设计一个4位超前进位加法器(数字逻辑课设)
4bits超前加法进位器的全定制设计_微电子卓越班数字集成电路课程设计报告

数字集成电路课程设计题目:4 bits超前加法进位器地全定制设计姓名:席高照学号: 111000833学院:物理与信息工程学院专业:微电子(卓越班)年级: 2010级指导教师:陈群超(签名)2013 年 6 月 3 日目录第1章概述 01.1课程设计目地.......................................... 错误!未定义书签。
1.2课程设计地主要内容.................................... 错误!未定义书签。
1.2.1设计题目.......................................... 错误!未定义书签。
1.2.2设计内容.......................................... 错误!未定义书签。
第2章功能分析及逻辑分析 (2)2.1功能分析 (2)2.2推荐工作条件 (3)2.3电性能 (7)2.4真值表 ................................................ 错误!未定义书签。
2.5表达式 (6)2.6电路图...................................................................... 错误!未定义书签。
第3章电路设计与器件参数设计83.1性能指标: ............................................ 错误!未定义书签。
3.2模块划分 (7)3.2.1输出级电路设计 (7)3.2.2内部反相器 (9)3.2.3内部电路等效 (8)3.2.4输入级电路 (10)3.2.5输出缓冲级电路 (10)3.2.6输入、输出保护电路 (10)3.3本章小结 (10)第4章电路模拟与仿真................................................................................................... 错误!未定义书签。
设计一个 4 位超前进位加法器(数字逻辑课设)

c[2]=(p[2]&p[1]&p[0]&ci)|(p[2]&p[1]&g[0])|(p[2]&g[1])|g[2],
c[3]=(p[3]&p[2]&p[1]&p[0]&ci)|(p[3]&p[2]&p[1]&g[0])|(p[3]&p[2]&g[1])|(p[3]&g[2])|g[3];
代码如下: add.v
`timescale 1ns/1ps
module add(input [3:0]a,input [3:0]b,input ci,output [3:0]s,output co); //定义所需变量
wire [3:0] p, g; //进位传递函数p,进位产生函数g
wire [3:0] c; //进位函数
设计要求:在这个设计中,你需要使用 Verilog 代码设计一个 4 位的超前进位加法器。这个 4 位超前进位加法器可以完成对两个 4 位二进制数的相加。完成设计后,你还需要设计测试程序(test bench)来验证你的设计。你的测试程序需要考虑到所有可能的输入情况。
设计思路:
因为各进位的产生依赖于低位的进位,所以运算速度较慢。为了提高速度,必须设法使较低位的进位信号越过中间各级直接决定较高位的进位输出,设计Ai和Bi分别表示第i位的被加数和加 数,Ci-1为来自第i-1位全加器的进位,令Pi=Ai^Bi,Gi=Ai&Bi函数表达式为:
Co=PoCo+Go
C1=P1Co+G1
C2=p2C1+G2
四位超前进位加法器原理

四位超前进位加法器原理1. 输入部分:四位超前进位加法器有两个四位输入数和一个进位输入。
输入数A和B分别代表被加数和加数,每位由低位到高位分别为A0,A1,A2,A3和B0,B1,B2,B3、进位输入Cin表示上一位的进位情况。
2. 输出部分:四位超前进位加法器有一个四位输出数和一个进位输出。
输出数S代表和,每位由低位到高位分别为S0,S1,S2,S3、进位输出Cout表示本位的进位情况。
3. 逻辑运算:每位的和采用异或门(XOR)实现:Si = A ⊕ B ⊕ Cin。
每位的进位采用与门(AND)实现:Ci+1 = (A ⊕ B) ∧ Cin + A∧ B。
4. 进位传递:如果上一位的进位Cin为1,则本位需要传递进位,即Ci+1 = 1、如果上一位的进位Cin为0,则本位不需要传递进位,即Ci+1 = (A ⊕ B) ∧ Cin。
这样可以确保进位在高位传递,实现加法运算的正确性。
5. 进位溢出:最高位的进位输出Cout表示四位相加是否产生进位溢出,即Cout = A3 ∧ B3 ∧ Cin。
如果Cout为1,则表示加法运算的结果超过了四位二进制数的表示范围,发生了进位溢出。
