第七章 微分方程
高等数学-第七章-微分方程

在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
高数第七章微分方程知识点

高数第七章微分方程知识点
高数第七章微分方程的知识点主要包括:
1. 微分方程的基本概念:微分方程是包含导数或微分的方程,一般形式为
f(x, y', ..., y^{(n)}) = 0。
微分方程的阶数是指微分方程中所含导数或微分的最高阶数。
微分方程的解是指使微分方程成立的函数,不含任意常数的解称为特解,若微分方程的解中所含的相互独立的任意常数的个数与微分方程的阶数相等,称这个解为通解。
2. 高阶微分方程:高阶微分方程是阶数大于一的微分方程。
例如,二阶常系数齐次线性微分方程,形如 y'' + py' + q = 0 (p, q为常数)的方程。
3. 齐次方程:齐次方程是一种特殊的微分方程,可以通过变量代换化为另一种形式的一阶微分方程。
一阶齐次方程的形式为dydx=φ(yx),或者可化为这种形式的方程。
4. 一阶线性微分方程:一阶线性微分方程是包含一个未知函数及其导数的一次幂的方程,形式为 dydx+P(x)y=Q(x)。
如果Q(x)=0,则方程为齐次的,反之为非齐次的。
以上内容仅供参考,建议查阅高数教材或咨询专业人士以获取更准确的信息。
微分方程

dy P ( x ) y Q( x ) dx
dy 2 dx 2 例如 y x , x sin t t , 线性的; dx dt
yy 2 xy 3, y cos y 1,
非线性的.
高等数学(上)
一阶线性非齐次微分方程的通解为:
ye
Ce
P ( x ) dx
过定点的积分曲线; 微分方程的图形
y f ( x , y , y ) 二阶: y x x0 y0 , y x x0 y0
过定点且在定点的切线的斜率为定值的积分曲线.
高等数学(上)
第二节 一阶微分方程
一、可分离变量的微分方程
二、齐次方程
三、一阶线性微分方程
cos x C.
所以原方程通解为
y
1 cos x C . x
高等数学(上)
1 sin x 求方程 y y 的通解. x x
1 解 P( x) , x
sin x Q( x ) , x
sin x y x ln x sin x ln x e e dx C x 1 1 sin xdx C cos x C . x x
高等数学(上)
( x, C1 )
例3 求方程 xy
解
(5)
y
(4)
0 的通解.
(5)
设y
(4)
P ( x ), y
P ( x )
(4)
代入原方程 分离变量,得
xP P 0, (P 0)
1 2 两端积分,得 y C1 x C 2 , 2
原方程通解为
高等数学(上)
高等数学-第七章-微分方程

制动时
常微分方程
偏微分方程
含未知函数及其导数的方程叫做微分方程 .
方程中所含未知函数导数的最高阶数叫做微分方程
(本章内容)
( n 阶显式微分方程)
微分方程的基本概念
一般地 , n 阶常微分方程的形式是
的阶.
分类
或
— 使方程成为恒等式的函数.
通解
— 解中所含独立的任意常数的个数与方程
于是方程化为
(齐次方程)
顶到底的距离为 h ,
说明:
则将
这时旋转曲面方程为
若已知反射镜面的底面直径为 d ,
代入通解表达式得
一阶线性微分方程
第四节
一、一阶线性微分方程
*二、伯努利方程
第七章
一、一阶线性微分方程
一阶线性微分方程标准形式:
若 Q(x) 0,
若 Q(x) 0,
称为非齐次方程 .
第七章
一、齐次方程
形如
的方程叫做齐次方程 .
令
代入原方程得
两边积分, 得
积分后再用
代替 u,
便得原方程的通解.
解法:
分离变量:
例1. 解微分方程
解:
代入原方程得
分离变量
两边积分
得
故原方程的通解为
( 当 C = 0 时, y = 0 也是方程的解)
( C 为任意常数 )
此处
例2. 解微分方程
例4
例5
例6
思考与练习
求下列方程的通解 :
提示:
(1) 分离变量
(2) 方程变形为
作业
P 298 5(1); 6 P 304 1 (1) , (10); 2 (3), (4) ; 4 ; 6
高等数学上册第七章课件.ppt

y C2 ex ,再利用 y (0) = 1 得 C2 1, 故所求曲线方程为
第四节 可降阶的二阶微分方程
小结 可降阶微分方程的解法 —— 降阶法
逐次积分
令 y p(x) ,
令 y p(y) ,
第五节 二阶线性微分方程解的结构
•n 阶线性微分方程的一般形式为
y(n) a1(x) y(n1) an1(x) y an (x) y f (x) f (x) 0 时, 称为非齐次方程 ; f (x) 0 时, 称为齐次方程.
第四节 可降阶的二阶微分方程
例 求解 解
代入方程得
则 y d p d p dy p d p dx dy dx dy
两端积分得 ln p ln y ln C1 , 即 p C1y,
(一阶线性齐次方程)
故所求通解为
第四节 可降阶的二阶微分方程
例
解初值问题
y e2y 0 y x 0 0 ,
y p(x) y q(x) y f (x), 为二阶线性微分方程.
复习: 一阶线性方程 y P(x) y Q(x)
通解:
y
C
e
P(x)d
x
eP(x)d x
Q(x) eP(x)d x dx
齐次方程通解Y 非齐次方程特解 y
第五节 二阶线性微分方程解的结构
•线性齐次方程解的结构
定理 若函数 y1(x), y2 (x) 是二阶线性齐次方程 y P(x) y Q(x) y 0
的两个解, 则 y C1y1(x) C2 y2 (x)
也是该方程的解. (叠加原理)
证 将 y C1y1(x) C2 y2 (x) 代入方程左边, 得 [C1y1 C2 y2 ] P(x)[C1y1 C2 y2 ]
高数下册笔记精

第七章微分方程§ 1 微分方程的基本概念 一. 基本概念 :1. 微分方程 ; 凡表示未知函数 , 未知函数的导数与自变量之间的关系式称为微分方程.2. 常微分方程 ; 如果微分方程中的未知函数是一元函数,则称此类方程为常微分方程.3. 偏微分方程 ;如果微分方程中的未知函数是多元函数,则称此类方程为偏微分方程.4. 微分方程的阶 ; 微分方程中所出现的未知函数的最高阶导数的阶数,就称为此微分方程的阶.5. 微分方程的解 ; 将某个已知函数代入到微分方程的左右两边可使其成为恒等式,那么就称此已知函数为此微分方程的解.6. 微分方程的通解 : 如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相等,则这样的解就称为此微分方程的通解.7. 微分方程的初始条件与特解 .8. 微分方程的积分曲线 : 微分方程的解的图象是一条平面曲线,称此曲线为微分方程的积分曲线. 二.例题分析P263. 5.写出由下列条件所确定的曲线所满足的微分方程 :例 1.曲线在点处( x, y)的切线的斜率等于该点横坐标的平方.解:设该曲线的方程为yf (x) , 则由题意得 : y ' x 2 .--------这就是所需确定的曲线应满足的微分方程.例 2.曲线上点P( x, y) 处的法线与 x 轴的交点为 Q , 且线段 PQ 被 y 轴平分 .解:设该曲线的方程为yf (x) , 且设曲线在点 P 处的法线记为 L ,则其斜率为1/ y' ;设法线L与Y轴的交点为点A,再设法线L上任意一点M的坐标为 M ( X ,Y) ,进而得法线L的方程为:Y y k( X x) 且 k1/ y '即Y y (Xx) / y ' ;则易求得:X Q x y y ' 且 Y A yx / y ' ........①由题意知点A为线段PQ的中点知:X Q X P 2X A 且 Y Q Y P 2Y A ..........②由上述①,②两式最终可得:2xy y ' --------这就是所需确定的曲线应满足的微分方程.§ 2.可分离变量的一阶微分方程(注:它是一类最易求解的微分方程! )一.一阶微分方程的一般形式和一阶微分方程的对称形式:一般形式:F (x, y, y') 0对称形式:P( x, y)dx Q ( x, y)dy 0二.何为可分离变量的一阶微分方程?如果某一阶微分方程由对称式:P(x, y) dx Q(x, y)dy 0 ,可等价地转化为f (x)dx g( y)dy 0 的形式,则称原方程为可分离变量的微分方程.三.