数字信号处理离散傅里叶变换DFT

合集下载

离散傅里叶变换(DFT)

离散傅里叶变换(DFT)

尾补L-M个零后,再形成第一行的循环倒相序列。
(2) 第1行以后的各行均是前一行向右循环移1位 形成的。 (3) 矩阵的各主对角线上的序列值均相等。
x( L 1) x( L 2) y (0)c x(0) y (1) x(1) x(0) x( L 1) c y (2)c = x(2) x(1) x(0) y ( L 1)c x( L 1) x( L 2) x( L 3) x(1) h(0) x(2) h(1) x(3) h(2) x (0) h( L 1)
主值序列 x(n)
DFT变换对
x(n)的长度为M点,N≥M
N点DFT 变换对
DFT [ x(n)] X (k ) x(n)WNkn
n 0 N 1
WN e
j
2 N
k 0,1,..., N 1 n 0,1,..., N 1
1 N 1 IDFT [ X (k )] x(n) X (k )WN kn N k 0
1 IDFT[ X (k )]N N
N 1
[ x(m)WNmk ]WN kn
k 0 m 0
N 1 N 1
1 x ( m) N m 0
1 N
WNk ( m n )
k 0
N 1
W
k 0
N 1
k ( mn ) N
1 N
e
k 0
N 1 j 2 k ( m n ) N
x(n)
L称为循环卷积区间长度,L≥max[N,M]。
用矩阵计算循环卷积的公式
L 1 yc (n) h(m) x((n m)) L RL (n) m0

dft与离散傅里叶变换

dft与离散傅里叶变换

dft与离散傅里叶变换DFT与离散傅里叶变换引言:数字信号处理中,频域分析是一项重要的技术。

DFT(离散傅里叶变换)和离散傅里叶变换(DFT)是两种常用的频域分析方法。

本文将介绍DFT和离散傅里叶变换的基本原理、应用领域以及它们之间的区别。

一、DFT的基本原理离散傅里叶变换(DFT)是一种将时域信号转换为频域信号的方法。

它的基本原理是将信号分解为不同频率的正弦和余弦波的叠加。

DFT 可以将信号从时域转换到频域,帮助我们分析信号的频谱特征。

DFT的计算公式是通过对信号的采样点进行离散计算得到的。

它将信号分解为一系列复数,表示不同频率的正弦和余弦波的振幅和相位信息。

通常情况下,DFT的输入信号是离散时间的有限长度序列,输出信号也是离散时间的有限长度序列。

二、DFT的应用领域DFT在信号处理领域有着广泛的应用。

以下是几个典型的应用领域:1. 音频信号处理:DFT可以用于音频信号的频谱分析,帮助我们了解音频信号的频率组成以及频谱特征。

它在音频编码、音频效果处理等方面有着重要作用。

2. 图像处理:DFT可以用于图像的频域分析,帮助我们了解图像的频率特征,如边缘、纹理等。

它在图像压缩、图像增强等方面有着广泛的应用。

3. 通信系统:DFT可以用于通信信号的频谱分析,帮助我们了解信号在频域上的特征,如信号的带宽、频率偏移等。

它在调制解调、信道估计等方面有着重要作用。

三、离散傅里叶变换(DFT)与傅里叶变换(FT)的区别离散傅里叶变换(DFT)是傅里叶变换(FT)在离散时间上的应用。

它们之间的区别主要体现在以下几个方面:1. 定义域:傅里叶变换是定义在连续时间上的,而离散傅里叶变换是定义在离散时间上的。

2. 输入信号类型:傅里叶变换可以处理连续时间的信号,而离散傅里叶变换可以处理离散时间的信号。

3. 计算方法:傅里叶变换通过积分计算得到频域信号,而离散傅里叶变换通过对输入信号的采样点进行离散计算得到频域信号。

4. 结果表示:傅里叶变换的结果是连续的频域信号,而离散傅里叶变换的结果是离散的频域信号。

数字信号处理—原理、实现及应用(第4版)第3章 离散傅里叶变换及其快速算法 学习要点及习题答案

数字信号处理—原理、实现及应用(第4版)第3章  离散傅里叶变换及其快速算法 学习要点及习题答案

·54· 第3章 离散傅里叶变换(DFT )及其快速算法(FFT )3.1 引 言本章是全书的重点,更是学习数字信号处理技术的重点内容。

因为DFT (FFT )在数字信号处理这门学科中起着不一般的作用,它使数字信号处理不仅可以在时域也可以在频域进行处理,使处理方法更加灵活,能完成模拟信号处理完不成的许多处理功能,并且增加了若干新颖的处理内容。

