度,再向上平移6个单位长度 B.先向右平移4个单位长度,再向上平移6个单位长度 C.先向左平移4个单位长度,再向下平移6个单位长度 D.先向右平移4个单位长度,再向下平移6个单位长度

九年级数学上册《关于原点对称的点的坐标》练习题及答案

九年级数学上册《关于原点对称的点的坐标》练习题及答案学校:___________姓名:___________班级:______________一、填空题1.已知点A 与B (1,−6)关于y 轴对称,则点A 关于原点对称的点C 的坐标是__________.2.已知点M (3,-2),点N (a ,b )是M 点关于y 轴的对称点,则a =________,b =_________ .3.已知点A (a ,3)与点B (4,b )关于原点对称,则a -b 的值是______.4.若点()2A a ,与点()3B b ,关于x 轴对称,则a b +=______. 5.若点(),7A m 与点4,B n 关于原点成中心对称,则m n +=______.6.若点(),P m n 在二次函数222=++y x x 的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.二、解答题7.如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标;(3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).8.如图所示,在平面直角坐标系中,已知()0,1A 、()2,0B 、()4,3C .(1)在平面直角坐标系中画出ABC ,则ABC 的面积是______;(2)若点D 与点C 关于y 轴对称,则点D 的坐标为______;(3)已知P 为x 轴上一点,若ABP △的面积为1,求点P 的坐标.9.已知点A(2a+2,3-3b)与点B(2b -4,3a+6)关于坐标原点对称,求a 与b 的值.10.如图,△ABC 在直角坐标系中,(1)把△ABC 向上平移2个单位,再向右平移3个单位得△A ′B ′C ′,在图中画出两次平移后得到的图形△A ′B ′C ′,并写出A ′、B ′、C ′的坐标.(2)如果△ABC 内部有一点Q ,根据(1)中所述平移方式得到对应点Q ′,如果Q ′坐标是(m ,n ),那么点Q 的坐标是 .(3)求平移后的三角形面积.11.如图所示,正方形网格中,ABC 为格点三角形(即三角形的顶点都在格点上).(1)把ABC 沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的111A B C △;(2)把111A B C △绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的22A B C 1△.12.某乡镇贸易公司开设了一家网店,销售当地某种农产品,已知该农产品成本为每千克10元,调查发现,每天销售量y (kg )与销售单价x (元)满足如图所示的函数关系(其中10<x ≤30)(1)写出y 与x 之间的函数关系式及自变量的取值范围;(2)当销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?三、单选题13.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 关于原点对称的M '的坐标是( )A .(2,-5)B .(-2,5)C .(5,-2)D .(-5,2)14.若点(),2A m ,()3,B n 关于原点对称,则m 、n 的值为( )A .3m =-,2n =B .3m =,2n =-C .3m =-,2n =-D .3m =,2n =15.在平面直角坐标系内,将点A (1,2)先向右平移2个单位长度,再向下平移1个单位长度,则平移后所得点的坐标是( )A .(3,1)B .(3,3)C .(﹣1,1)D .(﹣1,3)16.将若干只鸡放入若干个笼,若每个笼里放4只则有一只鸡无笼可放;若每个笼放5只,则只有一笼未放满且每笼内都有鸡,那么笼的个数t 的范围是( )A .16t ≤≤B .16t ≤<C .16t <≤D .16t <<17.解集如图所示的不等式组为( )A .12x x >-⎧⎨≤⎩B .12x x ≥-⎧⎨>⎩C .12x x ≤-⎧⎨<⎩D .12x x >-⎧⎨<⎩18.