(1)将输入的两个四位二进制数A和B依次与进位输入Cin相异或,得到每位的和Si。
(2)将输入的两个四位二进制数A和B依次与进位输入Cin相与,得到进位传递结果Di。
(3)将邻位的进位传递结果Di与当前位的和Si再次相与,得到进位输出结果Ci+1(4)将当前位的和Si输出为结果的相应位,将进位输出结果Ci+1作为下一位的进位输入。
(5)最高位的进位输出结果Cout表示加法运算是否产生进位溢出。
四位超前进位加法器的优点是速度快,可以实现高速的加法运算。
其核心原理是采用异或门进行和的计算,采用与门进行进位的计算,通过逐位运算,实现了四位二进制数的加法运算,同时处理了进位情况,确保了运算的正确性。
四位超前进位加法器

1.课程设计名称四位超前进位加法器2.课程设计内容设计一个四位加法器,要求要有超前进位,减小输出的延迟,采用0.13um工艺设计。
3.课程设计目的训练学生综合运用学过的数字集成电路的基本知识,独立设计相对复杂的数字集成电路的能力。
4.课程设计要求4.1、按设计指导书中要求的格式书写,所有的内容一律打印;4.2、报告内容包括设计过程、仿真的HSPICE网表,软件仿真的结果及分析、延时的手工计算;4.3、要有整体电路原理图,仿真的波形图;4.4、软件仿真必须要有必要的说明;要给出各个输入信号的具体波形和输出信号的测试结果。
4.5、写出对应的HSPICE设计网表,网表仿真结果符合设计要求。
把仿真图形附在报告上。
4.6、设输入端的电容为C,输出端的负载电容为5000C inv,从输入到输出任意找一通inv路,优化通路延时,手工计算确定通路中每个门对应的晶体管的尺寸。
每组三个同学选择不能为同一通路。
此部分的计算参数可采用书中第六章的参数。
4.7、各种器件的具体结构可参考阎石的《数字电子技术基础》一书。
不允许有完全一样的报告,对于报告完全相同者,记为不及格。
5.使用软件软件为HSPICE和COSMOS-SCOPE。
6.课程设计原理由全加器的真值表可得S i和C i的逻辑表达式:定义两个中间变量G i和P i:当A i=B i=1时,G i=1,由C i的表达式可得C i=1,即产生进位,所以G i 称为产生量变。
若P i=1,则A i·B i=0,C i=C i-1,即P i=1时,低位的进位能传送到高位的进位输出端,故P i称为传输变量,这两个变量都与进位信号无关。
将G i和P i代入S i和C i得:进而可得各位进位信号的逻辑表达如下:根据逻辑表达式做出电路图(如图):逻辑功能图中有2输入异或门,2输入与门,3输入与门,4输入与门,2输入或门,3输入或门,4输入或门,其转化成CMOS晶体管图如下:7.课程设计网表*xor 2.subckt xor2 a b c d fmxorpa 1 a vdd vdd pmos l=2 w=8 mxorpb f d 1 vdd pmos l=2 w=8 mxorpc 2 b vdd vdd pmos l=2 w=8 mxorpd f c 2 vdd pmos l=2 w=8 mxorna f a 3 0 nmos l=2 w=4 mxornb 3 b 0 0 nmos l=2 w=4 mxornc f c 4 0 nmos l=2 w=4 mxornd 4 d 0 0 nmos l=2 w=4.ends xor2*and2.subckt and2 a b fmandpa f a vdd vdd pmos l=2 w=4 mandpb f b vdd vdd pmos l=2 w=4mandna f a 1 0 nmos l=2 w=4 mandnb 1 b 0 0 nmos l=2 w=4.ends and2*and3.subckt and3 a b c fmandpa f a vdd vdd pmos l=2 w=4 mandpb f b vdd vdd pmos l=2 w=4 mandpc f c vdd vdd pmos l=2 w=4 mandna f a 1 0 nmos l=2 w=6 mandnb 1 b 2 0 nmos l=2 w=6 mandnc 2 c 0 0 nmos l=2 w=6.ends and3*and4.subckt and4 a b c d fmandpa f a vdd vdd pmos l=2 w=4 mandpb f b vdd vdd pmos l=2 w=4 mandpc f c vdd vdd pmos l=2 w=4 mandpd f d vdd vdd pmos l=2 w=4 mandna f a 1 0 nmos l=2 w=8 mandnb 1 b 2 0 nmos l=2 w=8 mandnc 2 c 3 0 nmos l=2 w=8 mandnd 3 d 0 0 nmos l=2 w=8.ends and4*or2.subckt or2 a b fmorpa 1 a vdd vdd pmos l=2 w=8 morpb f b 1 vdd