可分离变量的一阶微分方程的基本解法:(可由如下两步来完成求解过程)第一步:进行自变量x , dx 与因变量 y , dy 的左右分离;第二步:方程两边同时作不定积分即可求得原方程的隐式通解. §3.一阶齐次微分方程(注:它是一类经变量代换之后,可转化为"变量左右分离的一阶微分方程! )一.一阶齐次微分方程的定义:在某个一阶微分方程也即原方程形如:dy f ( x y ) 中,如果方程右边的函数 f ( x, y) 可写成 y的函数式即 f ( x y )( y ) , ,,dxxx dy ( y) ,则称此微分方程为一阶齐次微分方程.dxx二.一阶齐次微分方程的基本解法:转化求解法 ―――即首先将原一阶齐次微分方程转化为变量分离方程;然后再按变量分离方程的解法去求解即可!具体地说, 第一步,作变量代换令uy,则 y ux,dyu xdu,代入原一阶齐次微分方程x dx dx du dx 第二步,进行变量 u 与 x 的左右分离得:u;(u) xdy( y ) 得: u x du(u) ;dxx dx第三步,两边求不定积分即可得其解. ...三.例题分析参见P 271.例1.又如.P 276 .1.( 4).求方程(x 3 y 3 )dx3xy 2 dy 0 的通解.解:原方程可转化为 3dyx 3y 3x 2y,作变量代换令 uy,则 y ux,dyu xdu;dxxy 2 y 2x x dxdx则原方程转化为:3(uxdu) 1 u (注意:齐次方程在进行变量代换之后,一定是可以进行变量分离的! )dx u 2紧接着就进行自变量与因变量的左右分离§4.一阶线性微分方程 一.一阶线性微分方程的定义:x du1 2uu 2dudx.最后两边作不定积分即可. ..dx u 21 2uxP x y Qx ) 的方程为一阶线性微分方程.称形如:dy( )(dx(注:因为方程的左边对未知函数y 及其导数 y ' 来说是一次线性组合的形式,所以称上述方程为"线性"方程!)( i ). 当 Q (x)0 时,则称dyP( x) y 0 为一阶线性齐次微分方程.dx( ii ) . 当 Q ( x)0 时,则称dyP(x) y Q ( x) 为一阶线性非齐次微分方程.dx二.一阶线性微分方程的解法(常数变易法是求解线性非齐次方程的基本方法)1.所谓的"常数变易法":就是为了求解某一阶线性非齐次方程,可先去求解与其所对应的齐次方程;然后在所得齐次方程的通解中, 将任意常数C代换成一个待定的未知函数u(x) 来构造生成非齐次方程的解;最后再将由此法构造生成的解, 代回原非齐次方程中去确定那个待定函数 u( x) 的表达式.―――整个这样的求解过程就称为非齐次方程的常数变易法.(可参考P278.例1)dyP( x) y Q (x) 的通解公式如下: y ep ( x )dxQ( x) ep( x) dxc] ―――请牢记!2.一阶线性微分方程:[ dxdx三.伯努利方程(注:它是一类经变量代换之后可转化为可分离变量的一阶微分方程! )1.伯努利方程的定义我们称形如:dyP( x) y Q ( x) y n ....(*)的方程为"伯努利方程"(或称" n 级伯努利方程") .dx2.伯努利方程的解法(变量代换转化法)只要令z y1n ,则dz (1 n) y1 ndy,将其代入原 n 级伯努利方程(*)可得dzdxdxn) p( x) z (1 n) Q (x) ----- 这是一个一阶线性非齐次方程 !(1 dx进而可由一阶线性非齐次方程的通解公式求出其解, 这样也就求出原伯努利方程(*)的解!3.变量代换法在求解微分方程中的运用利用变量代换(包括自变量的变量代换和因变量的变量代换),把一个微分方程转化为可分离变量方程,或转化为一个已知其求解步骤的方程,这是解微分方程的常用方法. 例1.解方程.P 282. 9.( 1).dy (x y)2dx解:可令 ux y ,则原方程转化为 dydu 1 u 2du u 2 1dudx 两边积分就可得其解. ....dxdxdxu 2 1例2.P 282.9. ( 3)解方程 xy ' y y(ln x ln y)解:可令uln x ln yln xy xy e u两边关于自变量X求导得 y xy ' eudu代入原方程得:du ,dudu dx两边积分就可得其解.....dxue u x 1e u ux 1dxdxux§6.可降阶的高阶微分方程 (本节着重掌握三种容易降阶的高阶微分方程的解法)一.y (n)f (x) 型微分方程――――这类高阶微分方程的解法很简单,只要两边积分 n 次,就可得其通解.二. y ''f ( x, y ') 型微分方程首先此方程 y '' f ( x, y ') 的类型是二阶显微分方程,且此这类二阶显微分方程的特征是"不显含因变量y ".此类方程的解法:运用变量代换进行降阶求解.具体地,可令pdy ,则d 2 y dpdx dx 2,dx进而原方程转化为:dpf ( x, p) ―――这是一个一阶显微分方程.根据其具体形式,可按前几节所介绍的求解一阶方程的dx解法去求解.....得其通解设为p( x, c 1 ) 又 pdy ,也即有dy ( x, c 1 )dy(x,c 1) dx ,最后只要两边再作dx dx一次积分,就可得原二阶显微分方程的解.三.y '' f ( y, y ')型微分方程首先方程 y ''f ( y, y ') 的类型也是二阶显微分方程,且此这类二阶显微分方程的特征是"不显含自因变量x ". 此类方程的解法:也是运用变量代换进行降阶求解.具体地,可令pdy ,则 d 2y dp dp dypdp,进而原方dxdx 2dx dy dxdy程转化为pdpf ( y, p) ――这也是一个一阶显微分方程.根据其具体形式,可按前几节所介绍的求解一阶方程的解法去dy求解...设得其通解为 p( y,c 1 ) 又 pdydy dy,也即有( y, c 1 )dx,最后只要两边再作一次积分,dx dx( y, c 1 )就可得原二阶显微分方程的解.四.例题分析P 292. 1.( 5)求解方程:y'' y ' x解:第一步:判定此方程的类型是二阶显微分方程且不显含因变量y ,即 y'' f (x, y ') 型.接着可令pdy d 2 y dp dp x p .―――这是一阶线性非齐次方程dp ,则dx 2dx,进而原方程转化为:p x .dxdxdxp 1dxx e1dxc] e x [ xe x dx c] x e2 x ce x;由一阶线性非齐次方程的通解公式知: e [ dx进而知:p dy x e2x ce x dy (e2 x ce x x)dx ,最后只要两边再作一次积得原方程的通解.....dx五.微分方程的参数方程形式的隐式通解及其在有关问题中的运用所谓"微分方程的参数方程形式的隐式通解"就是将微分方程的通解用参数方程形式来刻画.即将微分方程的自变量 x 与因变量 y 都表达成某个参数p 的函数式的形式.例如:P 292 .1.(4)求解方程:y '' 1 y '2 .解:首先判定此方程的类型是二阶显微分方程且不显变量x 和y,它同属 y '' f ( x, y ') 与 y '' f ( y, y ') 型;所以解法相对由自.以下我们来介绍微分方程的参数方程形式的隐式通解给大家!先设p dy ,则 d 2 y dp.进而原方程转化为:dp 1 p21dp dx1dp dx.dx dx2 dx dx p2 p2 x arctan p c1―――这就求得了自变量x 关于参数p的函数式;以下再来求出因变量y 关于参数 p 的函数式,进而就可得原方程的参数方程形式的隐式通解.由p dy dy pdx1 pdp ,所以y1ln(1 p2 ) c2;dx p2 2x arctan p c1从而原方程的参数方程形式的隐式通解为:1 p2 ) .y ln(1 c22注:运用同样的方法,大家可以尝试一下去求解P292 .1.( 8);(9);(10).§7.高阶线性微分方程(主要的是学习二阶线性微分方程的有关理论!)一.二阶线性微分方程的定义:称形如: y '' P( x) y ' Q (x) y f ( x) ......(*)的方程为二阶线性微分方程.(注:方程的左边对未知函数y 及其导数y ', y ''这三者来说,是一次线性组合形式!)( i ). 当f (x) 0 时,则称 y '' P(x) y ' Q ( x) y 0 为二阶线性齐次微分方程.( ii ) . 当f ( x) 0 时,则称 y '' P( x) y ' Q( x) y f ( x) 为二阶线性非齐次微分方程.