离散傅里叶变换(DFT )也是一种时域到频域的变换,能够表征信号的频域特性,和已学过的FT 和ZT 有着密切的联系,但是它有着不同于FT 和ZT 的物理概念和重要性质。

只有很好地掌握了这些概念和性质,才能正确地应用DFT (FFT ),在各种不同的信号处理中充分灵活地发挥其作用。

学习这一章重要的是会应用,尤其会使用DFT 的快速算法FFT 。

如果不会应用FFT ,那么由于DFT 的计算量太大,会使应用受到限制。

但是FFT 仅是DFT 的一种快速算法,重要的物理概念都在DFT 中,因此重要的还是要掌握DFT 的基本理论。

对于FFT 只要掌握其基本快速原理和使用方法即可。

3.2 习题与上机题解答说明:下面各题中的DFT 和IDFT 计算均可以调用MA TLAB 函数fft 和ifft 计算。

3.1 在变换区间0≤n ≤N -1内,计算以下序列的N 点DFT 。

(1) ()1x n =(2) ()()x n n δ=(3) ()(), 0<<x n n m m N δ=- (4) ()(), 0<<m x n R n m N = (5) 2j()e, 0<<m n N x n m N π=(6) 0j ()e n x n ω=(7) 2()cos , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(8)2()sin , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(9) 0()cos()x n n ω=(10) ()()N x n nR n =(11) 1,()0n x n n ⎧=⎨⎩,解:(1) X (k ) =1N kn N n W -=∑=21j0eN kn nn π--=∑=2jj1e1ekN n k nπ---- = ,00,1,2,,1N k k N =⎧⎨=-⎩(2) X (k ) =1()N knNM n W δ-=∑=10()N n n δ-=∑=1,k = 0, 1, …, N -1(3) X (k ) =100()N knNn n n W δ-=-∑=0kn NW 1()N n n n δ-=-∑=0kn NW,k = 0, 1, …, N -1为偶数为奇数·55·(4) X (k ) =1m knN n W -=∑=11kmN N W W --=j (1)sin esin k m N mk N k N π--π⎛⎫⎪⎝⎭π⎛⎫ ⎪⎝⎭,k = 0, 1, …, N -1 (5) X (k ) =21j 0e N mn kn N N n W π-=∑=21j ()0e N m k nNn π--=∑=2j()2j()1e1em k N N m k Nπ--π----= ,0,,0≤≤1N k mk m k N =⎧⎨≠-⎩(6) X (k ) =01j 0eN nknN n W ω-=∑=021j 0e N k nN n ωπ⎛⎫-- ⎪⎝⎭=∑=002j 2j 1e1ek NN k N ωωπ⎛⎫- ⎪⎝⎭π⎛⎫- ⎪⎝⎭--= 0210j 202sin 2e2sin /2N k N N k N k N ωωωπ-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦,k = 0, 1, …, N -1或 X (k ) =00j 2j 1e 1e Nk N ωωπ⎛⎫- ⎪⎝⎭--,k = 0, 1, …, N -1(7) X (k ) =102cos N kn N n mn W N -=π⎛⎫ ⎪⎝⎭∑=2221j j j 01e e e 2N mn mn kn N N N n πππ---=⎛⎫ ⎪+ ⎪⎝⎭∑=21j ()01e 2N m k n N n π--=∑+21j ()01e 2N m k n N n π--+=∑=22j ()j ()22j ()j ()11e 1e 21e 1e m k N m k N N N m k m k N N ππ--+ππ--+⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦=,,20,,N k m k N mk m k N M ⎧==-⎪⎨⎪≠≠-⎩,0≤≤1k N - (8) ()22j j 21()sin ee 2j mn mnN N x n mn N ππ-π⎛⎫== ⎪-⎝⎭ ()()112222j j j ()j ()0011()=e e ee 2j 2j j ,2=j ,20,(0≤≤1)N N kn mn mn m k n m k n N N N N N n n X k W Nk m N k N mk k N --ππππ---+===--⎧-=⎪⎪⎨=-⎪⎪-⎪⎩∑∑其他(9) 解法① 直接计算χ(n ) =cos(0n ω)R N (n ) =00j j 1[e e ]2n n ωω-+R N (n )X (k ) =1()N knNn n W χ-=∑=0021j j j 01[e e ]e 2N kn n n N n ωωπ---=+∑=0000j j 22j j 11e 1e 21e 1e N N k k N N ωωωω-ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦,k = 0, 1, … , N -1 解法② 由DFT 共轭对称性可得同样的结果。

