第3章 连续信号的频谱傅里叶变换
合集下载
3章 傅里叶变换

(1)“周期信号都可表示为谐波关系的正弦信号的 加权和”;
(2)“非周期信号都可用正弦信号的加权积分表 示”.
3.2 周期信号的傅里叶分析
三角函数 1 , c o s t , s i n t , c o s 2 t , s i n 2 t ,, c o s k t , s i n k t , 就是一个标准的两两正交的函数空间。它满足下列完
t2 t1
f(t)sin(n1t)dt
或 f(t)a 2 0n 1(a nc o sn1 t b nsinn1 t)
傅里叶级数的 三角展开式
ant2 2t1
t2 t1
f(t)cos(n1t)dt
同上式
另一种形式
f(t)a20n 1cncos(n1tn) t
n=1
n>1
直流分量 基波分量 n次谐波分量
f(t)[cos(n1t)jsin(n1t)]dtT 2 tt12
f(t)ejn1tdt
2. 直接从复变正交函数集推导 将原函数 f ( t )在复变正交函数空间
{ej(n1t) n1,2, }中展开,有
f (t) Fn ej(n1t) n
式中
Fn
t2 f(t)(ejn1t)*dt
t1
t2(ejn1t)(ejn1t)*dt
T0
(t)
1 T0
ejn0t
n
a0
1 T0
又
anT20 T2 T0 20(t)cosn0tdtT20
bn 0
T 0 ( t )
的三角傅里叶级数为:T0(t)T10 T20
cosn0t
n1
例 求下图中三角波的三角傅里叶级数。
解 (1)将周期函数 f ( t ) 在 t [0,T0]内的函数记为
(2)“非周期信号都可用正弦信号的加权积分表 示”.
3.2 周期信号的傅里叶分析
三角函数 1 , c o s t , s i n t , c o s 2 t , s i n 2 t ,, c o s k t , s i n k t , 就是一个标准的两两正交的函数空间。它满足下列完
t2 t1
f(t)sin(n1t)dt
或 f(t)a 2 0n 1(a nc o sn1 t b nsinn1 t)
傅里叶级数的 三角展开式
ant2 2t1
t2 t1
f(t)cos(n1t)dt
同上式
另一种形式
f(t)a20n 1cncos(n1tn) t
n=1
n>1
直流分量 基波分量 n次谐波分量
f(t)[cos(n1t)jsin(n1t)]dtT 2 tt12
f(t)ejn1tdt
2. 直接从复变正交函数集推导 将原函数 f ( t )在复变正交函数空间
{ej(n1t) n1,2, }中展开,有
f (t) Fn ej(n1t) n
式中
Fn
t2 f(t)(ejn1t)*dt
t1
t2(ejn1t)(ejn1t)*dt
T0
(t)
1 T0
ejn0t
n
a0
1 T0
又
anT20 T2 T0 20(t)cosn0tdtT20
bn 0
T 0 ( t )
的三角傅里叶级数为:T0(t)T10 T20
cosn0t
n1
例 求下图中三角波的三角傅里叶级数。
解 (1)将周期函数 f ( t ) 在 t [0,T0]内的函数记为
第3章连续信号与系统的频域分析

8
2013年8月13日8时10分
3.0 引言
LTI系统的特性完全可以由其单位冲激响应
来表征,通过对LTI系统单位冲激响应的研究就可
分析LTI系统的特性。
连续时间信号分解为一系列完备正交信号集, 再根据线性叠加原理求解系统的零状态响应。
9
2013年8月13日8时10分
3.1信号的正交分解
3.1.1 矢量的正交分解 1 、正交矢量(2维空间)
3.1.2 信号的正交分解 2、正交函数的两个重要定理 定理2:若 则:
f (t ) c1 g1 (t ) cr gr (t ) cn gn (t ) ci gi (t )
i 1
n
t2