二.二阶线性微分方程的解的结构1.二阶线性齐次微分方程"解的叠加原理"定理1:设y1 (x) 与 y2 (x) 都是二阶线性齐次微分方程y '' P( x) y ' Q(x) y 0 的解,则此两解的任意线性组合y A c1 y1 ( x) c2 y2 ( x) 也是此二阶线性齐次微分方程的解.―――定理1揭示了齐次方程的解所满足的一种性质.此性质常称为齐次方程"解的叠加原理".2.多个函数间的线性相关性与线性无关性的定义(参见教材P296 从略)特别地,两个函数y1 ( x) 与 y2 (x) 在区间I上线性相关y1 (x)常数,x I.y2 (x)3.二阶线性齐次微分方程的通解的结构定理2:设y1 (x) 与 y2 (x) 是二阶线性齐次微分方程y '' P(x) y ' Q ( x) y 0 的解,且 y1 (x) 与 y2 (x) 线性无关,则此两解的任意线性组合y A c1 y1 ( x) c2y2 ( x) 就是原二阶线性齐次微分方程的通解.―――定理2揭示了如何用齐次方程的两个线性无关的特解去构造生成齐次方程的通解!4.二阶线性非齐次微分方程通解的结构定理3:设y* ( x) 是二阶线性非齐次微分方程y '' P(x) y' Q (x) y f ( x) ...(*)的一个特解,且Y( x)是对应的二阶线性齐次方程y '' P( x) y 'Q( x) y 0 的通解,则y A Y( x) y* ( x) 就是原二阶线性非齐次微分方程(*)的通解.―――定理3揭示了如何用齐次方程的通解去构造非齐次方程的通解!即:非齐次通解y =齐次通解Y +非齐次特解y * .5.二阶线性非齐次微分方程解的叠加原理(P297定理4)定理4:设有二阶线性非齐次微分方程y '' P(x) y 'Q ( x) y f (x) ,(其中 f ( x) f1( x) f 2 ( x) .)而 y1 (x) 是 y '' P( x) y ' Q(x) y f1( x) 的特解,且y2 ( x) 是y '' P(x) y ' Q( x) y f 2 ( x) 的特解则 Y (x) A y1 ( x) y2 ( x) 就是原二阶线性非齐次方程y '' P( x) y ' Q( x) y f ( x) 的一个特解.―――定理4揭示了如何去求非齐次方程特解的一种方法.它通常又称为非齐次方程解的叠加原理!6.定理5:设y1 (x) 与y2 (x) 是二阶线性非齐次微分方程y '' P( x) y ' Q(x)yf ( x) ...(*)的两个不相等的特解,则 Y( x) A y2 (x) y1 (x) 是对应的二阶线性齐次方程y ''P( x) y ' Q ( x) y 0 的一个非零特解.―――此定理揭示了如何用二阶线性非齐次方程的二个特解去构造生成对应的齐次方程的特解!7.例题分析P326. 1. (4) .已知y1 1, y2 x, y3 x2是某二阶线性非齐次微分方程的三个解,试求该方程的通解?分析与解答:设此二阶线性非齐次微分方程为y'' P( x) y 'Q( x) y f ( x) ....(*),则由定理3知:非齐次通解 y =齐次通解 Y +非齐次特解y *,现由题意知"非齐次特解y *"可取y1 1, y2 x, y3 x2 之中的任意一个,故以下只要求出"齐次通解Y "来即可.再由定理2知:"齐次通解Y "是两个线性无关的齐次特解的任意线性组合即:Y( x) c1 Y1( x) c2 Y2 ( x) (其中Y1 (x), Y2 (x) 是两个线性无关的齐次特解).而现在又应如何来求得两个线性无关的齐次特解呢?这可根据"定理5"来得到!由"定理5"知,可令:Y1 (x) @y2 ( x) y1 (x) x1 且 Y2 ( x) @y3 ( x) y1( x) x2 1 ,且显然两者线性无关,所以原非齐次方程的通解为y Y ( x) y1 ( x) c1 Y1 (x) c2 Y2 ( x) y1( x) c1 (x 1) c2 (x 2 1) 1.三.二阶线性非齐次微分方程的求解过程中的常数变易法与二阶线性非齐次微分方程的通解公式1.二阶线性非齐次微分方程求解过程中的"常数变易法".为了求解二阶线性非齐次微分方程y'' P( x) y ' Q( x) y f ( x) ...(1),可先求解与之对应的齐次方程;第一步:先求得对应的二阶线性齐次微分方程y'' P( x) y ' Q( x) y 0 ...(2)的两个线性无关特解y1( x) 与 y2 ( x) ,则由定理2知: y A c1 y1( x) c2 y2 ( x) ....(3)就是原二阶线性齐次微分方程(2)的通解;第二步:对齐次方程的通解(3)作常数变易,去构造生成非齐次微分方程(1)的解为 y A u( x) y1 (x) v( x)y2 (x) ...(4) (其中 u( x), v(x) 是两个待定的未知函数);第三步:接下来将(4)式代入原非齐次方程(1)并设法去求出u(x), v(x) ,这样也就求出了原非齐次方程(1)的解了!――――这就是二阶线性非齐次微分方程求解过程中的常数变易法.2.二阶线性非齐次微分方程的通解公式定理6.设y1 (x) 与 y2 (x) 是二阶线性齐次方程y '' P( x) y' Q (x) y0 .....(1)的两个线性无关的特解,y1 y20 ,则与之对应的二阶线性非齐次方程y '' P( x) y ' Q( x) y f ( x) .....(2)记 Wy1'y1'有通解公式:y y2 f y1 dx y1 fy2dx.W W§8.常系数齐次线性微分方程(重点是掌握二阶线性常系数微分方程的有关理论!)一.二阶线性常系数微分方程的定义:在二阶线性微分方程:y '' P(x) y' Q (x) y 0 ....(1)之中,(i) .如果 y ', y 的系数 p(x), Q( x) 都是常数,即(1)式成为y '' py ' qy 0 (其中p, q为常数),则称其为二阶线性常系数微分方程;(ii) .如果 p,q 不全为常数,则称y '' py ' qy 0 为二阶线性变系数微分方程.二.二阶常系数齐线性微分方程y'' py ' qy 0 的解法:(如下方法通常称为"特征根公式法")第一步,写出原微分方程的特征方程r 2 pr q 0 ,并求出此方程的二个特征根r1, r2;第二步,根据特征根r1, r2的不同情形,原方程y '' py ' qy 0 的通解公式如下:(i).若特征根 r1 , r2不相等,则原方程的通解为:y c1e r1x c2 e r2x;(ii) .若特征根r1, r2为相等,则原方程的通解为:y (c1 c2 x)e r1x;(iii) .若特征根r1 ,r2为一对共轭复根 r1,2 i ,则原方程的通解为:y e x (c1 cos x c2 sin x) .三.二阶常系数齐次线性微分方程y '' py ' qy 0 的求解举例:参见教材P304--305 例1 ; 例2 ; 例3等.§9.常系数非齐次线性微分方程(重点只需掌握如下关于二阶线性常系数非齐次微分方程的通解公式!)一.关于二阶线性常系数非齐次微分方程y'' py ' qy f ( x) (其中p,q为常数)有如下结论:定理6':设y1( x) 与 y2 ( x) 是二阶线性常系数非齐次微分方程 y '' py ' qy 0 .....(1)的两个线性无关的特解,y1 y20 ,则与之对应的二阶线性非齐次方程y '' py ' qy f (x) .....(2)记Wy1'y1'有通解公式: y y f y1dx y f y2 dx ―――请记牢!2 W 1 W――――注:此定理6'只不过是第七节中介绍的"定理6"的一个特例而已!二.常系数二阶非齐次线性微分方程求解举例例如P 313. 例2.求方程y'' 5 y ' 6y xe2x的通解.解:由定理5'应首先求对应的齐次方程y '' 5y ' 6 y 0 的通解,再运用定理5'来求原非齐次方程的通解.易知齐次方程 y'' 5 y ' 6y 0 的特征方程为 r 2 5r 6 0 ,特征根 r1 2, r2 3 .于是,齐次方程的两个线性无关的特解为y1 e2 x, y2 e3x W y1 y2 e5 x;y' y '1 1进而原非齐次方程的通解为:y y2 fy1 dx y1 f y2 dx e3x xe2 x e2 x dx e2 x xe2 x e3 x dx W W e5x e5xy e3x( xe x e x c1) e2 x ( 1x2 c2 ) d1e2x d2e3x 1 ( x2 x)e2 x.2 2三.