DFT变换

DFT变换

第三章离散傅立叶变换(DFT)3.1 引言有限长序列在数字信号处理是很重要的一种序列,当然可以用Z变换和傅里叶变换来研究它,但是,可以导出反映它的"有限长"特点的一种有用工具是离散傅里叶变换(DFT)。

离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。

有限长序列的离散傅里叶变换(DFT)和周期序列的离散傅里叶级数(DFS)本质上是一样的。

为了更好地理解DFT,需要先讨论周期序列的离散傅里叶级数DFS。

而为了讨论离散傅里叶级数及离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式。

(连续时间信号:如果在讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数值,此信号就称为连续时间信号。

)一、连续时间、连续频率——连续傅立叶变换(FT)设x(t)为连续时间非周期信号,傅里叶变换关系如下图所示:可以看出时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱。

二、连续时间,离散频率------傅 里 叶 级 数设f(t)代表一个周期为T 1的周期性连续时间函数,f(t)可展成傅里叶级数,其傅里叶级数的系数为,f(t)和组成变换对,表示为:()注意符号:如果是周期性的采样脉冲信号p(t),周期用T 表示(采样间隔)。

采样脉冲信号的频率为可以看出时域连续函数造成频域是非周期的谱,而时域的周期造成频域是离散的谱三、离散时间,连续频率------序列的傅里叶变换n F n F tjn n n e F t f 1)(Ω∞-∞=∑=112Ω=πT dte tf T F TT t jn n ⎰-Ω-=221111)(1Ts π2=Ω正变换:DTFT[x(n)]=反变换:DTFT-1 级数收敛条件为||=可以看出时域离散函数造成频域是周期的谱,而时域的非周期造成频域是连续的谱四、离散时间,离散频率------离散傅里叶变换上面讨论的三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时域或频域)中,函数是连续的。

数字信号处理 第二章 DFT

数字信号处理 第二章 DFT

~ N=16:x (4) x((4))16 x((12 16))16 x(12)
例2:
x (n ) x (n ) 0
~ 1 X (k ) k 0 N ~ X (r )
e
j

15
周期序列的傅里叶级数表示:
正变换:
2 N 1 N 1 j nk ~ ~(n) ~(n)e N ~(n)W nk X (k ) DFS x x x N n 0 n 0
反变换:
~ ~(n) IDFS X (k ) 1 x N
j
2 kN N
k mN , m为整数 其他k
W
n 0
N 1
( m k ) n N
1W 1W
( k m ) N N ( k m ) N