如图,在□ABCD 中,将△ABD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若△ABD =48°,△CFD =40°,则△E 为( )A .112°B .118°C .120°D .122°19.如图,正方形ABCD 的顶点A ,B 的坐标分别为(1,1),(3,1),若正方形ABCD 第1次沿x 轴翻折,第2次沿y 轴翻折,第3次沿x 轴翻折,第4次沿y 轴翻折,第5次沿x 轴翻折,…则第2021次翻折后点C 对应点的坐标为( )A .(3,﹣3)B .(3,3)C .(﹣3,3)D .(﹣3,﹣3)参考答案与解析:1.(1,6)【分析】根据点A 和点B (1,-6)关于y 轴对称,先求出点A 的坐标,继而点A 与点C 关于原点对称,求出点C 的坐标.【详解】解:△点A 和点B (1,-6)关于y 轴对称,△点A 的坐标为(-1,-6),又△点A 与点C 关于原点对称,△点C 的坐标为(1,6).故答案为:(1,6).【点睛】本题考查了平面直角坐标系关于坐标轴或原点对称的两点的坐标之间的关系.平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(-x ,y ),关于原点的对称点是(-x ,-y ). 2. 3- 2-【分析】根据平面直角坐标系中关于y 轴对称的点的坐标特征即可得到结论.【详解】解:根据平面直角坐标系中关于y 轴对称的点的坐标特征:横坐标互为相反数、纵坐标不变可知,当点M (3,-2)与点N (a ,b )关于y 轴时,3,2a b =-=-,故答案为:3,2--.【点睛】本题考查平面直角坐标系中关于y 轴对称的点的坐标特征,熟练掌握平面直角坐标系点的坐标特征是解决问题的关键.3.-1【分析】根据已知条件关于原点对称的点的坐标特征,横纵坐标互为相反数,求出a ,b ,代入求值即可、【详解】△点A (a ,3)与点B (4,b )关于原点对称,△a =−4,b =−3,△a -b =(−4)-(−3)=−1;故答案是:−1.【点睛】本题主要考查了平面直角坐标系的点关于原点对称的特征,准确计算是解题的关键.4.1【分析】根据若两点关于x 轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:△点()2A a ,与点()3B b ,关于x 轴对称, △3,2a b ==-,△321a b +=-=.故答案为:1.【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于x 轴对称,则横坐标不变,纵坐标互为相反数;若两点关于y 轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.5.-3【分析】利用关于原点对称点的性质得出m ,n 的值进而得出答案.【详解】△点(),7A m 与点4,B n 关于原点对称,△m =4,n =﹣7,△()473m n +=+-=-故答案为:﹣3.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.6.110n ≤<【分析】先判断22m -<<,再根据二次函数的性质可得:()222211n m m m =++=++,再利用二次函数的性质求解n 的范围即可. 【详解】解:点P 到y 轴的距离小于2, 22m ∴-<<,点(),P m n 在二次函数222=++y x x 的图象上,()222211n m m m ∴=++=++,∴当1m =-时,n 有最小值为1. 当2m =时,()221110n =++=,n ∴的取值范围为110n ≤<. 故答案为:110n ≤<【点睛】本题考查的是二次函数的性质,掌握“二次函数的增减性”是解本题的关键.7.(1)见解析;()15,3A -(2)见解析;()22,4A(3)点1A 旋转到点2A 所经过的路径长为5π2【分析】(1)根据题目中的平移方式进行平移,然后读出点的坐标即可;(2)先找出旋转后的对应点,然后顺次连接即可;(3)根据旋转可得点1A 旋转到点2A 为弧长,利用勾股定理确定圆弧半径,然后根据弧长公式求解即可.(1)解:如图所示△A 1B 1C 1即为所求,()15,3A -;(2)如图所示△A 2B 2C 2即为所求,()22,4A ;(3)△115AC = △点1A 旋转到点2A 所经过的路径长为90π55π1802⨯=. 【点睛】题目主要考查坐标与图形,图形的平移,旋转,勾股定理及弧长公式等,熟练掌握和灵活运用这些知识点是解题的关键.8.