本章杂例P 327. 7.设有可导函数( x) 满足( x)cos x 2x(t)sin tdt x 1 ,求 (x) ? 0分析与解答:这是一个"积分方程",求解"积分方程"的思路:首先我们把它转化为一个与其对应的微分方程,再来求解.现由( x)cos x x (t )sin tdt x 1 两边关于自变量X求导数得:2'(x)cos x ( x)sin x 2 (x)sin x 1 '(x)cos x ( x)sin x 1现记 y (x) ,则有 y 'cos x y sin x 1 y' y tan x secx ――这是"一阶线性非齐次微分方程".y p ( x) dxQ( x) ep( x)dxc] y etan xdxsec x etan xdxc] sin x c cosx .由通解公式得: e [ dx [ dx( x)cos x 2 x x 1 知,当x 0 时,则y (0) 1,所以c 1.又由条件(t )sin tdt综上得原方程的解为:y sin x cos x.四.综述"求解微分方程的一般程序"如下:第一步,判定方程的类型,它是一阶微分方程还是二阶微分方程?(我们知道标准求解步骤的一阶方程类型包括:①可分离变量方程;②齐次方程;③一阶线性(非)齐次方程;④贝努利方程);第二步,根据我们在本章所讲的各种方程的标准解法去求解!补充说明:如果方程类型是我们很陌生的形式,那么就首先考虑运用"变量代换法"将其转化为我们所熟悉的方程类型;然后再按上面的标准步骤去解决问题.第八章空间解析几何§1向量及其线性运算一 .一些基本概念①向量与自由向量; ②单位向量与零向量; ③向量的共线与共面; ④向量的模 , 方向角 , 以及投影等 .二 .向量的加法运算与数乘运算的定义三 . 向量的线性运算在空间直角坐标系下的表达借助于空间直角坐标系,向量间的线性运算可以转化为它们坐标之间的线性运算.§2向量的数量积向量积混合积一.两个向量的数量积r r r r 为向量r r 之间的夹角)1.数量积的定义 a b |a | |b | cos , (其中a,bAr r r r r r2.数量积与投影之间的关系――― a b | a | Pr j a b | b | Pr j b ar r3.数量积的运算规律二.两个向量的向量积r r r rr r 1.向量积的定义 a b | a | | b | sin , (其中 为向量 a,b 之间的夹角)Ar r2.向量积的模的几何意义:它表示以向量a, b 为邻边所成的平行四边形的面积. 三.三个向量的混合积r r r r r r1.混合积的定义[a,b,c] A (a b) cr r r 2.三个混合积的模的几何意义:它表示以向量a,b, c 为邻边所成的平行六面体的"有向体积".r r rV ; (i) r r rr r r1.即 [ a,b, c]当 a, b, c 呈右手系时,1;(ii) 当 a,b, c 呈左手系时,§3 曲面及其方程 一 . 曲面方程的概念r r rV 与某个三元方程 F (x, y, z) 0 的解之间能构成一一对应1.如果某曲面 S 上的点的坐标 M ( x, y, z)[ a, b, c], 则称这个三元方程F (x, y, z)0 为此曲面 S 的方程 ;2. 建立曲面方程的一般方法 : 首先在所求曲面上任取一点 M ,记其坐标为 M (x, y, z) , 然后利用该曲面的特征并将其等价地表达为点 M ( x, y, z) 的坐标应满足的条件式即可 !例如: 试求球心在点 M 0 ( x 0 , y 0 , z 0 ) , 半径为 R 的球面方程 ?uuuuuur解 : 设 M (x, y, z) 为所求球面上任意一点 , 则由 | M 0 M | Ruuuuuur(x x 0 ) 2 ( y y 0 ) 2 ( z z 0 )2即| M 0M |R所以 ( x x 0 )2( y y 0 )2 ( z z 0 )2R 2二 . 旋转曲面1. 旋转曲面的定义 ( 参见 P312)2.坐标平面内的平面曲面绕坐标轴旋转所成旋转曲面的方程及其特点:例如 : 将 yoz 坐标平面内的曲线C:f ( y, z) 0 绕Z轴旋转所成旋转曲面S z 的方程只要将平面曲线C: f ( y, z) 0 的方程中的y代换为x 2 y 2 ,即得旋转曲面 S z 的方程为 f ( x 2 y 2 , z) 0 .又如 : 将 zox 坐标平面内的曲线C:g( x, z) 0 绕X轴旋转所成旋转曲面 S x 的方程只要将平面曲线C: g ( x, z) 0的方程中的 z 代换为z 2 y 2 ,即得旋转曲面 S x 的方程为 g( x, z 2 y 2 ) 0.三. 柱面1. 柱面的定义 ( 参见 P314)2. 四种常见的柱面 :①圆柱面 x 2 y 2 2x 2 y 21; ③抛物柱面 y 22 px ; ④双曲柱面 x 2 y 21a ; ②椭圆柱面 a 2b 2 a 2 b 23. 二元方程在空间直角坐标系中的几何意义:二元方程在空间直角坐标系中的总表示一个母线平行于坐标轴的柱面. 例如 : 方程 f (x, y)0 表示的就是一个以 xoy 坐标平面内的曲线C:f (x, y) 0 为准线,母线平行于Z轴的柱面.四 . 二次曲面1. 九种二次曲面的标准方程及其大致的曲面形状2.掌握运用对旋转曲面伸缩变形来认识一般的二次曲面形状的思想方法;例如: 椭圆锥面:x 2y 2 z 2的大致形状可以按如下方式分析:首先将曲面方程中的a 改成b,易知方程:x 2y 2 z 2a 2b 2a 2a 2表示的是一个旋转曲面,且它可以由xoz 平面内的两条对称直线: x 2z 2xaz 绕Z轴旋转来生成;进而把a 2此旋转曲面沿y 轴方向伸或缩 b倍,即得椭圆锥面:x 2 y 2 z 2 的形状!aa 2b 2§ 4 空间曲线及其方程一 . 空间曲线的一般方程:即将空间曲线看成两张曲面的交线形式.设F ( x, y, z) 0 和G ( x, y, z) 0 是某两张曲面的方程,则它们的交线为F (x, y, z)G(x, y, z);x x(t)二 . 空间曲线的参数方程yy(t) ,(有关定义参见P320)z z(t)三 . 空间曲线向坐标平面的投影曲线与投影柱面(定义参见P323)四 . 二个三元方程联立消元的几何意义联立消元的几何意义:实际上就是在求这两个方程联立的方程组所表示的空间曲线向某个坐标面内的投影柱面的方程.例如:试求球面 x2y 2 z 2 9 与平面 x z 1的交线在 xoy 坐标面上的投影柱面与投影曲线的方程?解:即需求空间曲线x 2y 2 z 2 9x z1,向 xoy 坐标面内的投影柱面与投影曲线的方程.为此,只要在上述方程组中消去变量Z, 得x2y 2 (1 x)29 即为所需求的投影柱面的方程, 而上述空间曲线向 xoy坐标面的投影曲线的方程为x 2 y 2 (1 x) 2 9z 0.§ 5 平面及其方程r一 . 平面的点法式方程设某平面过一定点M 0 ( x 0 , y 0 , z 0 ) 且以 n { A, B,C}为其法向量,则所求平面的点法式方程为:A( x x 0 ) B( y y 0 ) C ( z z 0 ) 0Ax ByCz D 0r{ A, B, C} 为其法向量的某一张平面)二 . 平面的一般式方程:(应知此平面是以向量 n 三 . 平面的截距式方程:xy z 1;数值 a, b,c 分别称为该平面在X,Y,Z轴上的截距.a b c四 . 两个平面的夹角两个平面的夹角是指这两个平面的法向量之间的夹角 (当其是锐角时) ,或者是指这两个平面的法向量之间的夹角的补角 (当其是钝角时).五 . 点到面的距离公式设P 0 ( x 0 , y 0 , z 0 ) 是空间中的任意一点,记其到平面:AxBy Cz D 0的距离为d,则d| Ax 0 By 0Cz 0D |.A 2B 2C 2§ 6 空间直线及其方程一 . 空间直线的一般方程A 1 xB 1 yC 1 zD 1 0( 或称交线式方程 ) :.A 2 xB 2 yC 2 zD 2 0二 . 空间直线的点向式方程 ( 或称对称式方程 ) :xx 0 y y 0 zz0 .m np三 . 空间直线的参数式方程x x 0 mt由空间直线的点向式方程:x x 0y y 0z z 0@t ,得 yy 0nt 此即为该直线的参数式方程;mnpz 0 ptz 四 . 