t1
f (t ) dt ci gi (t ) dt
t2 i 1 t1
完备正交函 数集
1,cos t,cos 2t,,sin t,sin 2t,
17
2013年8月13日8时10分
3.2 周期信号的连续时间傅立叶级数
一般地,若 即有:
则有:
f ( t ) 在区间(-∞,+
∞)内,每隔周期T重复,
f (t ) f (t kT )
T 2 T 2
V1 V2 0
V1 V3 0
V2 V3 0
11
2013年8月13日8时10分
3.1信号的正交分解
3.1.1 矢量的正交分解 3 、正交矢量(n维空间)
c3 V3 V3 o V2 c2 V2 V1
V cV1 crVr cnVn 1
V c1 V1
cr
V cos r Vr
3.7 连续信号的抽样定理
2013年8月13日8时10分
3.0 引言
LTI系统的特性完全可以由其单位冲激响应
来表征,通过对LTI系统单位冲激响应的研究就可
分析LTI系统的特性。
连续时间信号分解为一系列完备正交信号集, 再根据线性叠加原理求解系统的零状态响应。
9
2013年8月13日8时10分
3.1信号的正交分解
3.1.1 矢量的正交分解 1 、正交矢量(2维空间)
3.1.2 信号的正交分解 2、正交函数的两个重要定理 定理2:若 则:
f (t ) c1 g1 (t ) cr gr (t ) cn gn (t ) ci gi (t )
i 1
n
t2
t1
f (t ) dt ci gi (t ) dt
t2 i 1 t1
完备正交函 数集
1,cos t,cos 2t,,sin t,sin 2t,
17
2013年8月13日8时10分
3.2 周期信号的连续时间傅立叶级数
一般地,若 即有:
则有:
f ( t ) 在区间(-∞,+
∞)内,每隔周期T重复,
f (t ) f (t kT )
T 2 T 2
V1 V2 0
V1 V3 0
V2 V3 0
11
2013年8月13日8时10分
3.1信号的正交分解
3.1.1 矢量的正交分解 3 、正交矢量(n维空间)
c3 V3 V3 o V2 c2 V2 V1
V cV1 crVr cnVn 1
V c1 V1
cr
V cos r Vr
3.7 连续信号的抽样定理
信号处理 第3章连续时间信号的正交分解(文正)

)
F (j )
/2
/ 2
e
j t
dt
e
j
e j
2
j
2
2 sin(
2
1
gτ (t)
)
Sa(
2
)
2
0
2
t
频谱图
F j
2π
O 2π
F j
4π
幅度频谱
2π
O
频宽:
2π 4π
第3 章 连续信号的正交分解
目录
周期信号的傅里叶级数 周期信号的频谱 非周期信号的傅里叶变换 典型信号的傅里叶变换
傅里叶变换的性质
频域分析
从本章开始由时域转入变换域分析,首先讨论傅里 叶变换。傅里叶变换是在傅里叶级数正交函数展开的基 础上发展而产生的,这方面的问题也称为傅里叶分析 (频域分析)。将信号进行正交分解,即分解为三角函 数或复指数函数的组合。 频域分析将时间变量变换成频率变量,揭示了信号 内在的频率特性以及信号时间特性与其频率特性之间的 密切关系,从而导出了信号的频谱、带宽以及滤波、调 制等重要概念。
f(t) ←→F(jω)
或
F(jω) = F [f(t)]
f(t) = F –1[F(jω)]
F(jω)一般是复函数,写为 F(jω) = | F(jω)|e j (ω) = R(ω) + jX(ω)
2、常用函数的傅里叶变换
Sa( 例:矩形脉冲 (门函数) G (t )
F
2
三角形式的傅里叶级数,含义比较明确,但运算常感不便, 因而经常采用指数形式的傅里叶级数。
信号与系统 第3章-3

解 若直接按定义求图示信号的频谱,会遇到形如te-jωt的繁 复积分求解问题。而利用时域积分性质,则很容易求解。 将f(t)求导,得到图 3.5-5(b)所示的波形f1(t),将f1(t)再求导, 得到图 3.5-5(c)所示的f2(t), 显然有