(1)4(2)(4,3)-(3)P 点坐标为()4,0或()0,0【分析】(1)直接利用ABC 所在矩形面积减去周围三角形面积进而得出答案;(2)利用关于y 轴对称的点的坐标得出答案;(3)利用三角形面积得2BP =,即可得.(1)解:如图所示:ABC 的面积为:111341224234222⨯-⨯⨯-⨯⨯-⨯⨯=. (2)解:△点D 与点C 关于y 轴对称,C (4,3),△点D 的坐标为:(-4,3),故答案为:(-4,3).(3)解:△P 为x 轴上一点,ABP △的面积为1,△2BP =,△点P 的横坐标为:224+=或220-=,故P 点坐标为:()4,0或()0,0.【点睛】本题考查了三角形面积和关于y 轴对称点的性质,解题的关键是掌握这些知识点9.a=-1,b=2.【详解】试题分析:关于原点对称后,点的横纵坐标都变为相反数,根据题意列出关于a 和b 的二元一次方程组,从而求出a 和b 的值.试题解析:根据题意,得(2a+2)+(2b -4)=0, (3-3b)+(3a+6)=0,解得:a=-1,b=2.10.(1)()()()2,1,7,4,4,5A B C '''(2)(m -3,n -2)(3)7【分析】(1)把△ABC 的各顶点分别向上平移2个单位,再向右平移3个单位,得到平移后的各点,顺次连接各顶点即可得到A B C ''';(2)根据(1)平移的方向和距离即可得到点Q 的坐标;(3)A B C '''的面积等于边长为4和5的长方形的面积减去直角边长为1,3的直角三角形的面积,直角边长为2,4的直角三角形的面积,直角边长为5,3的直角三角形的面积.(1)解:如图,A B C '''即为所求,()()()2,1,7,4,4,5A B C ''';(2)△把△ABC 向上平移2个单位,再向右平移3个单位得A B C ''',△△ABC 内的任意一点都向上平移2个单位,再向右平移3个单位得到对应点,△△ABC 内部有一点Q ,平移后得到对应点Q ',Q '坐标是(m ,n ),△点Q 的坐标是(m -3,n -2),故答案为(m -3,n -2);(3)A B C '''的面积=4×5-12×2×4-12×1×3-12×3×5=7. 【点睛】此题考查了平移作图,平移的性质,解决本题的关键是得到相应顶点的平移规律;图形的平移要归结为各顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.11.(1)见解析(2)见解析【分析】(1)利用平移的性质画图,即对应点都移动相同的距离;(2)利用旋转的性质画图,对应点都旋转相同的角度.(1)解:如图所示:111A B C △即为所求;(2)如图所示:22A B C 1△即为所求.【点睛】本题主要考查了平移变换、旋转变换作图,做这类题时,理解平移、旋转的性质是关键.12.(1)640(1014)20920(1430)y x y y x x =<≤⎧=⎨=-+<≤⎩(2)当销售单价x 为28元时,每天的销售利润最大,最大利润是6480元【分析】(1)由图像可知,当10<x ≤14时,y =640;当14<x ≤30时,设y =kx +b ,将(14,640),(30,320)代入得到解方程组求解即可;(2)分10<x ≤14和14<x ≤30两种情况,分别求出函数最值,然后比较即可解答.(1)解:(1)由图像知,当10<x ≤14时,y =640;当14<x ≤30时,设y =kx +b ,将(14,640),(30,320)代入得1464030320k b k b +=⎧⎨+=⎩,解得20920k b =-⎧⎨=⎩, △y 与x 之间的函数关系式为y =-20x +920;综上所述,640(1014)20920(1430)y xyy x x=<≤⎧=⎨=-+<≤⎩;(2)解:设每天的销售利润为w元,当10<x≤14时w=640×(x-10)=640x-6400,△k=640>0,△w随着x的增大而增大,△当x=14时,w=4×640=2560元;当14<x≤30时,w=(x-10)(-20x+920)=-20(x-28)2+6480,△-20<0,14<x≤30,△当x=28时,w有最大值,最大值为6480,△2560<6480,△当销售单价x为28元时,每天的销售利润最大,最大利润是6480元.