空间直线的两点式方程设有直线过两点M 1( x 1 , y 1 , z 1 ), M 2 ( x 2 , y 2 , z 2 ) ,则此直线的两点式方程为x x 1 y y 1 z z 1 .x 2 x 1 y 2 y 1z 2 z 1五 . 两直线的夹角两直线的夹角是指这两条直线的方向向量之间的夹角 (当其是锐角时) ,或者是指这两条直线方向向量之间的夹角的补角 (当其是钝角时).六 . 直线与平面的夹角(定义参见P333) 七 . 平面束的方程及其在解题中的运用1.所谓"平面束"就是指经过某一定直线的所有平面的全体;平面束的方程可由此定直线的方程构造而得.A 1 xB 1 yC 1 zD 1 0A 1 ,B 1,C 1 与 A 2 , B 2 , C 2 不成比例,具体地说,若设直线L的方程为A 2 xB 2 yC 2 zD 2,其中系数则以直线L为轴的平面束的方程为:( A 1 x B 1 y C 1zD 1)( A 2 x B 2 y C 2 z D 2 ) 0.(注:不同位置的平面对应于不同的参数 ,的取值.)2.平面束的概念在解题中的运用例1:参见P335例7.例2:P336.8.求过点P(3,1, 2) 且过直线L: x4 y 3z的平面方程?5 2 1x 4 y 3 z ,得直线L的一般式方程为 2x 5 y 23 0 解:由直线L的对称式:21,5y 2 z 3 0从而由平面束的概念知:可设所求平面的方程为:(2 x 5y23) ( y 2z 3) 0 .(其中 ,为待定系数!)........(1)现由点 P(3,1,2) 在此平面上,所以应有 (2 3 5 1 23) [1 2 ( 2) 3] 0,解得 /11/ 4.最后,将此值代入方程(1)即得所需求的平面方程.八.点到直线的距离公式r设 点 M 0 ( x 0 , y 0 , z 0 ) 是 直 线 L 外 一 点 , s 是 直 线 L 的 方 向 向 量 且 点 M (x, y, z) 是 直 线 L 上 任 意 一 点 , 则 点uuuuuur r M 0 ( x 0 , y 0 , z 0 ) 到直线L的距离d的计算公式为: | M M s |d0 r(注:此式只要运用向量积模的几何意义即可证明! )| s |九.直线与平面的位置关系―――线与面的位置关系有如下四种:①线在面内;②线面平行;③线面垂直;④线面斜交.r r现设直线L的方向向量为s ,平面 的法向量为 n ,则有如下结论:1.线在面内:2.线面平行:3.线面垂直:r rL s n 且A( x 0 , y 0 , z 0 ) L 但 A( x 0 , y 0 , z 0 ) ; L P r r s n , A(x 0 , y 0 , z 0 ) L 且 A(x 0, y 0 , z 0 ) ;Lr r 4.线面斜交: Lr rs Pn ;不成立s Pn 不成立;十.本章有关的一些解题技巧1.求交点类问题: 在此类问题中,运用直线的参数式方程来求解常常过程要简单一些.x 2 y3 z 42xy z6 0的交点?例如:试求直线L:1 1与平面 2x t 2解:易知直线L的参数为y t3 ,将其代入平面 2x y z 6 0 的方程,z 2t 4得2(t 2) (t 3)(2t 4)6 0,解得t1 ,进而知交点的坐标为 (1,2,2) .2.求距离类问题有时也可用直线的参数式来求解.例如:P336.13.求点P(3, 1,2) 到直线L:xy z 1 0的距离d=?2xyz 4解:直线L: x y z 1 0x y z 1 0 x y z 1 0y 2 z2x y z 4 03x 3 0x 1,x 1x1 y 2z 0 x 1 y t 2;11z t设点M为直线L上的一动点其坐标可设为M (1,t 2, t) ,uuur 2(1 3) 2(t 2 1) 2(t 2)22t 26t 9 2(t3 ) 29则有|MP |2 ,uuur2知当t 32 为最短!此时,点M的坐标M (1,t 2, t )(1, 1,3) . 时,距离 d=|MP|=3222 2――― ( 注:本题中也演示了空间直线的三种方程形式之间的互化技巧,以后可做参考!)3.已知平面上一点时求平面的方程时,点法式写方程是我们求解平面方程的基本思路.x 2 y z 1 0 和L 2: 2x y z 0例如:P336.11.求过点 A(1,2,1)而与直线L 1 :yz 1 0 x y z 都平行的平面方程?x分析:现已知平面上一点A(1,2,1) ,所以只需求得此平面的一个法向量来即可得此平面的点法式方程.ur uur r 解:记这两条直线的方向向量分别为n1, n2 ,而所以平面的法向量设为n ,ur{1,2, 1} {1, 1,1} {1, uur1,1} {1, 1,1} {0, 1, 1},则由n2, 3}, n {2,1 2r ur uur( x 1) ( y 2) ( z 1) 0.进而n n1 n2 { 1,1, 1} ,所以所求平面的方程为:。
高等数学第七章微分方程微分方程
常 数 变 易 法
则有 令
以下推导的前提
联立 (3)、(4) 构成方程组 解此方程组,再积分,并取积分常数为零,即可得到
于是 对上式两边关于 x 求导,得
这两部分 为零。
即
例
解 由常数变易法,解方程组
13
两边积分,取积分常数为零,得
两边积分,取积分常数为零,得 故原方程有一特解 从而,原方程的通解为
18
例.
的通解.
解: 特征方程为
其根为
对应齐次方程的通解为
为特征方程的单根 ,因此设非齐次方程特解为
代入方程: 比较系数, 得 因此特解为 所求通解为
2013/9/23
19
你认为方程应该 有什么样子的特解?
单根 二重根 一对共轭复根
假设方程
有下列形式的特解:
则
代入方程 (2) ,得 即
方程 (3) 的系数与方程 (2) 的特征根有关。
由方程 (3) 及多项式求导的特点可知,应有 方程 (2) 有下列形式的特解:
由多项式求导的特点可知,应有 方程 (2) 有下列形式的特解:
由多项式求导的特点可知,应有 方程 (2) 有下列形式的特解:
16
定理 1 当二阶常系数非齐线性方程 它有下列形式的特解:
其中:
例
解 对应的齐方程的特征方程为
特征根为 对应的齐方程的通解为
将它代入原方程,得
2013/9/23
比较两边同类项的系数,得
故原方程有一特解为 综上所述,原方程的通解为
例 求微分方程
7
例1
解 所以,方程的通解为
2013/9/23
例2 解:
课堂练习
解
课堂练习
《高等数学》 第七章
C
;
第三步,求积分的通解: G( y) F(x) C .
其中 G( y) , F (x) 分别是 1 , f (x) 一个原函数. g ( y)
第二节 一阶微分方程
例 1 求微分方程 dy y sin x 0 的通解. dx
解 将方程分离变量,得到 dy sin xdx , y
两边积分,即得
(*)
例如,以上六个方程中,(1)、(2)、(5)、(6)是一阶常微分方程,(3)是二阶
常微分方程,(4)是二阶偏微分方程.
定义 3 如果微分方程中含的未知函数及其所有导数都是一次多项式,则称该方
程为线性方程,否则称为非线性方程.
一般说来,n 阶线性方程具有如下形状:
a0(x) y(n) a1(x) y(n1) an1(x) y an (x) y (x) .
第二节 一阶微分方程
例 3 求方程 dy y 1 的解. dx x 1
为方便起见,以后在解微分方程的过程中,如果积分后出现对数,理应都需作
类似下述的处理,其结果是一样的.以例 3 为例叙述如下:
分离变量后得
1 dy 1 dx , y 1 x 1
两边积分得
ln | y 1| ln | x 1| ln C ,
再分离变量,得 du 1 dx ; f (u) u x
第三步,两端分别积分后得
du f (u) u
ln | x | C1
.
求出积分后,再用 y 代替 u ,便可得到方程关于 x 的通解. x
第二节 一阶微分方程
例 4 求微分方程 xy y(1 ln y ln x) 的通解.
解
将方程化为齐次方程的形式
dy dx
y x
1
(完整版)高等数学第七章微分方程试题及答案
解:特征根为
i ,齐次方程的通解为: y c1 cos x c2 sin x
y' ' y x , y ? c1 c2 x c1 0, c2 1 y ? x
?