第3章 连续信号与系统的频域分析
f 2 (t ) = f (t ) = f " (t )
ω )为各频率点
上单位频带中的信号能量,所以信号在整个频率范围的全部
W = ∫ G (ω )dω
0
∞
式中
G (ω ) =
1
π
F ( jω )
2
第3章 连续信号与系统的频域分析 表 3.2 傅里叶变换的性质
第3章 连续信号与系统的频域分析
3.6 周期信号的傅里叶变换
设f(t)为周期信号,其周期为T,依据周期信号的傅里叶级数分 析, 可将其表示为指数形式的傅里叶级数。即
f ( −t ) ↔ F ( − jω )
也称为时间倒置定理 倒置定理。 倒置定理
第3章 连续信号与系统的频域分析
若已知f(t) ↔ F(jω ),求f(at - b)的傅立叶变换。
此题可用不同的方法来求解。 解 此题可用不同的方法来求解。
第3章 连续信号与系统的频域分析
(2) 先利用尺度变换性质,有 先利用尺度变换性质,
第3章 连续信号与系统的频域分析 2. 时移性 时移性 若f(t) ←→ F(jω), 且t0为实常数(可正可负),则有
f ( t − t0 ) ↔ F ( jω ) e
此性质可证明如下
− jω t 0
F [ f (t − t 0 )] = ∫− ∞ f (t − t 0 )e 令τ = t − t 0
第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n
x( n)e jnw
X (z)
n
x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n
x ( n) z n
n
x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T
时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t
时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )
T T
X (e jT )e jnT d
取样定理
n
x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8
信号与系统3.7.8傅里叶变换的基本性质

2.若f(t)是虚函数 令f(t)=jg(t),则:
R()= g(t)sin (t)dt -
X ()= g(t) cos (t)dt -
在这种情况下,R()为奇函数,X()为偶函数,即满足: R()=-R(-) X()=X(-)
而 F() 仍是偶函数,()是奇函数。
第3章 傅里叶变换
此外,无论f(t)为实函数或复函数,都具有以下性质
所以
[F(t)]=2 f(-)
若f(t)是偶函数,式(3 50)变成
[F(t)]=2 f()
(3 50) (3 51)
第3章 傅里叶变换
第3章 傅里叶变换
(二) 线性(叠加性)
若 [fi (t)]=Fi () (i=1,2,...,n),则
n
n
[ aifi (t)]= aiFi ()
i=1
f(at)e dt
令x=at
当a 0
[f(at)]= 1
f(x)e
j x a
dx=
1
F(
)
a
aa
第3章 傅里叶变换
当a 0
[f(at)]= 1
-
f(x)e
j
x a
dx
a +
=- 1
f(x)e
j
x
a dx=- 1
F(
)
a
aa
综合上述两种情况,便可得到尺度变换特性表达式为
[f(at)]= 1 F( )
-
-
在这种情况下,显然
R
X
()= -
()=-
f(t) cos (t)dt
f(t) sin (t)dt
-
(3-54)
第3章 傅里叶变换
