特殊三角形存在性综合测试(人教版)(含答案)
八年级数学特殊三角形测试题答案

特殊三角形测试题参考答案与试题解析一、选择题(共14小题)7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.下列结论中,不一定成立的是()二.填空题(共4小题)11.(2002•福州)等腰三角形的两边长分别为2和7,则它的周长是12.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是13.已知等腰三角形一腰上的中线将它的周长分为6和9两部分,则它的底边长是.14.已知直角三角形的两直角边长为3cm和4cm,则斜边上的中线长是cm,斜边上的高为cm.斜边长为=5cm•3•4=•5•x cm故答案为,15.如图,△ABC中,AB=AC,∠BAC与∠BCA的平分线AD、CD交于点D,若∠B=70°,则∠ADC=度.(∠(16.如图,要为一段高为5米,长为13米的楼梯铺上红地毯,则红地毯至少要米长.解:根据勾股定理,楼梯水平长度为三.解答题(共5小题)17.如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=13,AC=5,则△ACD的周长为18.如图,已知在△ABC中,∠A=75°,∠B=35°,∠C=70°,请将这个三角形分成两个等腰三角形.(要求标出每个等腰三角形的内角度数)19.如图,AD是等腰三角形ABC的底边BC上的高,DE∥AB,交AC于点E,判断△ADE是不是等腰三角形,并说明理由.20.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.考点:全等三角形的判定与性质.分析:可通过构建全等三角形来证明,连接CD,那么CD就是直角三角形斜边上的中线,那么DC=AD,∠DAC=∠DCA,在三角形AED和DFC中,已知的条件有AD=CD,ED=FC,只要再证得两组对应边的夹角相等即可得出全等的结论,由于ED、CF平行,那么∠EDA=∠DAF=∠DCA,这样就构成了两三角形全等的条件(SAS)就能得出AE=DF的结论了.解答:解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF∵DE与CF平行且相等∴∠EDA=∠DAC∴∠EDA=∠DCF在△AED和△CFD中AD=CD,∠EDA=∠DCF,DE=CF∴△AED≌△CFD(SAS)∴AE=DF.点评:此题考查简单的线段相等,可以通过构建全等三角形来证明.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交AC于D,过C作BD垂线交BD的延长线于E,交BA的延长线于F,求证:BD=2CE.22.如图,在△ABC中,已知AB=AC,∠BAC=90°,D是BC上一点,EC⊥BC,EC=BD,DF=FE.求证:(1)△ABD≌△ACE;如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图①中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用①②解答中所积累的经验和知识,完成下题.如图②在直角梯形ABCD中,AD∥BC(BC>AD)∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE长.考点:正方形的性质;全等三角形的判定与性质;勾股定理;直角梯形.分析:(1)利用已知条件,可证出△BCE≌△DCF(SAS),即CE=CF.(2)借助(1)的全等得出∠BCE=∠DCF,∴∠GCF=∠BCE+∠DCG=90°-∠GCE=45°,即∠GCF=∠GCE,又因为CE=CF,CG=CG,∴△ECG≌△FCG,∴EG=GF,∴GE=DF+GD=BE+GD.(3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形).再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理可求出DE.解答:(1)证明:在正方形ABCD中,BC=CD,∠B=∠CDF=90°在△CBE和△CDF中BC=CD∠B=∠CDF=90°BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF;(2)解:GE=BE+GD,理由:∵△CBE≌△CDF,∴∠BCE=∠DCF,∴∠ECD+∠ECB=∠ECD+∠FCD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°,在△ECG和△FCG中CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG(SAS),∴EG=GF,∴GE=DF+GD=BE+GD;(3)解:过C作CG⊥AD于G,在直角梯形ABCD中AD∥BC,∠A=∠B=90°又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形,∴AG=BC=12,∵∠DCE=45°,由①②可得ED=BE+DG,设DE=x,则DG=x-4,∴AD=16-x在Rt△AED中,∵DE2=AD2+AE2,∴x2=(16-x)2+82∴x=10,即DE=10.点评:本题是一道几何综合题,内容涉及三角形的全等、图形的旋转以及勾股定理的应用,重点考查学生的数学学习能力,是一道好题.本题的设计由浅入深,循序渐进,考虑到学生的个体差异.从阅卷的情况看,本题的得分在4-8分的学生居多.前两个小题学生做得较好,第三小题,因为学生不懂得用前面积累的知识经验答题,数学学习能力不强,造成本小题得分率较低.。
特殊三角形存在性(等腰三角形存在性二)(人教版)(含答案)