pmos l=2 w=8 mna f a 0 0 nmos l=2 w=4mnb f b 0 0 nmos l=2 w=4.ends or2*or3.subckt or3 a b c fmorpa 1 a vdd vdd pmos l=2 w=12 morpb 2 b 1 vdd pmos l=2 w=12 morpc f c 2 vdd pmos l=2 w=12 mna f a 0 0 nmos l=2 w=4mnb f b 0 0 nmos l=2 w=4mnc f c 0 0 nmos l=2 w=4.ends or3*or4.subckt or4 a b c d fmorpa 1 a vdd vdd pmos l=2 w=16morpb 2 b 1 vdd pmos l=2 w=16morpc 3 c 2 vdd pmos l=2 w=16morpd f d 3 vdd pmos l=2 w=16mna f a 0 0 nmos l=2 w=4mnb f b 0 0 nmos l=2 w=4mnc f c 0 0 nmos l=2 w=4mnd f d 0 0 nmos l=2 w=4.ends or4*not.subckt not a fmnotpa f a vdd vdd pmos l=2 w=4 mnotna f a 0 0 nmos l=2 w=2.ends not *反相器*or21.subckt or21 a b fxor2 a b 1 or2xnot 1 f not.ends or21 *2输入或门*or31.subckt or31 a b c fxor3 a b c 1 or3xnot 1 f not.ends or31 *3输入或门*or41.subckt or41 a b c d fxor4 a b c d 1 or4xnot 1 f not.ends or41 *4输入或门*xor21.subckt xor21 a b fxm a A5 notxn b B5 notxxor a b A5 B5 f xor2.ends xor21 * 2输入异或门*and21.subckt and21 a b fxand2 a b 1 and2xnot 1 f not.ends and21 *2输入与门*and31.subckt and31 a b c fxand3 a b c 1 and3xnot 1 f not.ends and31 *3输入与门*and41.subckt and41 a b c d fxand4 a b c d 1 and4xnot 1 f not.ends and41 *4输入与门xxor211 a1 b1 p1 xor21xxor212 a2 b2 p2 xor21xxor213 a3 b3 p3 xor21xxor214 a4 b4 p4 xor21xand211 a1 b1 g1 and21xand212 a2 b2 g2 and21xand213 a3 b3 g3 and21xand214 p1 c0 m0 and21xor211 m0 g1 c1 or21 *进位C1xand311 p2 p1 c0 m1 and31xand215 p2 g1 m2 and21xor312 g2 m1 m2 c2 or31 *进位C2 xand411 p3 p2 p1 c0 m3 and41xand313 p3 p2 g1 m4 and31xand216 p3 g2 m5 and21xor412 m3 m4 m5 g3 c3 or41 *进位C3 xxor215 p1 c0 s1 xor21 *输出s1xxor216 p2 c1 s2 xor21 *输出s2xxor217 p3 c2 s3 xor21 *输出s3xxor218 p4 c3 s4 xor21 *输出s4.include "c:\lib\130nm_bulk.l"tt.opt scale=0.05u.global vdd gndvdd vdd 0 1.2va1 a1 0 pulse 1.2 1.2 20n 1f 1f 30n 100nva2 a2 0 pulse 0 0 20n 1f 1f 30n 100nva3 a3 0 pulse 0 0 20n 1f 1f 30n 100nva4 a4 0 pulse 0 0 20n 1f 1f 30n 100nvb1 b1 0 pulse 1.2 1.2 20n 1f 1f 30n 100n vb2 b2 0 pulse 1.2 1.2 20 1f 1f 30n 100nvb3 b3 0 pulse 0 0 20n 1f 1f 30n 100nvb4 b4 0 pulse 1.2 1.2 20n 1f 1f 30n 100nvc0 c0 0 pulse 0 0 4n 1f 1f 0n 100n.tran 1n 100n.plot tran v(s1).plot tran v(s2).plot tran v(s3).plot tran v(s4).end8.结果及分析由波形可知:当输入a1=1,b1=1,前一级进位c0=0时,s1=a1+b1+c0=0,下一级进位c1=1.由波形可知:当输入a2=0,b2=1,前一级进位c1=1时,s2=a2+b2+c1=0,下一级进位c2=1.由波形可知:当输入a3=0,b3=0,前一级进位c2=1时,s3=a3+b3+c2=1,下一级进位c3=0.由波形可知:当输入a4=0,b4=1,前一级进位c3=0时,s4=a4+b4+c2=1。