R()= g(t)sin (t)dt -
X ()= g(t) cos (t)dt -
在这种情况下,R()为奇函数,X()为偶函数,即满足: R()=-R(-) X()=X(-)
而 F() 仍是偶函数,()是奇函数。
第3章 傅里叶变换
此外,无论f(t)为实函数或复函数,都具有以下性质
所以
[F(t)]=2 f(-)
若f(t)是偶函数,式(3 50)变成
[F(t)]=2 f()
(3 50) (3 51)
第3章 傅里叶变换
第3章 傅里叶变换
(二) 线性(叠加性)
若 [fi (t)]=Fi () (i=1,2,...,n),则
n
n
[ aifi (t)]= aiFi ()
i=1
f(at)e dt
令x=at
当a 0
[f(at)]= 1
f(x)e
j x a
dx=
1
F(
)
a
aa
第3章 傅里叶变换
当a 0
[f(at)]= 1
-
f(x)e
j
x a
dx
a +
=- 1
f(x)e
j
x
a dx=- 1
F(
)
a
aa
综合上述两种情况,便可得到尺度变换特性表达式为
[f(at)]= 1 F( )
-
-
在这种情况下,显然
R
X
()= -
()=-
f(t) cos (t)dt
f(t) sin (t)dt
-
(3-54)
第3章 傅里叶变换
信号与系统(郑君里第二版)讲义第三章 傅里叶变换

t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0
∫
∫
t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n
∞
jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2
−
T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)
第3章 连续信号的频谱——傅里叶变换

• 直到19世纪末,制造出电容器。20世纪初,谐振电路、滤波
器、正弦振荡器等一系列问题的解决为正弦函数与傅里叶分 析的在通信系统中的应用开辟了广阔的前景。 • 从此,在通信与控制系统的理论研究和实际应用之中,采用 频率域(频域)的分析方法比经典的时间域(时域)方法有 许多突出的优点。 • 当今,傅里叶分析方法已成为信号分析与系统设计不可缺少 的重要工具。 • 20世纪70年代,出现的各种二值正交函数(沃尔什函数), 它对通信、数字信号处理等技术领域的研究提供了多种途径 和手段。使人们认识到傅里叶分析不是信息科学与技术领域 中唯一的变换域方法。
nw1 nw1
0
w
nw1
w1 0 w1
nw1
w
正、负频率相应项成对合并,才是实际频谱函数。
4.周期信号的功率特性
—时域和频域能量守恒定理
周期信号的平均功率P:在一个周期内求平方再求积分。
1 t0 T1 2 f (t )dt P f (t ) t T1 0 1 1 2 2 2 2 2 a0 ( an bn ) c0 cn 2 n 1 2 n 1
其傅里叶级数三角展开式中 仅含基波和奇次谐波
例子
例如:奇谐函数
f (t )
E 2
T1 2
f (t )
E 2
T 1 2
0
E 2
T1 2
t
0
E 2
T1 2
t
sin( w1t )
E 2
f (t )
E 2
T1 2 T 1 2 T1 2
f (t )
0
E 2
t
0
E 2
T1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 傅里叶分析方法不仅应用于电力工程、通信和控制领域之中, 而且在力学、光学、量子物理和各种线性系统分析等许多有关 数学、物理和工程技术领域中得到广泛的应用。
• 本章讨论的路线:
• 傅里叶级数正交函数——傅里叶变换,建立信号频谱的概念;