【点睛】本题主要考查了求一次函数解析式、二次函数的应用等知识点,根据题意得到每天的销售利润的关系式是解答本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.13.B【分析】可先根据题意得到点M的坐标;然后由“两个点关于原点对称时,它们的坐标符号相反”得到M'的坐标.【详解】解:△M到x轴的距离为5,到y轴的距离为2,△M纵坐标可能为±5,横坐标可能为±2,△点M在第四象限,△M坐标为(2,−5).△点M关于原点对称的M'的坐标是(−2,5).故选:B.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;两个点关于原点对称时,它们的坐标符号相反.14.C【分析】直接利用关于原点对称点的性质:横纵坐标互为相反数,得出答案.【详解】解:△点A(m,2)与点B(3,n)关于对称,△m=-3,n=-2.【点睛】本题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.15.A【分析】直接利用平移中点的变化规律求解即可.【详解】解:△点A (1,2),△先向右平移2个单位长度,再向下平移1个单位长度后的坐标为(1+2,2-1),即:(3,1).故选:A .【点睛】本题主要考查了坐标系中点的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.D【分析】根据题意列出不等式0<(4t +1)-5(t ﹣1)<5,求出t 的范围,即可得到答案【详解】解:根据题意列不等式得,0<(4t +1)-5(t ﹣1)<5,解得16t <<,故选:D .【点睛】本题考查了一元一次不等式组的应用,解题关键是准确理解题意,列出不等式组.17.A【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可.【详解】解:根据图象可得,数轴所表示的不等式组的解集为:12x -<≤,A 选项解集为:12x -<≤,符合题意;B 选项解集为:2x >,不符合题意;C 选项解集为:1x ≤-,不符合题意;D 选项解集为:12x -<<,不符合题意;故选:A .【点睛】题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键.18.A【分析】运用翻折的性质,结合平行四边形的性质,推导DBF FDB ∠=∠,在结合三角形内角和定理,算得【详解】解:△△ABD 沿对角线BD 折叠,得到△EBD ,△ADB FDB ∠=∠,ABD EBD ∠=∠,△平行四边形ABCD ,△AD BC ∥,△ADB DBF ∠=∠,△ADB FDB ∠=∠,△DBF FDB ∠=∠.△CFD FDB DBF ∠=∠+∠,40CFD ∠=︒,DBF FDB ∠=∠,△20DBF FDB ∠=∠=︒.△48ABD EBD ∠=∠=︒,20DBF ∠=︒,△482028FBE DBE DBF ∠=∠-∠=︒-︒=︒.在BEF 中,△40BFE DFC ∠=∠=︒,28FBE ∠=︒,△1801804028112E BFE FBE ∠=︒-∠-∠=︒-︒-︒=︒.故选:A .【点睛】本题考查了图形翻折的性质,平行四边形性质,通过以上性质,证得DBF FDB ∠=∠是解题关键.19.A【分析】由A ,B 的坐标分别为(1,1),(3,1),四边形ABCD 是正方形,可得点C 对应点的坐标,再求出第1次翻折、第2次翻折、第3次翻折、第4次翻折后点C 对应点的坐标,然后根据规律即可得经过第2021次翻折后点C 对应点的坐标.【详解】解:△A ,B 的坐标分别为(1,1),(3,1)△AB =2△四边形ABCD 是正方形△BC =AB =2△C 点坐标为(3,3)△第1次翻折后点C 对应点的坐标为(3,﹣3),第2次翻折后点C 对应点的坐标为(﹣3,﹣3),第3次翻折后点C 对应点的坐标为(﹣3,3),第4次翻折后点C 对应点的坐标为(3,3),即翻折4次为一个周期.△2021÷4=505 (1)△经过第2021次翻折后点C对应点的坐标为(3,﹣3).故选:A.【点睛】本题考查了正方形的性质和平面直角坐标系中坐标点的变换,属于规律性题目,熟悉相关性质并在平面直角坐标系中找到规律是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 图形的平移与旋转 3.2图形的平移(三)
复习回顾
活动一:(独立尝试、合作探究)
如图所示,ΔABC 各顶点的坐标分别为A (﹣3,5),B (﹣4,3),C (﹣1,1)。

