专题05 动点与特殊三角形存在性问题大视野(原卷版)
专题05等边三角形的性质和判定综合题(原卷版)

专题05 等边三角形的性质和判定(综合题)知识互联网易错点拨知识点1:等边三角形等边三角形定义:叫等边三角形.细节剖析:由定义可知,等边三角形是一种特殊的.也就是说等腰三角形包括.知识点2:等边三角形的性质等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于.知识点3:等边三角形的判定等边三角形的判定:(1)的三角形是等边三角形;(2)的三角形是等边三角形;(3)是等边三角形.易错题专训一.选择题1.(2021秋•准格尔旗期末)已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC =∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个2.(2021•商河县二模)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.163.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.4.(2021秋•新昌县期末)如图,M,A,N是直线l上的三点,AM=3,AN=5,P是直线l外一点,且∠P AN=60°,AP=1,若动点Q从点M出发,向点N移动,移动到点N停止,在△APQ形状的变化过程中,依次出现的特殊三角形是()A.直角三角形一等边三角形一直角三角形一等腰三角形B.直角三角形一等腰三角形一直角三角形一等边三角形C.等腰三角形一直角三角形一等腰三角形一直角三角形D.等腰三角形一直角三角形一等边三角形一直角三角形5.(2021秋•平阳县校级月考)如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6,DE=2,则BC的长为()A.2B.4C.6D.86.(2020秋•九龙坡区期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC 于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④二.填空题7.(2022春•保定期末)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿BC所在直线向右平移得到△A′B′C′,连接A′C,若BB′=2,则线段A′C的长为.8.(2020秋•玉州区期末)如图,六边形ABCDEF的六个内角都等于120°,若AB=BC=CD=6cm,DE=4cm,则这个六边形的周长等于cm.9.(2020秋•海淀区校级期中)如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.若BE∥AC,则∠C=.10.(2021秋•海曙区期末)一艘轮船从海平面上A地出发,向北偏东50°的方向行驶60海里到达B地,再由B地向南偏东10°的方向行驶60海里到达C地,则A,C两地相距海里.11.(2019秋•潮南区期中)两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C,如图所示.已知AC=6,则这两块直角三角板顶点A、A′之间的距离等于.12.(2017秋•巢湖市期末)已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形ADCP;其中正确的有(填上所有正确结论的序号)13.(2021秋•华容县期末)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC 和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③OP=OQ;④△CPQ为等边三角形;⑤∠AOB=60°.其中正确的有.(注:把你认为正确的答案序号都写上)三.解答题14.(2021秋•涡阳县期末)“中国海监50”在南海海域B处巡逻,观测到灯塔A在其北偏东80°的方向上,现该船以每小时10海里的速度沿南偏东40°的方向航行2小时后到达C处,此时测得灯塔A在其北偏东20°的方向上,求货轮到达C处时与灯塔A的距离AC.15.(2020秋•曾都区期末)学习几何时,要善于对课本例习题中的典型图形进行变式研究.在△ABC中,AB=BC,∠ABC=60°,BD是AC边上的高,点E为直线BC上点,且CE=AD.