0x
y' ' y 3sin 2 x , y x e c1 cos x c2 sin x c1 sin 2x c2 cos 2x
待入原式得出: c1 1, c2 0 ,所以 y ? sin 2 x
Байду номын сангаас
解:变形得: dx x y 4 即 dx 1 x y3 ,是一阶线性方程
dy
y
dy y
P( y)
1
3
,Q ( y) y
y
1 dy
x ey
1 dy
y3e y dy C
1 y 4 Cy 3
三、伯努力方程 xy ' y x 3y 6
解: xy 6 y' y 5 x 3 ,
dy y 6 y 5 x 2 ,
dx
dx
du
du
u y , 所以 u y
dy
dy
dy
yu .( 将 y 看成自变量 )
eu (u 1)
u
1e
du ueu eu
y
u
u
dy 1 e
u eu
u
1e
1 eu u eu du
dy
d (u eu )
,
y
u eu
dy
u eu
, ln
y
c
1 ln y ln
y
1 u eu
,
yc
c y u eu
二、一阶线形微分方程
2
第七章 微分方程
第七章 微分方程§7.1微分方程的基本概念1. 填空(1) 微分方程356()40x y y y x '''++=的阶数是 二阶 ; (2) 微分方程2(76)()y x y dx x y dy e -+-=的阶数是 一阶; (3) 微分方程2sin d d ρρθθ+=的阶数是一阶;(4) 微分方程212(),x y C C x e =+则当120,1C C ==时,00|0,|1;x x y y =='==(5) 已知曲线上点(,)p x y 处的法线与x 轴的交点为Q,且线段PQ 被y 轴平分.则曲线所满足的微分方程是20yy x '+=2. 验证(3)x y x c e =+是微分方程20y y y '''-+=的解,它是否是该微分方程式的通解?为什么?证: 3(3),6(3)x x x x y e x c e y e x c e '''=++=++ 则有26(3)2[3(3)](3)0x x x x x y y y e x c e e x c e x c e '''-+=++-++++=则(3)x y x c e =+是微分方程的解,但只含有一个任意常数,所以它不是通解.3. 设212()x y C C x e =+(1) 验证y 是微分方程440y y y '''-+=的通解. 解22222122122(),44()x x x x y C e C C x e y C e C C x e '''=++=++,因为22222212212124444()48()4()0x x x x x y y y C e C C x e C e C C x e C C x e '''-+=++--+++=所以212()x y C C x e =+是微分方程的解,且含有两个相互独立的任意常数,因而是微分方程的通解.(2) 求参数方程12,C C 使得它满足初始条件(0)0,(0)1y y '== 解:由(0)0,(0)1y y '==得0111002120(0)0,12 1.C e C C C e C e C =+=⇒==+⇒=§7.2可分离变量微分方程1. 求下列可分离变量微分方程的解 (1)()()0x y x x y y e e dx e e dy ++-++= 解:(1)(1)0,(1)(1),11y x xyyxyxxyy x e dy e dxe e dx e e dy e e dy e e dx e e --++=+=--=-+ 1(1)(1),,ln 1ln 1ln 1111y x y x y xy x y x e dy e dx d e d e e e C e e e e --+==--=-++-+-+⎰⎰⎰⎰111101011(1)(1),(1)(1),1010y y xyx yx y x x e e e e C e e C e e C e e ⎧⎧->-<+-=⇒+-=⇒+-=⎨⎨+>+<⎩⎩111010(1)(1),(1)(1),1010y y x yx y xx e e e e C e e C e e ⎧⎧-<->⇒+-=-⇒+-=-⎨⎨+>+<⎩⎩则通解为(1)(1)x y e e C +-=. (2)cos s sin sin 0xco ydx x ydy +=11sin cos cos sin ,ln cos n sin ln cos sin cos sin cos sin y x d y d xdy dx dx y l x C y C x y x y x =-=⇒=+⇒=⎰⎰⎰⎰1cos sin cos sin y C x y C x ⇒=±⇒=所以通解为arccos(sin )y C x =2. 求下列可分离变量微分方程满足所给初始条件下的特解 (1)20,| 1.y x x y e y -='==解:220221111111,,,|1,,2222y y x y x x x y x e dy dx y e e c y c e e e e e e e ----='==⇒=+=⇒=-=+-⎰⎰所以特解为2111ln()22x y e e-=--+(2)2sin ln ,|x y x y y y e π='==解:111,ln ln ln csc ln ln csc ln (csc )ln sin dy dxy x ctgx C y C x ctgx y C x ctgx y y x==-+⇒=-⇒=±-⎰⎰ ln (csc )y C x ctgx ⇒=-2|1,x y e C π==⇒= 则1cos ln csc tan sin 2x xy x ctgx x -⇒=-==,所以特解为 tancsc 2xx ctgxy ee-==(3)sin (12)cos 0,(0)4x ydx e ydy y π-++==解cos cos sin sin (2),,,sin sin sin sin 121222x x x x x xydy dx ydy dx d y e dx d y d e y y y y e e e e -----+===-=++++⎰⎰⎰⎰⎰⎰ 1111ln sin ln(2)ln ln (2)sin sin 22x x x x C Cy e C C e y y e e -±=-++=+⇒=⇒=++(0)sin443C y C y ππ=⇒=⇒==则特解为y =3. 质量为1g 的质点受外力作用作直线运动,外力和时间成正比,和质量运动的速度成反比,在10t s =时速度等于50/,cm s 外力为42/,g cm s ⋅问从运动开始经过了一分钟后的速度是多少?解:1010,|50,|420,20,120,20t t t dvF k v F k mvv t m v t vdv tdt v dt=='===⇒=∴==⇒==⎰⎰22210110,|50250,20500,2t v t c v c v t ==+=⇒==+ 所求特解为v60|269.3(/)t v cm s =≈4. 一曲线通过点(2,3),它在两坐标轴间的任一切线段均被切点所平分,求这曲线方程. 解:1112tan ,ln ln ln 2y y dy dxy y x C xy C xy C xy C x xy x α'==-=-=-⇒=-+⇒=⇒=±⇒=⎰⎰又因(2)3y =知C=6,则所求的曲线方程为6xy =§7.3齐次方程1. 求下列齐次方程的通解.(1) 22()0x y dx xydy +-=解:2221y dy x y x y dx xyx⎛⎫+ ⎪+⎝⎭==,令2'111,,,,,yu u y ux y u xu xu u udu dx xu ux+''===+=-==22221111ln ln ln ln 2u x C C x u C x =+=⇒= 通解为222ln()y x Cx =(2) 3(l n l n )dyx y y x dx=- 解:3ln ,dy y ydx x x=令ln 1(3ln 1),3ln ,,,,.(3ln 1)3ln 133ln 1y du dx d u dx d u dxu xu u u u x u u x u x u x-'==-===---⎰⎰ 33333111ln 3ln 1ln()3ln 1ln(1)3y u C x u C x Cx Cx x -=⇒-=±=⇒=+ 所以通解为313Cx y xe+= (3) (2s i n 3c o s )3c o s 0y yy x y d x x d y x xx+-=解:2sin3cos 2sin 3cos 3,,,,3cos 2tan 3cos y y x y dyy u u udx x x u y ux u x u du y dxx u x ux x++'===+==令 3221133ln sin ln ln sin 2tan 2dx du u x C u C x Cx x u =⇒=+⇒=±=⎰⎰ 再将yu x=代入原方和得通解为 32sin yCx x= 2. 求下列齐次方程满足所给初始条件下的通解. (1)1,|2x x yy y y x='=+= 解:令yu x=,2211111,,ln ln ,|2222x du y xu u u x C x C y C u dx xx =⎛⎫'===+⇒=+=⇒= ⎪⎝⎭所以通解为222(ln 2)y x x =+(2)22221(2)(2)0,|1x x xy y dx y xy x dy y =+-++-==解:222222212221y y dy x xy y x x dx y xy x y y x x ⎛⎫-- ⎪+-⎝⎭=-=+-⎛⎫+- ⎪⎝⎭,令y u x =,2222112,1211u u dx u xu u du x u u u u --⎛⎫'+==- ⎪++-+⎝⎭ 1112211ln ln ln ln11u u x C C x C x Cx u u +++==⇒=±=++,从而有 221(),|11x x y C x y y C =+=+=⇒=因此特解为22x y x y +=+§7.3一阶线性微分方程1. 求下列一阶线性微分方程的通解. (1) x y y e -'==解: ()dx dxx x x x x x y e e e dx C e e e dx C e dx C e x C ------⎡⎤⎰⎰⎡⎤⎡⎤=+=+=+=+⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ (2) ln (2ln )0y ydx x y dy +-=解:21ln dx x dy y y y+= 2222ln ln 2ln ln 2ln ln ln ln ln ln 111dy dy d y d y y y y y y y y yx e e dy C e e dy C e e dy C y y y ---⎡⎤⎡⎤⎡⎤⎰⎰⎰⎰=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ =22ln(ln )ln(ln )222211(ln )(ln )(ln )(ln )ln y y e e dy C y y dy C y y d y C y y ---⎡⎤⎡⎤⎡⎤+=+=+⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ =2221(ln )(ln )ln ln 3(ln )Cy y d y C y y -⎡⎤+=+⎣⎦⎰. 