1 e
j
1 e
N m k rN 0 mk
此外,复指数序列还有如下性质:
0 WN 1, W N 2 N r 1 1, WN WN r
ek (n)
ek (n) 是以N为周期的周期序列,所以基序
列 {e }(k=0,…,N-1) 只有N个是独立 的,可以用这N个基序列将 ~ ( n) 展开。 x
j 2 nk N
12
复指数序列 ek (n) e
周期性:
j
2 nk N
W
nk N
的性质:
无论对k还是n,复指数序列都具备周期性。
时间函数 连续和非周期 连续和周期(T0) 离散(Ts)和非周期 离散(Ts)和周期(T0) 非周期和连续 非周期和离散(Ω 0=2π /T0) 周期(Ω s=2π /Ts)和连续 周期(Ω s=2π /Ts)和离散(Ω 0=2π /T0) 频率函数

数字信号处理第3章 离散傅里叶变换(DFT)

数字信号处理第3章 离散傅里叶变换(DFT)

Y(k)=DFT[y(n)]=aX1(k)+bX2(k), 0≤k≤N-1(3.2.1)
其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
3.2.2 循环移位性质
1. 序列的循环移位 设x(n)为有限长序列,长度为N,则x(n)的循环移 位定义为 y(n)=x((n+m))NRN(N) (3.2.2)
其中 XR(k)=Re[X(k)]=DFT[xep(n)]
(3.2.17)
X(k)=DFT[x(n)]=XR(k)+jXI(k) (3.2.18)
jXI(k)=jIm[X(k)]=DFT[xop(n)]
设x(n)是长度为N的实序列,且X(k)=DFT[x(n)],则
(1) X(k)=X*(N-k),0≤k≤N-1 (2) 如果 x(n)=x(N-m) 则X(k)实偶对称,即X(k)=X(N-k) (3.2.20) (3.2.19)
如果序列x(n)的长度为M, 则只有当频域采样点
数N≥M时, 才有
xN(n)=IDFT[X(k)]=x(n) 即可由频域采样X(k)恢复原序列x(n),否则产生时 域混叠现象。 这就是频域采样定理。
下面推导用频域采样X(k)表示X(z)的内插公式和内
插函数。设序列x(n)长度为M,在频域0~2π之间等间隔 采样N点,N≥M,则有
的值。
图 3.2.3 共轭对称与共轭反对称序列示意图
如同任何实函数都可以分解成偶对称分量和奇对
称分量一样,任何有限长序列x(n)都可以表示成共轭对 称分量和共轭反对称分量之和,即
x(n)=xep(n)+xop(n)
0≤n≤N-1
(3.2.11)
(3.2.13) (3.2.14)

数字信号处理之离散傅里叶变换

数字信号处理之离散傅里叶变换

共轭对称性
对于实数输入信号,DFT 的结果X[k]满足共轭对称 性,即X[-k] = X[k]*。
离散傅里叶变换的矩阵表示
DFT可以表示为一个矩阵运算, 即X = W * x,其中X是DFT的输 出,x是输入信号,W是DFT的
权重矩阵。
权重矩阵W是一个复数矩阵,具 有特殊的结构,可以通过快速傅 里叶变换(FFT)算法进行高效
03
其他信号处理方法还包括短时 傅里叶变换、Wigner-Ville分 布等,可根据具体应用场景选 择合适的信号处理方法。
ቤተ መጻሕፍቲ ባይዱ 06
结论
离散傅里叶变换的重要性和应用价值
离散傅里叶变换(DFT)是数字信号处理领域 中的重要工具,它能够将信号从时域转换到频 域,从而揭示信号的频率成分和特征。
DFT在通信、雷达、声呐、图像处理、语音识 别等领域有着广泛的应用,是实现信号分析和 处理的关键技术之一。
图像压缩
通过对图像进行DFT变换,将图像从空间域变换到频域,可以提取出图像的主要频率成分 ,从而实现图像压缩。常见的图像压缩算法有JPEG和JPEG2000等。
05
离散傅里叶变换的局限性和改进方法
离散傅里叶变换的局限性
计算量大
离散傅里叶变换需要进行大量复杂的复数运算,对于大数据量信 号处理效率较低。
方式。
离散傅里叶变换的编程实现
01
编程语言如Python、C等提供了离散傅里叶变换的库函数,可 以直接调用进行计算。
02
编程实现时需要注意数据的输入输出、内存管理、异常处理等
问题,以保证程序的正确性和稳定性。
编程实现离散傅里叶变换时,可以根据实际需求选择不同的库
03
函数和算法,以达到最优的计算效果。