(1)如图1,当点E在边BC上时,求证:△CDE为等边三角形;(2)如图2,当点E在BC的延长线上时,求证:△BDE为等腰三角形.16.(2021春•城关区校级期中)如图1,已知等边△ABC中,D、E分别是AB、AC上的点,连接DE.(1)若DE∥BC,求证:△ADE是等边三角形;(2)如图2,若D、E分别为AB、AC中点,连接CD、BE,CD与BE相交于点F,请直接写出图中所有等腰三角形.(△ADE与△ABC除外)17.(2021秋•孝南区期末)在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF =60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.18.(2022春•通川区期末)已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED =EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB (填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).19.(2021秋•台州期中)如图,△ABC是边长为12cm的等边三角形,动点M、N同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)若点M的运动速度是2cm/s,点N的运动速度是4cm/s,当N到达点C时,M、N两点都停止运动,设运动时间为t(s),当t=2时,判断△BMN的形状,并说明理由;(2)当它们的速度都是2cm/s,且当点M到达点B时,M、N两点停止运动,设点M的运动时间为t(s),则当t为何值时,△MBN是直角三角形?20.(2021秋•香洲区期中)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向B点以2cm/s 的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?。
专题05 等腰三角形中的动态问题(解析版)

专题05 等腰三角形中的动态问题【典例解析】【例1-1】(2020·安徽省泗县月考)如图,∠AOB=120°,OP平分∠AOB,且OP=1.若点M,N分别在OA,OB上,且∠PMN为等边三角形,则满足上述条件的∠PMN有()A.1个B.2个C.3个D.无数个【答案】D【解析】解:如图,在OA、OB上分别截取OE=OP,OF=OP,作∠MPN=60°.∠OP平分∠AOB,∠∠EOP=∠POF=60°,∠OP=OE=OF,∠∠OPE,∠OPF是等边三角形,∠EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∠∠EPM=∠OPN,∠∠PEM∠∠PON∠PM=PN,∠∠PNM 是等边三角形,只要∠MPN =60°,∠PMN 就是等边三角形,故这样的三角形有无数个.故答案为:D .【例1-2】(2020·贵州六盘水期末)如图,在ABC 中,3AB AC ==,50B C ∠=∠=,点D 在边BC 上运动(点D 不与点,B C 重合),连接AD ,作50ADE ∠=,DE 交边AC 于点E .(1)当100BDA ∠=时,EDC ∠= ,DEC ∠=(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请求出BDA ∠的度数;若不可以,请说明理由.【答案】(1)30,100;(2)(3)见解析.【解析】解:(1)在 △BAD 中,∵∠B =50°,∠BDA =100° ,∴∠EDC =30°,∠DEC =100°.(2)当CD =3时,∠ABD ∠∠DCE ,理由如下:∵AB =CD =3,∠B =50°,∠ADE =50°∴∠B =∠ADE∵∠ADB +∠ADE +∠EDC =180°,∠DEC +∠C +∠EDC =180°∴∠ADB =∠DEC又∠B =∠C∴△ABD ≌△DCE(3)可以,理由如下:∴∠BAC=80°①当AD=DE时,∠DAE=∠DEA=65°,∠∠BAD=∠BAC-∠DAE=15°∠∠BDA=115°②当AD=AE时,∠AED=∠ADE=50°∠∠DAE=180°-∠AED-∠ADE=80°又∠∠BAC=80°∠∠DAE=∠BAE∴点D与点B重合,不合题意.③当AE=DE时,∠DAE=∠ADE=50°∠∠BAD=∠BAC-∠DAE=30°∴∠BDA=100°.综上所述,当∠BDA的度数为115°或100°时,△ADE是等腰三角形.