2..求下列一阶线性微分方程满足所给初始条件下的特解. (1)sin ,|1x dy y x y dx x xπ=+== 解: 111ln ln ln ln sin sin sin dx dx x x x xx x x x x y e e dx C e e dx C e e dx C x x x ---⎡⎤⎡⎤⎡⎤⎰⎰=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ =11sin 1sin (cos )x x xdx C x xdx C x C x x --⎡⎤⎡⎤+=+=-+⎢⎥⎣⎦⎣⎦⎰⎰ |11x y C ππ==⇒=-则特解为1(cos 1)y x xπ=-+-(2) ln (ln )0,|1x e x xdy y x dx y =+-==解:1ln dy y dx x x x+= 1111ln ln ln ln ln ln ln ln ln ln 111dx dx d x d x x x x x x x x xy e e dx C e e dx C e e dx C x x x ---⎡⎤⎡⎤⎡⎤⎰⎰⎰⎰=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ 1ln(ln )ln ln 21111[ln ln ][(ln )]ln ln 2x x e e dx C xd x C x C x xx -⎡⎤=+=+=+⎢⎥⎣⎦⎰⎰1|12x e y C ==⇒=,因而特解为21[(ln )1]2ln y x x=+. 2. 求一曲线的方程,这曲线通过原点,且在点(,)x y 处的切线斜率等于2.x y + 解:依题意知2,2y x y y y x ''=+-=1222()2dx dx x x x x x x x y e xe dx C e xe dx C e xe d x C e xde C ----⎡⎤⎰⎰⎡⎤⎡⎤⎡⎤=+=+=-+=-+⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰ =2(2(()2()x x x x x x x x xe xe e dx C e xe e d x C e xe e C ------⎡⎤⎡⎤⎡⎤--+=-+-+=-++⎣⎦⎣⎦⎣⎦⎰⎰ 022,|02x x x Ce y C ==--+=⇒=则微分方程的特为2(1)x y e x =--3. 设有一质量为m 的质点作直线运动,从速度等于零的时刻起,有一个与运动方向一致,大小与时间成正比(比例系数为1k )的力作用于它,此处还受一与速度成正比(比例系数为2k )的阻力作用,求质点运动的速度与时间的函数关系. 解:2112,k kmv k t k v v v t m m''=-+=2222221112k k k k k k dt dt t t t t m m m m m mk k k m v e te dt C e te dt C e tde C m m m k ---⎡⎤⎡⎤⎡⎤⎰⎰=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ 222211222(()k k k k t t t t mm m mk k m ete e dt C t Cek k k --⎡⎤=-+=-+⎢⎥⎣⎦⎰ 111022222|0.t mk k mk v C v t k k k ==⇒=∴=- §7.5可降阶的高阶微分方程1. 求微分方程的通解. (1)x y xe x '''=+解:()2112x x x x x y xe x dx xe dx xdx xde xdx xe e x C '''=+=+=+=-++⎰⎰⎰⎰⎰2311211226x x x x y xe e x C dx xe e x C x C ⎛⎫'''=-++=-+++ ⎪⎝⎭⎰3421212311(2)(3)624x x x y xe e x C x C dx x e x C x C x C '=-+++=-++++⎰(2) ()21y y '''=+解:令21112,,1,,arctan ,tan(),tan()1dp dyp y y p p pdx p x C P x C x C dx p '''''===+==+=+=++ 1112tan()()ln cos()y x C d x C x C C =++=-++⎰2. 求下列微分方程满足所给初始条件下的特解. (1)2002,|1,|1x x x y y e y y ==''''+===解:令2222222241111,,2,[][][]4dx dx x x x x x x x p y y p p p e p e e e dx C e e e dx C e e C ---⎰⎰'''''==+==+=+=+⎰⎰222222112131313,(0)1,()444488x x x x x x y e C e y C y e e dx e e C ---''=+=⇒==+=-+⎰ 25(0)1,4y C =⇒= 因而特解为22135.884x x y e e -=-+ (2) 2111,|0,| 1.x x x y xy y y ==''''+===解:令1121122211111,,1,,[][]dx dx xx p y y p x p xp p p p e e dx C xdx C x x x xx -⎰⎰''''''==+=+==+=+⎰⎰=21112111ln 1ln 11[][ln ],(1)11,,(ln )2x x dx C x C y C y y dx dx x C x x x x x x x ''+=+=⇒==+=+=+⎰⎰⎰ 2(1)00y C =⇒= ,则特解为21(ln )ln 2y x x =+ §7.6高阶线性微分方程1. 验证21xye =及22x yxe =都是方程24(42)0y xy x y '''-+-=的解,写出该方程的通解.证:2222222221114(42)246420x x x x x y xy x y e x e x e x e e '''-+-=+-+-= 222332224(42)[644842]0x y xy x y x x x x x x e '''-+-=+--+-= 121y y x=≠常数,则通解为 2221212()x x xy C e C xe C C x e =+=+2. 验证51y x =21y x =是方程2350x y xy y '''--=的解,23ln 9x y x -=是微分方程2235ln x y xy y x x '''--=的解,写出微分方程2235ln x y xy y x x '''--=的通解.证:251113(20155)0x y xy xy x '''--=--=, 2212213(235)0x y xy xy x'''--=+-=, 22222223332653ln ln ln ln 93939x x x x y xy xy x x x x x x x '''--=--+++=61yx y=≠ 常数,则微分方程的通解为 2511223121ln .9x y C y C y y C x C x x =++=+-3. 验证12121()(,2x x xe y C e C e C C x -=++是任意常数)是方程2x xy y xy e ''+-=的通解. 解:*12111,,2x x x ye y e y e x x -===,因为 1112222222222222222(11)0,2(11)0x x xy y xy e xy y xy e x x x x x x x x-''''+-=-++--=+-=+++--= ()()***212112(),22x x x x y x y y xy xe e e e y '''+-=-+==≠ 常数,所以通解为121()2x x xe y C e C e x -=++§7.7常系数齐次线性微分方程3. 求下列二阶常系数齐次线性微分方程的通解. (1)212120,1204,3y y y r r r r '''+-=+-=⇒=-= 所以通解为4312x x y C e C e -=+. (2)212690,6903y y y r r r r '''++=++=⇒==-所以通解为312()x y C C x e =+. (3)21,26100,61003y y y r r r i '''++=++=⇒=-±所以通解为312(cos sin )x y e C x C x -=+4. 求下列二阶常系数齐次线性微分方程满足所给初始条件下的特解. (1)320,(0)0,(0)1y y y y y ''''++===.解: 211,3202,1r r r r ++=⇒=-=-,则通解为22121212,2,(0)0,(0)11,1x x x x y C e C e y C e C e y y C C ----''=+=--==⇒==-则通解为2x x y e e --=-.(2) 250,(0)2,(0)5y y y y '''+===解:21,22505r r i +=⇒=±则通解为12cos5sin 5y C x C x =+12125sin 55cos5,(0)2,(0)52,1y C x C x y y C C ''=-+==⇒==则特解为2cos5sin 5y x x =+§7.8常系数非齐次线性微分方程5. 求下列二阶非齐次微分方程的通解 (1)228(1)x y y y x e -'''--=+解:24212122804,2,x x r r r r Y C e C e ---=⇒==-∴=+ 面1,2m λ==-为特征单根()()'''*2*222*2222(),(2)2(),24(2)4()x x x x x xy x ax b e y ax b e ax bx e y ae ax b e ax bx e ------∴=+=+-+=-+++()()***21728(1),1236x y y y x e a b -'''--=+⇒=-=-则特解为*217()1236x y x x e -=-+,因而微分方程的通解为:4212x x y C e C e -=+217()1236x x x e --+(2) 25sin 2x y y y e x '''-+=解:21,2250,121,2,0r r r i m αβ-+==±⇒===而12i +是特征方程的根,因而令*(cos 2sin 2)x y xe A x B x =+代入原方程求出1,04A B =-=,*1cos 24x y xe x =-所以微分方程的通解为121(cos 2sin 2)cos 24x x y C x C x e xe x =+-6. 求微分方程43y y '''-=满足初始条件(0)0,(0)1y y '==的特解解:212400,4r r r r -=⇒==对应齐次微分方程的通解为412,0x y C C e λ=+= 为特征单根,则*y ax =代入原方程得*33,44a y x =-∴=-,微分方程的通解为:41234x y C C e x =+-,由(0)0,(0)1y y '==知1297,,1616C C ==故特解为497316164x y e x =+- 7. 设函数()f x 连续,且满足0()()(),xx f x e t x f t dt =+-⎰求()f x .] 解:()()(),()()()()(),()()xxxxx x x x f x e tf t dt x f t dt f x e xf x f t dt xf x e f t dt f x e f x '''=+-=+--=-=-⎰⎰⎰⎰ ()()x f x f x e ''⇒+=,而21,210,r r i +=⇒=±对应齐次微分方程的通解为:12cos sin Y C x C x =+而0,1m λ==不是特征根,令*x y Ae =代入原方程求得12A =,则通解为 121cos sin 2x y C x C x e =++1211(0)1,(0)1,22f f C C '==⇒== ,则特解为1()[cos sin ]2x f x x x e =++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 微分方程函数是客观事物的内部联系在数量方面的反映,利用函数关系可以对客观事物的规律进行研究。