• 通过典型信号频谱以及傅里叶变换性质的研究,掌握傅里叶分 析方法的应用。
第3章 连续信号的频谱 傅里叶变换
2020年4月22日星期三
本章的主要内容:
1、周期信号的傅里叶级数分析 2、典型周期信号的傅里叶级数 3、傅里叶变换 4、典型非周期信号的傅里叶变换 5、冲激函数和阶跃函数的傅里叶变换 6、傅里叶变换的基本性质 7、卷积特性(卷积定理) 8、周期信号的傅里叶变换 9、抽样信号的傅里叶变换 10、抽样定理
例子
以下为对称方波,注意不同的项数,有限级数对 原函数的逼近情况,并计算由此引起的方均误差 解:其傅。里叶级数表达式为 :
只取基 波分量 一项
取基波分量和 三次谐波分量
取基波、三次谐 波分量和五次谐 波分量
从上面例子看出:
(1)n愈大,则愈逼近原信号f(t)。
(2) 当信号f(t)是脉冲信号时,其高频分量主要影响脉冲的跳变沿; 低频分量影响脉冲的顶部。f(t)波形变化愈剧烈,所含的高频分量 愈丰富;f(t)变化愈缓慢,所含的低频分量愈丰富。
作业
P160 3-1,3-2,3-3,3-8
第三节 典型周期信号的
傅里叶级数
典型周期信号的傅里叶级数
•典型周期信号的频谱分析可利用: 傅里叶级数 或傅里叶变换 •介绍的典型周期信号有如下: 1、周期矩形脉冲信号 2、周期锯齿脉冲信号 3、周期三角脉冲信号 4、周期半波余弦信号 5、周期全波余弦信号
1、周期矩形脉冲信号 (1)周期矩形脉冲信号的傅里叶级数求解
奇谐函数信号:若波形沿时间轴平移半个周期并相对于 该轴上下反转,此时波形并不发生变化,即满足:
a0 = 0
例子 例如:奇谐函数
四、傅里叶有限级数与最小方均误差
实际应用中,经常采用有限项级数来代替无限项级数。 显然,有限项数是一种近似的方法,所选项数愈多,有 限项级数愈逼近原函数,其方均误差愈小。
波形对称性有两类: (1)对整周期对称。即偶函数和奇函数。 (2)对半周期对称。即奇谐函数、偶谐函数 。
2.傅里叶级数的系数求解 (1)偶函数信号
例如:周期三角波信号
是一偶函数
其傅里叶级数表达式为:
(2)奇函数信号
例如:周期锯齿波信号
是一奇函数
其傅里叶级数表达式为:
(3)奇谐函数信号(半波对称函数 )
• 对于周期信号而言,进行频谱分析可用傅里叶级数或傅里叶变 换;傅里叶级数相当于傅里叶变换的一种特殊表达形式。
• 最后对研究周期信号与抽样信号的傅里叶变换,并介绍抽样定 理,抽样定理奠定了数字通信的理论基础。
第二节 周期信号的傅里
叶级数分析
一、三角函数形式的傅里叶级数 1、一种三角函数形式的傅里叶级数
幅度谱与相位谱合并 正、负频率相应项成对合并,才是实际频谱函数。
4.周期信号的功率特性 —时域和频域能量守恒定理
周期信号的平均功率P:在一个周期内求平方再求积分。
帕塞瓦尔定理
三、函数的对称性与傅里叶系数的关系
1.函数的对称性
要将信号f(t)展开为傅里叶级数,如果f(t)是实 函数,且它波形满足某种对称性,则在其傅里叶 级数中有些项为0,留下的各项系数的表示式也比 较简单。
• 直到19世纪末,制造出电容器。20世纪初,谐振电路、滤波 器、正弦振荡器等一系列问题的解决为正弦函数与傅里叶分 析的在通信系统中的应用开辟了广阔的前景。
• 从此,在通信与控制系统的理论研究和实际应用之中,采用 频率域(频域)的分析方法比经典的时间域(时域)方法有 许多突出的优点。
• 当今,傅里叶分析方法已成为信号分析与系统设计不可缺少 的重要工具。
(3)当信号中任一频谱分量的幅度或相位发生相对变化时,输出波 形一般要发生失真。
五、吉布斯(Gibbs)现象
当选取傅里叶有限级数的项数N很大时,该峰起值趋于一个常 数,它大约等于总跳变值的9%,并从不连续点开始以起伏振荡 的形式逐பைடு நூலகம்衰减下去。此现象称为吉布斯现象。
举例3.1:
解:
举例3.2:
可见,直流分量的大小以及基波与各次谐波的幅 度、相位取决于周期信号的波形。