【变式1-1】(2019·霍林郭勒市期中)点A的坐标是(2,2),若点P在x轴或y轴上,且∠APO是等腰三角形,这样的点P共有()个A.6B.7C.8D.9【答案】C.【解析】解:分两种情况进行讨论,当OA是底边时,作OA的垂直平分线,和坐标轴的交点有2个;当OA是腰时,以点O为圆心,OA为半径画弧,和坐标轴有4个交点;以点A为圆心,OA为半径画弧,和坐标轴出现2个交点;∠满足条件的点P 共有8个,故答案为:C .【变式1-2】(2020·山西初二月考)综合与探究:在ABC ∆中, 3 cm AB AC BC ===.点P 从点A 出发以1 cm/s 的速度沿线段AB 向点B 运动.(1)如图1,设点P 的运动时间为()t s ,当t =______s 时,PBC ∆是直角三角形.(2)如图2,若另一动点Q 从点B 出发,沿线段BC 向点C 运动,如果动点,P Q 都以1 cm/s 的速度同时出发,设运动时间为()t s ,求当t 为何值时,PBQ ∆是直角三角形.(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动,连接PQ 交AC 点D ,且动点,P Q 都以1 cm/s 的速度同时出发.∠设运动时间为()t s ,那么当t 为何值时,DCQ ∆是等腰三角形?∠如图4,连接PC .请你猜想:在点,P Q 的运动过程中,PCD ∆和QCD ∆的面积之间的数量关系为______.【答案】(1)32;(2)(3)见解析. 【解析】解:(1)当∠PBC 是直角三角形时,则∠BPC =90°,∠∠B =60°,∠BP =AP =32cm , ∠t =32, 故答案为:32;(2)∠当∠BPQ=90°时,BP=12 BQ,即3-t=12t,解得:t=2∠当∠BQP=90°时,BP=2BQ,即3-t=2t,解得:t=1故当t=1或2s时,∠PBQ是直角三角形;(3)∠∠∠DCQ=120°∠当∠DCQ是等腰三角形,CD=CQ,∠∠PDA=∠CDQ=∠CQD=30°∠∠A=60°∠∠APD=90°∠AD=2AP3-t=2t,解得:t=1∠S∠PCD=S∠QCD,过点P作PE∠AC于E,过点Q作QG∠AC于点G,∠∠CGQ=∠AEP=90°∠AB=AC=BC∠∠A=∠ACB=∠QCG=60°∠∠EAP∠∠GCQ∠PE=QG∠∠PCD与∠QCD同底等高故S∠PCD=S∠QCD.【例2】(2020·江苏江阴月考)如图,在∠ABC中,AB=AC=10cm;BC=6cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.∠若点Q的运动速度与点P的运动速度相等,经过1秒后,∠BPD与∠CQP是否全等,请说明理由;∠若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使∠BPD与∠CQP全等?(2)若点Q以∠中的运动速度从点C出发,点P以原来的运动速度从点B出发都逆时针沿∠ABC三边运动,直接写出经过多少秒后,点P与点Q第一次在∠ABC的那一条边上相遇.【答案】(1)∠∠BPD与∠CQP全等,∠点Q的运动速度是53cm/s.(2)经过30秒后点P与点Q第一次在∠ABC的边BC上相遇.【解析】解:(1)∠∠BPD与∠CQP全等,∠点P的运动速度是1cm/s,点Q的运动速度是1cm/s,∠运动1秒时,BP=CQ=1cm,∠BC=6cm,∠CP=5cm,∠AB=10,D为AB的中点,∠BD=5,∠BD=CP,∠AB=AC,∠∠B=∠C,∠∠BPD∠∠CQP.∠点Q的运动速度与点P的运动速度不相等,则BP≠CQ,若∠BPD与∠CQP全等,只能BP=CP=3cm,BD=CQ=5cm,此时,点P运动3cm,需3秒,而点Q运动5cm,∠点Q的运动速度是53cm/s.(2)设经过t秒时,P、Q第一次相遇,∠P的速度是1厘米/秒,Q的速度是53厘米/秒,∠10+10+t=53 t,解得:t=30,此时点Q的路程=30×53=50(厘米),∠50<2×26,∠此时点Q在BC上,∠经过30秒后点P与点Q第一次在∠ABC的边BC上相遇.