但在多数情况下,无法直接找到要研究的问题所需的函数关系,却比较容易建立起该函数及其导数的关系式,即微分方程。
再通过解这种方程,就可得到该函数关系。
微分方程是一门独立的数学学科,有完整的理论体系。
目前已广泛的应用于自然科学、工程技术、人口科学、经济学、医学等各个领域,已成为应用数学知识解决实际问题的重要手段。
本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的解法。
第一节 微分方程的基本概念一 引例下面通过几个实例来说明微分方程的基本概念。
例1 一曲线y =y (x )通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 根据导数的几何意义知,x dxdy 2=. (1) 且y =y (x )满足下列条件:x =1时, y =2, (2) 把(1)式两端积分, 得⎰=xdx y 2, 即y =x 2+C , (3) 其中C 是任意常数.把条件(2)代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程y =x 2+1. (4)例2 列车在水平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式4.022-=dts d . (5) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . (6) 把(5)式两端积分一次, 得14.0C t dtds v +-==; (7) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (8) 这里C 1, C 2都是任意常数.把条件t =0,v =20代入(7)得20=C 1;把条件t =0,s =0代入(8)得0=C 2.把C 1, C 2的值代入(7)及(8)式得v =-0.4t +20, (9) s =-0.2t 2+20t . (10) 在(9)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(10), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).上面的两个例子,尽管实际意义不相同,但解决问题的方法,都是归结为首先建立一个含有未知函数的导数的方程,然后通过所建立的方程,求出满足所给的附加条件的未知函数.这就是所谓的微分方程及其解微分方程。
下面我们来介绍有关微分方程的一些基本概念。
二 微分方程的基本概念1微分方程及其阶的概念:一般的,凡表示未知函数、未知函数的导数(或微分)与自变量之间的关系的方程, 叫微分方程(简称方程).未知函数是一元函数的微分方程叫常微分方程.如例1中的方程(1)和例2中的方程(5)都是常微分方程。
未知函数是多元函数1的微分方程叫偏微分方程.本章只介绍常微分方程(以后未特殊说明常微分方程都简称为微分方程).微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. 例如方程(1)是一阶微分方程,方程(5)是二阶微分方程。
一般的,n 阶微分方程表示为:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0或y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) )2 微分方程的解与通解满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上,F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解.如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同,又这些任意常数不能合并而减少个数, 这样的解叫做微分方程的通解. 如例1中(3)式是方程(1)的通解;例2中(8)式是(5)的通解。
3初始条件与特解:用于确定通解中任意常数的条件, 称为初始条件. 如例1中的(2)式;例2中的(6)式。
一般写成00y y x x ==, 00y y x x '='=. 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 要从通解中确定任意常数得到特解,需要有与任意常数个数相同的初始条件。
4初值问题:求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x . 5微分方程解的几何意义微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线,由于通解中含有任意常数,所以它的图形是一族积分曲线.特解的图形就是通解的积分曲线族中满足给定的初始条件的某一条特定的积分曲线.例3 验证函数1-+=-x Ce y x 是微分方程x y y =+'的通解。
证 求出所给函数的导数1'+-=-x Ce y把y y 及'的表达式代入所给微分方程,得x x Ce Ce x x ≡+++---)1()1(-这表明函数1-+=-x Ce y x 满足所给的微分方程,它是所给方程的解。
又因为函数1-+=-x Ce y x 中含有任意常数的个数与所给微分方程的阶数相同,所以该函数是所给的微分方程的通解。
例4 已知微分方程0222=+x k dtx d (11) (1)验证 函数x =C 1cos kt +C 2 sin kt (12)是该微分方程的解.(2)求微分方程满足初始条件x | t =0 =A , x '| t =0 =0的特解.解 所给函数(12)的导数为:kt kC kt kC dtdx cos sin 21+-=, )sin cos (sin cos 212221222kt C kt C k kt C k kt C k dt x d +-=--=. 将22dt x d及x 的表达式代入所给方程(11), 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dt x d, 因此函数(12)是方程(11)的解.由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得x =A cos kt .第二节 一阶微分方程一阶微分方程的一般形式为0)',,(=y y x F (1) 若可解出'y ,则可写成),('y x f y = (2)一阶微分方程有时也写成如下的对称形式P (x , y )dx +Q (x , y )dy =0 (3) 下面我们讨论几种特殊类型的一阶微分方程的求解方法。
一、可分离变量的微分方程经过整理,若一阶微分方程可化为dx x f dy y g )()(= (4) 的形式,则称此方程为可分离变量的微分方程。
它的特点是方程两边分别只含有变量y 和变量x 的部分。
对方程(4)dx x f dy y g )()(=两边积分dx x f dy y g )()(⎰⎰=就可以得出方程(4)的通解。
可分离变量的方程用积分就可以求解,不过化简过程与积分中大不一样,需特别注意。
例1 求微分方程xy dxdy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得 xdx dy y21= (0≠y ) (5) 两边积分得⎰⎰=xdx dy y 21, 即 ln|y |=x 2+C 1,从而 2112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数,只是取不到零, 把它记作C (0≠)则2x Ce y =(C 0≠)这个解是在0≠y 的假定下得到的,自然不包括0=y ,其实,0≡y 也是原方程的一个解(只需代入原方程验证便知),所以需要把这个解补上,才是方程(5)的通解。
现取消0=C 的限制,即方程(5)的通解为 2x Ce y =说明:从这个例子可以看到,一般的,在求解方程时,我们除了注意用积分求解这一基本方法以外,还需注意两点:一是化简,用调整任意常数的方法,可使通解化成最简单的形式;二是补解,从求解过程中附加的条件去看是否漏掉了某个或某些解。
例2 x y y 21'2-=的通解 解 原方程为xy dx dy 212-= )1(2112±≠=-y dx xy dy 两边积分,得)1(2112±≠=-⎰⎰y dx x y dy1ln 2111ln 21C x y y +=+- 12ln 11ln C x y y +=+- x e y y c 1211=+- x e y y c 1211±=+- Cx y y =+-11(012≠±=c e C ) 解出CxCx y -+=11(0≠C ) 而直接从原方程验证 1=y 和1-=y 都是原方程的解,需补上。
在Cx Cx y -+=11中,令0=C 即得1=y 的解,所以取消0=C 的限制就把1=y 补上了,但无论C 为何值,都得不到1-=y 这个解,所以需另加。
最后得到方程的通解为⎪⎩⎪⎨⎧-=-+=1)(11y C Cx Cx y 为任意常数 例3 求初值问题⎩⎨⎧==+=403x y ydy xdx 解 先求微分方程的通解xdx ydy -=两边积分得1222121C x y +-= C y x =+22(12C C =) 将初始条件43==x y 代入通解得C =+2243即 25=C所以初值问题的解为2522=+y x二 齐次微分方程若方程(2)的右端 ),(y x f 可写成)(x yϕ,即)(x ydx dyϕ=(6) 的形式,那么就称这方程为齐次微分方程,简称为齐次方程,例如022=---'x y y y x是齐次方程,因为它可化成 .1)(2-+=x y x y dx dy又如(x 2+y 2)dx -xydy =0是齐次方程,因为它可化成. x yy x dx dy +=.对于齐次方程,可以引入新的未知函数x yu =将它化为可分离变量的方程。