特殊三角形存在性(等腰三角形存在性二)(人
教版)
一、单选题(共3道,每道33分)
1.如图,直线y=-x+2与x轴、y轴分别交于A,B两点,点P是直线AB上的动点,若使△BOP 为等腰三角形,则点P的坐标是( )
A.
B.
C.
D.
答案:D
解题思路:
试题难度:三颗星知识点:等腰三角形存在性
2.如图,直线y=-x-3与x轴、y轴分别交于A,B两点,点P是直线x=-1上的动点,若使△PAB为等腰三角形,则点P的坐标是( )
A.
B.
C.
D.
答案:C
解题思路:
试题难度:三颗星知识点:等腰三角形存在性
3.如图,直线与x轴、y轴分别交于A、B两点,过点O作OC⊥AB于点C,点P是线段OA上的动点,若使△PAC为等腰三角形,则点P的坐标是( )
A.
B.
C.
D.
答案:A
解题思路:
试题难度:三颗星知识点:等腰三角形存在性。
二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。
2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。
2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (487).pdf

11.(2 分)如下图,今年的冰雪灾害中,一棵大树在离地面 3 米处折断,树的顶端落在离树
杆底部 4 米处,那么这棵树折断之前的高度是
Байду номын сангаас米.
12.(2 分)如图,在长方形 ABCD 中,AB=6,BC=8,如果将该矩形沿对角线 BD 折叠,那 么图中重叠部分的面积是 .
13.(2 分)在△ABC 中,若 AC2+AB2=BC2,则∠B+∠C= 度. 14.(2 分)如图,在 Rt△ABC 中,∠C=Rt∠,AC=6,AB=BC+2,则斜边 AB 长为 .
三、解答题
19.略 20.略
21.(1)解:图 2 中△ABE ≌△ACD .
证明如下:
△ABC 与 △AED 均为等腰直角三角形,
AB = AC , AE = AD, BAC = EAD = 90 . BAC + CAE = EAD + CAE ,即 BAE = CAD ,△ABE ≌△ACD . (2)证明:由(1)△ABE ≌△ACD 知 ACD = ABE = 45 ,又 ACB = 45 ,
28.(7 分)如图所示,在△ABC 中,∠B=∠C,AD 是△BAC 的平分线,点 E、F 分别是 AB、AC 的中点,问 DE、DF 的长度有什么关系?
29.(7 分)如图,已知线段 a,锐角∠α,画 Rt△ABC,使斜边 AB=a,∠A=∠α.
30.(7 分)如图,在等边△ABC 中,D、E 分别是 AB、AC 上的一点,AD=CE,CD、BE 交 于点 F. (1)试说明∠CBE=∠ACD; (2)求∠CFE 的度数.
15.(2 分)如果一个三角形一边上的中线恰好与该边上的高重合,那么这个三角形 (填 “一定”或“不一定”)是等腰三角形. 16.(2 分)在△ABC 中,∠A=48°,∠B=66°,AB=2.7 cm,则 AC= cm. 17.(2 分) 如图,在△ABC 中,AB=AC,D 是 AC 上的一点,使 BD=BC=AD,则∠A =.
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (422).pdf

A.6 cm
B.7 cm
C.8 cm
D.9 cm
12.(2 分)在△ABC 中,∠A:∠B:∠C=2:3:5,则△ABC 是( )
A.锐角三角形
B.钝角三角形 C.直角三角形 D.无法确定
13.(2 分)等腰三角形是轴对称图形,它的对称轴是( )
A.过顶点的直线
B.底边上的高所在Βιβλιοθήκη 直线C.顶角平分线所在的直线
评卷人
得分
二、填空题
15. 4 5
3
16.答案不唯一,如∠B=60°
17.49°
18.64 cm2
19.(1)40°;(2)20°
20.3
21.38.5°
22.70°,40°或 55°,55°
23.等腰
评卷人 得分
三、解答题
24.
如图放置,可求得 AP= 2 1.41 1.45 ,所以能通过 25.说明 Rt△ABC≌△Rt△DCF 26.设以 AC、AB、BC 为直径的半圆面积分别为 S1、S2、S3:.则有 S1+S3=S2;理由略 27.30s 28.10 km 29.45°或 l35° 30.共有 10 个,等边三角形共有三条对称轴,每条对称轴上有 4 个点,有 3 个点重合
()
A. a 2
B. a 3
C. a 4
D.以上结果都不对
6.(2 分)如图,△ABC 中,∠ACB=120°,在 AB 上截取 AE=AC,BD=BC,则∠DCE 等于
()
A.20°
B.30°
C.45°
D.60°
7.(2 分)下列图形中,不是轴对称图形的是( )
A.线段
B.角
C.直角三角形 D.等腰三角形
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (328).pdf