①将ΔABC 先向右平移4个单位长度,得到ΔA 1B 1C 1,并写出ΔA 1B 1C 1各点的坐标。

②再将ΔA 1B 1C 1向上平移3个单位长度,得到ΔA 2B 2C 2,并写出ΔA 2B 2C 2各点的坐标。

③ΔABC 经过几次平移得到ΔA 2B 2C 2?观察ΔABC 与ΔA 2B 2C 2各点坐标之间的关系。

④能否将ΔA
2B 2C 2看成是由ΔABC 经过一次平移得到的?如果能,请指出平移的方向和平移的距离,并与同伴交流。

活动二:总结规律
1、用坐标表示点在平面直角坐标系中的两次平移
沿Y 轴方向平移b 个单位长度,可以看成是由原来图形沿一对对应点连线的方向经过一次平移得到的,平移的距离是__________个单位长度。

活动三:(自我挑战)
如图所示,四边形ABCD 各顶点的坐标分别为A(3,4),B(1,3),C(2,0),D(4,2),将四边形ABCD 先向左平移5个单位长度,再向下平移2个单位长度得四边形A 1B 1C 1D 1
(1)先写出点A 1、B 1、C 1、D 1的坐标,再画出四边形A 1B 1C 1D 1
(2)如果将四边形A 1B 1C 1D 1 看成是由四边形ABCD 经过一次平移得到的,请指出这一平移的方向和平移的距离。

随堂过关
1、 在平面直角坐标系中有一点
A (-2,1),将点A 先向右平移3个单位长度,再向下
平移2个单位长度,则平移后点A 的坐标为 _______ .
2、 已知
P (x,y
) P 1(x-2,y+1)表示点P 到点P 1 的平移过程,则下列叙述中正确的是 ( )
A 、 点P 向右平移2个单位长度,向下平移1个单位长度
B 、点P 向左平移2个单位长度,向下平移1个单位长度
C 、点P 向右平移2个单位长度,向上平移1个单位长度
D 、点P 向左平移2个单位长度,向上平移1个单位长度
3、如图,已知点A (-1,0),B (1,1),把线段AB 向右平移2个单位长度,再向上平移3个单位长度得线段CD ,则线段AB 一次平移的距离是_______
达标检测
1、 在平面直角坐标系中,一个图形先沿
X 轴方向平移a 个单位长度,再沿Y 轴方向平移b 个单位长度,可以看成是由原来图形沿一对对应点连线的方向经过______次平移得到的,平移的距离是__________个单位长度。

2、 在平面直角坐标系中,一青蛙从点
A (-1,0)处向右跳2个单位长度,再向上跳
3个单位长度到点A 1处,则点A 1的坐标为 ,
3、 将点
P (1, m )向右平移2个单位长度后,再向上平移1个单位长度得到点
Q (n ,3),则m= ,n = .
4、在平面直角坐标系中,线段AB 两个端点的坐标分别是A(-2,3),B(2,0),将线段AB 平移A 1B 1的位置,点A 、B 的对应点分别是A 1、B 1,若点A1的坐标为(3,1)。

则点C 1的坐标为 ,
拓展创新
△ABC 三个顶点的坐标分别为A (0,3),B (-1,0),C (1,0)。

小红把△ABC 平移得到了△A 1B 1C 1 ,并写出了它的三个顶点的坐标A 1(0,0)B 1(-2,-3)C 1(2,-3)。

(1)你认为小红所写的三个顶点的坐标正确吗?
(2)如果小红所写三个顶点的纵坐标都正确,三个顶点的横坐标中只有一个正确,那么你能帮小红正确写出三个顶点的坐标吗?。

相关文档
最新文档