4位超前进位加法器

4位超前进位加法器详细设计姓名:魏可望(23)班级:微电子1102指导老师:杜慧敏日期:2014年4月29日1设计目标 (3)1.1功能定义 (3)1.2引脚描述 (3)1.2.1 4位超前进位加法器系统级信号 (3)1.2.2 4位超前进位加法器输入接口定义 (3)1.2.3 4位超前进位加法器的器输出接口定义 (3)2 模块设计 (3)3测试 (4)4设计开发环境 (4)5设计开发计划 (4)1设计目标1.1功能定义本文描述4位超前进位加法器的详细设计方案。
其功能是求出4位超前进位加法器功能,并在FPGA开发板上验证设计的正确性。
1.2引脚描述1.2.1 4位超前进位加法器单元系统级信号1.2.2 4位超前进位加法器输入接口定义1.2.3 4位超前进位加法器输出接口定义2 模块设计本设计按要求,用assign语句设计4位超前进位加法器。
3测试本单元电路控制逻辑采用systemverilog断言描述状态信息测试,数据通路部分用采用sysetemverilog随机验证的方法,并结合覆盖率检测,做到100%验证。
将本设计下载到Sparten 3E开发板上,将计数器的输出连接到LED灯上,以验证设计的正确性。
4设计开发环境语言级设计:Verilog综合工具:xilinx 14.7rFPGA设计和仿真工具:ISE13.2,synopsys VCS布局和布线工具:appllo ,模拟设计和仿真工具: modelsim寄生参数提取和仿真工具: star_sim RC5设计开发计划附录:4位超前进位加法器源代码:module add_ahead4(sum,cout,a,b,cin);input[3:0] a,b;input cin;output[3:0] sum;output cout;wire[3:0] G,P;wire[3:0] C,sum;assign G[0]=a[0]&b[0];assign P[0]=a[0]|b[o];assign C[0]=cin;assign sum[0]=G[0]^P[0]^C[0];assign G[1]=a[1]&b[1];assign P[1]=a[1]|b[1];assign C[1]=G[0]|(P[0]&cin); assign sum[1]=G[1]^P[1]^C[1]; assign G[2]=a[2]&b[2]; assign P[2]=a[2]|b[2];assign C[2]=G[1]|(P[1]&C[1]); ssign sum[2]=G[2]^P[2]^C[2]; assign G[3]=a[3]&b[3]; assign P[3]=a[3]|b[3];assign C[3]=G[2]|(P[2]&C[2]); assign sum[3]=G[3]^P[3]^C[3]; assign cout=G[3]|(P[3]&C[3]); endmodule。
数字电路课程设计之超前进位加法器

reg
Cin;
wire[3:0] S;
wire
Cout;
carry_look_add CAL (.A(A),.B(B),.Cin(Cin),.Cout(Cout),.S(S)); initial begin
#10 A=4'd0;B=4'd0;Cin=0; #10 A=4'd11;B=4'd1;Cin=0; #10 A=4'd10;B=4'd12;Cin=0; #10 A=4'd11;B=4'd4;Cin=0; #100 $stop; end endmodule
Pi=Ai○+ Bi;
可以得到输出与进位表达
Gi=AiBi;
Si=Pi○+ Ci;
Ci+1=Gi+PiCi; Gi 为进位产生,不管输入进位 Ci 为什么,只要 Ai 与 Bi 为 1 时,它将产生进位。Pi 称为进位传输,因为它 与从 Ci 到 Ci+1 的进位传输有关
C0 = 输入进位
C1 = G0 + P0C0
Half_Add H3(.a(A[2]),.b(B[2]),.s(v6),.c(v5));
Half_Add H4(.a(A[3]),.b(B[3]),.s(v8),.c(v7));
carry_look
CL1(.C0(Cin),.P0(v2),.G0(v1),.P1(v4),.G1(v3),.P2(v6),.G2(v5),.P3(v8),.G3(v7),.C1(o1),.C2(o2),.C3(o3),.C4(Cout));
注意 C4 并不需要等待 C3,实际上 C4,C3,C2,C1 同时传输 超前进位产生的电路逻辑图