5、幅度谱、相位谱
No Image
周期信号的主要特点:
二、指数形式的傅里叶级数
1、指数形式的傅里叶级数的形式
2.指数形式的傅里叶级数中各个量之间的关系
3.指数形式表示的信号频谱--复数频谱
Fn一般是复函数,所以称这种频谱为复数频谱。
第一节 引言
傅里叶分析发展史
• 从本章开始由时域分析转入频域分析。 • 傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产
生的。 • 傅里叶分析的研究与应用经历了一百余年。 • 1822年法国数学家傅里叶(J.Fourier,1768-1830)在研究
热传导理论时发表了“热的分析理论”著作,提出并证明了 将周期函数展开为正弦级数的原理,奠定了傅里叶级数的理 论基础。 • 泊松(Poisson)、高斯(Gauss)等人把这一成果应用到电 学中去。 • 伴随电机制造、交流电的产生与传输等实际问题的需要,三 角函数、指数函数以及傅里叶分析等数学工具已得到广泛的 应用。
• 20世纪70年代,出现的各种二值正交函数(沃尔什函数), 它对通信、数字信号处理等技术领域的研究提供了多种途径 和手段。使人们认识到傅里叶分析不是信息科学与技术领域 中唯一的变换域方法。
• 但傅里叶分析始终有着极其广泛的应用,它是研究其他变换方 法的基础。而且出现了”快速傅里叶变换(FFT)”它给傅里 叶分析这一数学工具增添了新的生命力。
为了积分方便,通常取积分区间为: 三角函数集是一组完备函数集。
2、另一种三角函数形式的傅里叶级数
3、傅里叶级数展开的充分条件
通常所遇到的周期性信号都能满足此条件,因此, 以后除非特殊需要,一般不再考虑这一条件。
4、基波、谐波
通常把频率为:
称为基波。
频率为 :
频率为 :
称为二次谐波。 称为三次谐波。
• 本章讨论的路线:
• 傅里叶级数正交函数——傅里叶变换,建立信号频谱的概念;
• 通过典型信号频谱以及傅里叶变换性质的研究,掌握傅里叶分 析方法的应用。
第3章 连续信号的频谱 傅里叶变换
2020年4月22日星期三
本章的主要内容:
1、周期信号的傅里叶级数分析 2、典型周期信号的傅里叶级数 3、傅里叶变换 4、典型非周期信号的傅里叶变换 5、冲激函数和阶跃函数的傅里叶变换 6、傅里叶变换的基本性质 7、卷积特性(卷积定理) 8、周期信号的傅里叶变换 9、抽样信号的傅里叶变换 10、抽样定理
例子
以下为对称方波,注意不同的项数,有限级数对 原函数的逼近情况,并计算由此引起的方均误差 解:其傅。里叶级数表达式为 :
只取基 波分量 一项
取基波分量和 三次谐波分量
取基波、三次谐 波分量和五次谐 波分量
从上面例子看出:
(1)n愈大,则愈逼近原信号f(t)。
(2) 当信号f(t)是脉冲信号时,其高频分量主要影响脉冲的跳变沿; 低频分量影响脉冲的顶部。f(t)波形变化愈剧烈,所含的高频分量 愈丰富;f(t)变化愈缓慢,所含的低频分量愈丰富。
作业
P160 3-1,3-2,3-3,3-8
第三节 典型周期信号的
傅里叶级数
典型周期信号的傅里叶级数
•典型周期信号的频谱分析可利用: 傅里叶级数 或傅里叶变换 •介绍的典型周期信号有如下: 1、周期矩形脉冲信号 2、周期锯齿脉冲信号 3、周期三角脉冲信号 4、周期半波余弦信号 5、周期全波余弦信号
1、周期矩形脉冲信号 (1)周期矩形脉冲信号的傅里叶级数求解
奇谐函数信号:若波形沿时间轴平移半个周期并相对于 该轴上下反转,此时波形并不发生变化,即满足:
a0 = 0
例子 例如:奇谐函数
四、傅里叶有限级数与最小方均误差
实际应用中,经常采用有限项级数来代替无限项级数。 显然,有限项数是一种近似的方法,所选项数愈多,有 限项级数愈逼近原函数,其方均误差愈小。