数字信号处理:离散傅里叶变换(DFT)

数字信号处理:离散傅里叶变换(DFT)

X (k ) XX((kkX)))X(XX(z(ez(zzjjjj))))222kk,,k, 200k0,kkkNN--1N1-1 0((33..1(1.3.44.)1k).4) NNN N
2021/8/24
6
3.1 离散傅里叶变换的定义
DFT的物理意义:
(1)x(n)的N点DFT 是x(n)的Z变换在单位
。 j 2 kn 8
解: (1) 设变换区间N=8, 则:n0
N 0
XX(k(k)
77
)
nn00
xx(Xn(n)W()Wk8k)8nkn 3373 eexj 28j(28knnkn)We8jk83nk NnN000
sin(3 k 2 sin kn
80,1,
,
7
(2) 设变换区间N=16, 则 2 k 8
设序列x(n)的长度为N, 其Z变换和DFT分别为:
N 1
X (z) ZT[x(n)] x(n)zn
n0
N 1
X (k) DFT[x(n)] x(n)WNkn
n0
0 k N-1
X (比k较) 上XXX面(((kkkX)二))式X(XX(z(可z(z)z)))得zzzezej2关jeN2Njk2Nke,系k,j,2N式 k00,0kkkNN--N11-10 ((33k..1(1.3.33.)1).3)N
(
j2 k
X
(k)
X(k)
DFT
[=x(Xn~ ()k]
)RNDD(nFF)ST[n[x~x(0~n()n] )RNnN01(n
[0, 2]上的N点
单位圆上的N
等间隔采样
DFT
点等间隔采样
~
X (k ) DFFTT [ x(n)] ZT DFT [x(n)RN (n)] X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x1(m)((n m))N RN (n)
m0
N 1
x(n) IDFT [ X (k)] x2(m)((n m))N RN (n)
m0
(3.2.5)
课件
16
循环卷积过程中,两个N长的序列的循环卷积长度 仍为N。 显然与一般的线性卷积不同, 故称之为循环卷 积, 记为
由于
x(n) x1(n) x2(n)
y(n)=x((n+m))NRN(n) 则Y(k)=DFT[y(n)]=WN-kmX(k) 其中X(k)=DFT[x(n)], 0≤k≤N-1。
课件
14
3. 频域循环移位定理 如果X(k)=DFT[x(n)], 0≤k≤N-1
Y(k)=X((k+l))NRN(k) 则 y(n)=IDFT[Y(k)]=WNnlx(n)
第3章 离散傅里叶变换(DFT)
3.1 离散傅里叶变换的定义 3.2 离散傅里叶变换的基本性质 3.3 频率域采样 3.4 DFT的应用举例
课件
1
3.1 离散傅里叶变换的定义
3.1.1 DFT的定义 设x(n)是一个长度为M的有限长序列,则定义x(n)
的N点离散傅里叶变换为
N 1
X (k) DFT[x(n)] x(n)WNkn, k=0, 1, &, N-1 (3.1.1)
则 ((n))N=n1
~
例如, N 5, x(n) x(n)5,
~
x(5) x((5))5 x(0)
~
x(6) x((6))5 x(1)
M为整数, 则有
所得结果附合图2.1.2所示的周期延拓规律。
课件
9
~
~ 如果x(n)的长度为N,且 x (n)=x((n))N,则可写出 x (n)的离散傅里叶级数为
前面定义的DFT变换对中,x(n)与X(k)均为有限长 序列,但由于WknN的周期性,使(3.1.1)式和(3.1.2)式中 X(k)隐含周期性,且周期均为N。对任意整数m,总有
WNk WN(kmN ), k, m, N 均为整数
所以(3.1.1)式中, X(k)满足
N 1
X (k mN ) x(n)WN(kmN )n
n0
N 1
x(n)WNkn X (k)
n0
同理可证明(3.1.2)式中
x(n+mN)=x(n)
课件
6
~
实际上,任何周期为N的周期序列 x 都可以看作长
度为N的有限长序列x(n)的周期延拓序列,而x(n)则是
~
x 的一个周期,即
~
x(n) x(n mN )
m
~
x(n) x(n) RN (n)
n0
比较上面二式可得关系式
0 k N-1
X (k ) X (z) , j2 k ze N
0 k N-1
X (k ) X (z j ) 2 k , N
0 k N-1
课件
(3.1.3) (3.1.4)
4
图 3.1.1 X(课k)件与X(e jω)的关系
5
3.1.3 DFT的隐含周期性
7
X (k)
3
x(n)W8kn
j 2 kn
e8
n0
N 0
e
j 3k 8
sin(
2
sin(
k) k)
,k
0,1, , 7
8
课件
3
3.1.2 DFT和Z变换的关系 设序列x(n)的长度为N,其Z变换和DFT分别为:
N 1
X (z) ZT[x(n)] x(n)zn
n0
N 1
X (k) DFT[x(n)] x(n)WNkn
(3.2.4)
课件
15
3.2.3 循环卷积定理
有限长序列x1(n)和x2(n),长度分别为N1和N2, N=max[ N1, N2 ]。x1(n)和x2(n)的N点DFT分别为:
X1(k)=DFT[x1(n)
X2(k)=DFT[x2(n)]
如果
X(k)=X1(k)·X2(k)