27.(7 分)一个寻宝探险小队,从 A 处出发探寻宝藏,他们向东行走 4 km 到达 C 点,然后 又向正北行走 2.5 km 到达 D 点,接着他们又向正东继续行走 2 km 到达 E 点,最后他们 又向正北前进了 5.5 km,才找到了宝藏,你能准确地求出宝藏藏匿点到出发点的距离吗?
28.(7 分)如图,已知 Rt△ABC 中,∠ACB=90°,AB=8 cm,D 为 AB 中点,DE⊥AC 于 E,∠A=30°,求 BC,CD 和 DE 的长.
7.(2 分)满足下列条件的△ABC,不是直角三角形的是( )
A. b2 = a2 − c2
B.∠C=∠A 一∠B
C.∠A:∠B:∠C=3:4:5
D.a:b: c=12:13:5
8.(2 分)下列各组数中,以 a、b、c 为边长的三角形不.是.直角三角形的 B.a=7,b=24,c=25
17.(2 分)等腰三角形的一个外角是 130°,它的一个底角是 . 18.(2 分)在 Rt△ABC 中,∠C=90°,∠A=37°,∠B= . 19.(2 分)如图,将一等边三角形剪去一个角后,∠1+∠2= .
20.(2 分)在△ABC 中,AB= AC= 6,BC= 5,AD⊥BC 于 D,则 CD= . 21.(2 分)等腰三角形的腰长与底边长之比为 2;3,其周长为 28 cm ,则底边长等于 cm.
评卷人 得分
一、选择题
1.C 2.B 3.B 4.C 5.D 6.B 7.C 8.A 9.B 10.C 11.D 12.D
评卷人
得分
二、填空题
13.(8,6) 14.等腰直角
15. 3 a
4 16.6 17.50°或 65°
18.53° 19.240° 20.2.5
特殊三角形专项训练(四)(人教版)(含答案)

特殊三角形专项训练(四)(人教版)一、单选题(共6道,每道16分)1.如图,已知等边三角形ABC,点D是AB的中点,过点D作DF⊥AC,垂足为F,过点F作FE⊥BC,垂足为E.若△ABC的边长为8,则BE=( )A.4B.5C.6D.7答案:B解题思路:试题难度:三颗星知识点:含30°角的直角三角形2.如图,在△ABC中,AB=AC=8,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的平分线,DF∥AB交AE延长线于F,则DF的长为( )A.2B.4C.5D.6答案:B解题思路:试题难度:三颗星知识点:等腰三角形的判定和性质3.如图,在等边三角形ABC中,D,E分别在AB,BC边上,且AD=BE,AE与CD交于点F,AG⊥CD于G.下列结论:①AE=CD;②∠AFC=120°;③△ADF是等边三角形;④AF=2FG.其中一定正确的是( )A.①②④B.①②③C.②③④D.①③④答案:A解题思路:试题难度:三颗星知识点:含30°角的直角三角形4.如图,M是Rt△ABC斜边AB上的中点,D是边BC延长线上一点,∠B=2∠D,AB=16cm,则线段CD的长为( )A.4cmB.8cmC.10cmD.12cm答案:B解题思路:试题难度:三颗星知识点:直角三角形斜边上的中线等于斜边的一半5.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF交AB边于点F,交AC边于点E.若点D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为( )A.6B.8C.10D.12答案:C解题思路:试题难度:三颗星知识点:轴对称—最值问题6.如图,AD是Rt△ABC斜边上的中线,把△ADC沿AD对折,点C落在点处,连接,则图中共有等腰三角形( )个.A.3B.4C.5D.6答案:C解题思路:试题难度:三颗星知识点:直角三角形斜边上的中线等于斜边一半。
初二数学特殊三角形部分_练习题(含答案)(K12教育文档)