eda4位加法课程设计

eda4位加法课程设计一、课程目标知识目标:1. 学生能理解并掌握4位加法的基本概念和原理;2. 学生能够掌握并运用EDA工具进行4位加法电路的设计与实现;3. 学生能够理解并描述4位加法器的工作原理及其在各种电子设备中的应用。
技能目标:1. 学生能够运用所学知识,独立完成4位加法电路的设计和搭建;2. 学生能够运用EDA工具进行电路仿真,分析并解决4位加法电路中可能出现的实际问题;3. 学生通过实践操作,提高逻辑思维能力和问题解决能力。
情感态度价值观目标:1. 学生在学习过程中,培养对电子技术和数字电路的兴趣和热情;2. 学生通过团队协作,培养合作精神和沟通能力;3. 学生在实践过程中,认识到科技对社会发展的作用,增强创新意识和责任感。
课程性质:本课程为电子设计自动化(EDA)相关课程,旨在让学生掌握4位加法电路的设计与实现,提高学生的实践操作能力和逻辑思维能力。
学生特点:学生处于初中阶段,对电子技术有一定的好奇心,但可能对具体操作和理论知识掌握不足。
教学要求:结合学生特点,注重理论与实践相结合,通过实例分析和动手操作,使学生能够扎实掌握4位加法电路的相关知识。
同时,关注学生的情感态度价值观培养,提高学生的综合素质。
在教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 4位加法电路基本原理:包括全加器、半加器的概念,4位加法器的工作原理及其在不同进位模式下的特点。
- 教材章节:第三章第三节《加法器的设计与应用》2. EDA工具的使用:介绍并练习使用EDA工具进行4位加法电路的设计、仿真和验证。
- 教材章节:第五章《电子设计自动化工具》3. 4位加法电路的设计与实现:- 教学内容:指导学生利用EDA工具进行4位加法电路的设计,包括原理图绘制、电路仿真和波形分析。
- 教材章节:第四章《数字电路设计与实现》4. 实践操作与问题分析:- 教学内容:组织学生进行4位加法电路的搭建,分析并解决实际操作中遇到的问题。
数字电路课程设计之超前进位加法器

# MACRO ./mul_run_msim_rtl_verilog.do PAUSED at line 14
通过查阅资料将 Verilog 测试文件
Timsbench 文件没有实例化,修改为
修改后仿真 OK 参考文献: 1.数字设计与 Verilog 实现 M.Morris Mano 著 第五版
Pi=Ai○+ Bi;
可以得到输出与进位表达
Gi=AiBi;
Si=Pi○+ Ci;
Ci+1=Gi+PiCi; Gi 为进位产生,不管输入进位 Ci 为什么,只要 Ai 与 Bi 为 1 时,它将产生进位。Pi 称为进位传输,因为它 与从 Ci 到 Ci+1 的进位传输有关
C0 = 输入进位
C1 = G0 + P0C0
instance name in instantiation of 'carry_look_add'.
#
#
Region: /carry_look_add_tb
# Error loading design
# Error: Error loading design
#
Pausing macro execution
基于 Verilog 的四位超前进位加法器设计
使用 Verilog 语言实现四位超前进位加法器设计,并使用 Quartes 编写程序,使用 modelsin 进行仿真
验证设计
二、原理介绍
超前进位加法器(图为全加器)
Ai
1
3
Pi
Bi
2
1
3
Si
2
1 3 Gi
2
Ci
1
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字逻辑课程设计题目:设计一个 4 位超前进位加法器评语:
学院计算机工程班级计算
姓名学号
成绩指导老师黄斌刘丽莉
2016年 7 月 12日
真值表如下:
Ai Bi Ci-1Si
0000
0011
0101
0110
1001
1010
1100
1111其卡诺图如下:
A B
1
1
1
1
C
00101
11010
化简之后的表达式:S=Ai^Bi^Ci-1
进位c的表达式:
3 2 3 1 2 3 0 1 3 0 3 3 2 1 2 0 1 2 0 2 2 1 0 1 0 1 1 0 0 0 g
g
p g p p g p p c p p c
g g p g p p c p p c g g p c p p c g c p c in in in in
下图仿真波形图全图:
下图为局部波形图:
举例:A=0000,B=1011,c_in=0,c=1011,c_out=0
四、实验小结。
通过这次课程设计,我感觉我对Verilog语言还是不够熟悉,在写的过程中需要经常询问同学,或是通过网上查询来解决一些语法上的问题,对于这个加法器,只会按照书本上的来写,不知道怎么修改,测试代码的循环用FOR循环写不出来,只好问同学用always循环。