N 1
x(n) IDFT [ X (k)]
n0
X(k)的离散傅里叶逆变换为
X (k) DFT[x(n)]
1 N
N 1 n0
X (n)WNkn ,
k=0, 1, &, N-1
(3.1.2)
课件
2
j 2
eN
式中 ,N称为DFT变换区间长度N≥M,通常称(3.1.1)
式和(3.1.2)式为离散傅里叶变换对。
例 3.1.1 x(n)=R4(n) ,求x(n)的8点DFT 设变换区间N=8, 则
课件
11
3.2.2 循环移位性质 1. 序列的循环移位 设x(n)为有限长序列,长度为N,则x(n)的循环移
位定义为
y(n)=x((n+m))NRN(N)
(3.2.2)
课件
12
图 3.2.1 循课环件 移位过程示意图
13
2. 时域循环移位定理 设x(n)是长度为N的有限长序列,y(n)为x(n)的循环 移位,即
设x*(n)是x(n)的复共轭序列, 长度为N
X(k)=DFT[x(n)]
则 DFT[x*(n)]=X*(N-k), 0≤k≤N-1
3.2.1 线性性质 如果x1(n)和x2(n)是两个有限长序列,长度分别为N1
和N2。 y(n)=ax1(n)+bx2(n)
式中a、b为常数,即N=max[N1, N2],则y(n)N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2(k), 0≤k≤N-1(3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
~
N 1 ~
NHale Waihona Puke 1N 1X (k)
x(n)WNkn
x((n))NWNkn
x(n)WNkn
n0
n0
n0
~
x(n)
1
N
~
X (k )WNkn
1 N
N 1 n0
X (k )WNkn
(3.1.8) (3.1.9)
式中 ~ X (k) x(k)RN (k)
(3.1.10)
课件
10
3.2 离散傅里叶变换的基本性质
(3.1.5) (3.1.6)
为了以后叙述方便, 将(3.1.5)式用如下形式表示:
~
x(n) x(n)N
(3.1.7)
课件
7
图 3.1.2 有限长序列及其周期延拓
课件
8
式中x((n))N表示x(n)以N为周期的周期延拓序列, ((n))N表示n对N求余,即如果
n=MN+n1, 0≤n1≤N-1,
N 1
x1(m)x2((n m))N RN (n)
m0
X (k) DFT[x(n)]
所以
X1(k) X2(k) X2(k) X1(k) x(n) IDFT[X (k)] x1 (n) x2(n) x2(n) x1 (n)
即循环卷积亦满足交换律。
课件
17
3.2.4 复共轭序列的DFT
相关文档
最新文档