【例3-1】(2019·武汉市期中)如图,已知:∠MON=30°,点A1、A2、A3、…在射线ON上,点B1、B2、B3、…在射线OM上,∠A1B1A2、∠A2B2A3、∠A3B3A4、…均为等边三角形,若OA1=1,则∠A9B9A10的边长为()A.32B.64C.128D.256【答案】D【解析】解:如图,∠∠A1B1A2是等边三角形,∠A1B1=A2B1,∠3=∠4=∠12=60°,∠∠2=120°,∠∠MON=30°,∠∠1=180°-120°-30°=30°,又∠∠3=60°,∠∠5=180°-60°-30°=90°,∠∠MON=∠1=30°,∠OA 1=A 1B 1=1,∠A 2B 1=1,∠∠A 2B 2A 3、∠A 3B 3A 4是等边三角形,∠∠11=∠10=60°,∠13=60°,∠∠4=∠12=60°,∠A 1B 1∠A 2B 2∠A 3B 3,B 1A 2∠B 2A 3,∠∠1=∠6=∠7=30°,∠5=∠8=90°,∠A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∠A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,…∠∠A n B n A n +1的边长为 2n -1,∠∠A 9B 9A 10的边长为29-1=28=256.故答案为D .【例3-2】(2020·浙江温州月考)如图,图∠是一块边长为1,周长记为P 1的正三角形纸板,沿图∠的底边剪去一块边长为12的正三角形纸板后得到图∠,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的12)后,得图∠、∠,…,记第n (n ≥3)块纸板的周长为P n ,则P n -P n -1等于…( )A .112n -B .3-12nC .1-132n - D .132n -+212n -【答案】A【解析】解:P 1=1+1+1=3,P 2=1+1+12=52, P 3=1+1+14×3=114,P 4=1+1+14×2+18×3=238, … ∠P 3-P 2=114-52=211=42, P 4-P 3=238-114=311=82, ∠P n -P n -1=n-112, 故答案为:A .【变式3-1】(2020·山东牡丹期末)如图,已知30MON ∠=︒,点1A ,2A ,3A ,在射线ON 上,点1B ,2B ,3B ,在射线OM 上,112A B B ∆,223A B B ∆,334A B B ∆,均为等边三角形.若11OB =,则889A B B ∆的边长为( )A .64B .128C .132D .256【答案】B 【解析】解:∠∠A 1B 1B 2 是等边三角形,∠A 1B 1=A 1B 2,∠A 1B 1B 2=∠A 1B 2O =60°∠∠O =30°∠∠A 2A 1B 2=90°∠∠O =∠OA 1B 1=30°∠OB 1=A 1B 1=A 1B 2=1同理可得:A 3B 3=4,A 4B 4=8,A n B n =2n -1∠∠A 8B 8B 9的边长为2-=128.故答案为:B .【变式3-2】(2019·贵州印江月考)如图,已知1111222233334,,,AB A B A B A A A B A B A B A B ==== ……,若∠A =70°,则11n n n A A B --∠的度数为( )A .702nB .1702n +C .1702n -D .2702n - 【答案】C【解析】解:∠1AB A B =,70A ∠=︒∠∠AA 1B =∠A =70°∠1112A B A A =∠∠A 1A 2B 1=∠A 1 B 1A 2∠∠AA 1B =∠A 1A 2B 1+∠A 1 B 1A 2∠∠A 1A 2B 1=12∠AA 1B =702︒=35° 同理可得:∠A 2A 3B 2=12∠A 1A 2B 1=2702︒=17.5︒ ∠A 3A 4B 3=12∠A 2A 3B 2=3702︒=8.75︒ ∠11n n n A A B --∠=1702n -︒ 故答案为C . 【习题精练】1.(2020·山东青州期中)如图,平面直角坐标系中,点A 在第一象限,∠AOx =40°,点P 在x 轴上,若∠POA 是等腰三角形,则满足条件的点P 共有______个.【答案】4.【解析】解:有OA =OP 、AO =AP 、PO =P A 三种情况:∠以O 为圆心,OA 长为半径画弧,于x 轴有2个交点P 2、P 3,∠以A 为圆心,OA 长为半径画弧,与x 轴有2个交点O 、P 1,点O 与OA 不能构成三角形,P 1符合条件,∠作线段OA 的垂直平分线,交x 轴有1个交点P 4,∠P 4A =P 4O ,∠P 4符合条件,综上所述:符合条件的点共有4个,故答案为:42. (2019·浙江宁波模考)如图,10AOB ∠=︒,点P 在OB 上.