初二数学特殊三角形部分_练习题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初二数学特殊三角形部分_练习题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初二数学特殊三角形部分_练习题(含答案)(word版可编辑修改)的全部内容。
特殊三角形综合练习一、选择题1.下列图形中,不一定是轴对称图形的是()A.线段 B.等腰三角形 C.直角三角形 D.圆2.若等腰三角形的两边长分别为4和9,则周长为( )A.17 B.22 C.13 D.17或223.如果三角形一边上的高平分这条边所对的角,那么此三角形一定是( )A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形4.小明将两个全等且有一个角为60°的直角三角板拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是()A.4 B.3 C.2 D.15.如图,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E为垂足,下列结论正确的是( )1BD D.BC=2BDA.AC=2AB B.AC=8EC C.CE=26.有四个三角形,分别满足下列条件:(1)一个角等于另外两个内角之和;(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;(4)三边长分别为5,24,25.其中直角三角形有() A.1个 B.2个 C.3个 D.4个7.如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,有以下判断:①DE=AC;②DE⊥AC;③∠CAB=30°;④∠EAF=∠ADE.其中正确结论的个数是( )A.1 B.2 C.3 D.48.如图,以点A和点B为两个顶点作位置不同的等腰直角三角形,一共可以作出 ( )9.如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2=MB2等于 ( )A.9 B.35 C.45 D.无法计算10.若△ABC是直角三角形,两条直角边分别为5和12,在三角形内有一点D,D到△ABC各边的距离都相等,则这个距离等于()A.2 B.3 C.4 D.5二、填空题11.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是________.12.已知等腰△ABC的底边BC=8cm,且|AC-BC|=2cm,那么腰AC的长为__________.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径",在花圃内走出了一条小路,他们仅仅少走了_______步路,(假设2步为1m),却踩伤了花革.14.如图,在△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为______cm.15.已知,如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,不添加辅助线,请你写出三个正确结论:(1)____________;(2)_____________;(3)_____________.16.已知,如图,正方形ABCD中,对角线AC和BD相交于点0,E,F分别是边AD,DC上的点,若AE=4cm,FC=3cm,且0E⊥0F,则EF=______cm.三、解答题17.如图,在△ABC中,AB=AC,点D在BC边上,DE⊥AB,DF⊥AC,垂足分别为E,F,添加一个条件,使DE=DF.18.如图,已知∠AOB=30°,0C平分∠AOB,P为OC上一点,PD∥0A交OB于D,PE⊥OA于E,如果OD=4,求PE的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊三角形存在性综合测试(人教版)
一、单选题(共4道,每道25分)
1.如图,直线与x轴、y轴分别交于A,B两点,点P是y轴正半轴上一动点,若△ABP为等腰三角形,则符合条件的点P的坐标为( )
A.
B.
C.
D.
答案:D
解题思路:
试题难度:三颗星知识点:等腰三角形存在性
2.如图,在平面直角坐标系中,A(a,0),B(0,b),且a,b满足.若第二象限内存在点M,使△ABM是等腰直角三角形,则点M的坐标为( )
A.(-6,2),(-4,6),
B.(6,2),(4,6),
C.(-6,2),(-4,6),
D.(-4,2),(-4,6),
答案:C
解题思路:
试题难度:三颗星知识点:一次函数之存在性问题
3.如图,在平面直角坐标系中,OA=OB=OC=6,过点A的直线AD交BC于点D,交y轴于点
G,△AOG的面积为△ABC面积的.
(1)过点C作CE⊥AD于E,延长CE交AB交于F,则点F的坐标为( )
A.(0,2)
B.(0,4)
C.(2,0)
D.(4,0)
答案:C
解题思路:
试题难度:三颗星知识点:一次函数与几何综合
4.(上接试题3)(2)在(1)的条件下,点P是平面内一点,若△CFP是以点P为直角顶点的等腰直角三角形,则点P的坐标为( )
A.(4,4),(-2,2)
B.(6,8),(8,6),(4,4)
C.(6,8),(8,6),(-2,2)
D.(6,8),(8,6),(4,4),(-6,4),(-4,-8),(-2,2)
答案:A
解题思路:
试题难度:三颗星知识点:一次函数之存在性问题。