波形对称性有两类: (1)对整周期对称。即偶函数和奇函数。 (2)对半周期对称。即奇谐函数、偶谐函数 。
2.傅里叶级数的系数求解 (1)偶函数信号
例如:周期三角波信号
是一偶函数
其傅里叶级数表达式为:
(2)奇函数信号
例如:周期锯齿波信号
是一奇函数
其傅里叶级数表达式为:
(3)奇谐函数信号(半波对称函数 )
• 对于周期信号而言,进行频谱分析可用傅里叶级数或傅里叶变 换;傅里叶级数相当于傅里叶变换的一种特殊表达形式。
• 最后对研究周期信号与抽样信号的傅里叶变换,并介绍抽样定 理,抽样定理奠定了数字通信的理论基础。
第二节 周期信号的傅里
叶级数分析
一、三角函数形式的傅里叶级数 1、一种三角函数形式的傅里叶级数
幅度谱与相位谱合并 正、负频率相应项成对合并,才是实际频谱函数。
4.周期信号的功率特性 —时域和频域能量守恒定理
周期信号的平均功率P:在一个周期内求平方再求积分。
帕塞瓦尔定理
三、函数的对称性与傅里叶系数的关系
1.函数的对称性
要将信号f(t)展开为傅里叶级数,如果f(t)是实 函数,且它波形满足某种对称性,则在其傅里叶 级数中有些项为0,留下的各项系数的表示式也比 较简单。
• 直到19世纪末,制造出电容器。20世纪初,谐振电路、滤波 器、正弦振荡器等一系列问题的解决为正弦函数与傅里叶分 析的在通信系统中的应用开辟了广阔的前景。
• 从此,在通信与控制系统的理论研究和实际应用之中,采用 频率域(频域)的分析方法比经典的时间域(时域)方法有 许多突出的优点。
• 当今,傅里叶分析方法已成为信号分析与系统设计不可缺少 的重要工具。
(3)当信号中任一频谱分量的幅度或相位发生相对变化时,输出波 形一般要发生失真。
五、吉布斯(Gibbs)现象
当选取傅里叶有限级数的项数N很大时,该峰起值趋于一个常 数,它大约等于总跳变值的9%,并从不连续点开始以起伏振荡 的形式逐பைடு நூலகம்衰减下去。此现象称为吉布斯现象。
举例3.1:
解:
举例3.2:
可见,直流分量的大小以及基波与各次谐波的幅 度、相位取决于周期信号的波形。
5、幅度谱、相位谱
No Image
周期信号的主要特点:
二、指数形式的傅里叶级数
1、指数形式的傅里叶级数的形式
2.指数形式的傅里叶级数中各个量之间的关系
3.指数形式表示的信号频谱--复数频谱
Fn一般是复函数,所以称这种频谱为复数频谱。
第一节 引言
傅里叶分析发展史
• 从本章开始由时域分析转入频域分析。 • 傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产
生的。 • 傅里叶分析的研究与应用经历了一百余年。 • 1822年法国数学家傅里叶(J.Fourier,1768-1830)在研究
热传导理论时发表了“热的分析理论”著作,提出并证明了 将周期函数展开为正弦级数的原理,奠定了傅里叶级数的理 论基础。 • 泊松(Poisson)、高斯(Gauss)等人把这一成果应用到电 学中去。 • 伴随电机制造、交流电的产生与传输等实际问题的需要,三 角函数、指数函数以及傅里叶分析等数学工具已得到广泛的 应用。
• 20世纪70年代,出现的各种二值正交函数(沃尔什函数), 它对通信、数字信号处理等技术领域的研究提供了多种途径 和手段。使人们认识到傅里叶分析不是信息科学与技术领域 中唯一的变换域方法。
• 但傅里叶分析始终有着极其广泛的应用,它是研究其他变换方 法的基础。而且出现了”快速傅里叶变换(FFT)”它给傅里 叶分析这一数学工具增添了新的生命力。
为了积分方便,通常取积分区间为: 三角函数集是一组完备函数集。
2、另一种三角函数形式的傅里叶级数
3、傅里叶级数展开的充分条件
通常所遇到的周期性信号都能满足此条件,因此, 以后除非特殊需要,一般不再考虑这一条件。
4、基波、谐波
通常把频率为:
称为基波。
频率为 :
频率为 :
称为二次谐波。 称为三次谐波。