以点P 为圆心,OP 为半径画弧,交OA 于点1P (点1P 与点O 不重合),连接1PP ;再以点1P 为圆心,OP 为半径画弧,交OB 于点2P (点2P 与点P不重合),连接12PP ;再以点2P 为圆心,OP 为半径画弧,交OA 于点3P (点3P 与点1P 不重合),连接23P P ;……按照上面的要求一直画下去,得到点n P ,若之后就不能再画出符合要求点1n P +了,则n =________.【答案】8【解析】根据题意可知,画出的三角形是等腰三角形,第一个底角10AOB ∠=︒;由三角形外角和定理可得,第二个等腰三角形的底角20°,第三个等腰三角形的底角30°,同理可得第n 个等腰三角形的底角度数为10n ,因为等腰三角形的底角小于90°,10n <90,即n <9.故答案为8.3.(2020·河北保定一模)如图,10AOB ∠=︒,点P 在OB 上.以点P 为圆心,OP 为半径画弧,交OA 于点1P (点1P 与点O 不重合),连接1PP ;再以点1P 为圆心,OP 为半径画弧,交OB 于点2P (点2P 与点P不重合),连接12PP ;再以点2P 为圆心,OP 为半径画弧,交OA 于点3P (点3P 与点1P 不重合),连接23P P ;……,按照上面的要求一直画下去,就会得到11223OP PP PP P P ===,则(1)234P P P ∠=_________︒;(2)与线段OP 长度相等的线段一共有__________条(不含OP ).【答案】100,9.【解析】解:(1)由题意可知,1PO PP =,121PP P P =,…,则11POP OPP ∠=∠,1212PPP PP P ∠=∠,…,∠AOB ∠=10°,∠1PPB ∠=20°,21P P A ∠=30°,32P P B ∠=40°,43P P A ∠=50°,54P P B ∠=60°,…,∠234P P P ∠=180°−40°−40°=100°,故答案为:100;(2)根据题意,10n <90,解得n <9.∠n 为整数,故n =8.∠54P P B ∠=60°,4556PP P P =, ∠456P P P ∆为等边三角形,∠与线段OP 长度相等的线段一共有9条(不含OP ),故答案为:9.4.(2020·福建连城期中)如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】解:(1)∠S ∠ABC =12×AC ×BC ∠S ∠ABC =12×4×4=8 故答案为:8(2)如图:连接CD∠AC =BC ,D 是AB 中点∠CD 平分∠ACB又∠∠ACB =90°∠∠A =∠B =∠ACD =∠DCB =45°∠CD =BD依题意得:BE =CF在∠CDF 与∠BDE 中,BE CF B DCA BD CD =⎧⎪∠=∠⎨⎪=⎩∠∠CDF ∠∠BDE (SAS )∠DE =DF(3)过点D 作DM ∠BC 于点M ,DN ∠AC 于点N ,∠AD =BD ,∠A =∠B =45°,∠AND =∠DMB =90°∠∠ADN ∠∠BDM (AAS )∠DN =DM当S ∠ADF =2S ∠BDE . ∠12×AF ×DN =2×12×BE ×DM ∠|4-3x |=2x∠x 1=4,x 2=45综上所述:x =45或4. 5.(2020·广东佛山月考)如图,在等边ABC ∆中,10AB AC BC ===厘米,4DC =厘米,如果点M 以3厘米/的速度运动.(1)如果点M 在线段CB 上由点C 向点B 运动.点N 在线段BA 上由B 点向A 点运动,它们同时出发,若点N 的运动速度与点M 的运动速度相等:∠经过2秒后,BMN ∆和CDM ∆是否全等?请说明理由.∠当两点的运动时间为多少秒时,BMN ∆刚好是一个直角三角形?(2)若点N 的运动速度与点M 的运动速度不相等,点N 从点B 出发,点M 以原来的运动速度从点C 同时出发,都顺时针沿ABC ∆三边运动,经过25秒时点M 与点N 第一次相遇,则点N 的运动速度是__________厘米/秒.(直接写出答案)【答案】见解析.【解析】解:(1)∠∠BMN ∠∠CDM .理由如下:N 、M 速度相等,t =2∠CM =BN =6,BM =4∠BN =CM∠CD =4∠BM =CD∠∠B =∠C =60°∠∠BMN ∠∠CDM∠设运动时间为t 秒,∠BMN 是直角三角形有两种情况:当∠NMB =90°时,∠BNM =30°,BN =2BM∠3t =2(10-3t )解得:t =209当∠BNM =90°时,同理,BM =2BN ,即10-3t =2×3t ,解得:t =109 ∠当t =209或109秒时,∠BMN 是直角三角形; (2)分两种情况,∠若点M 运动速度快,则3×25-10=25V N ,解得V N =2.6;∠若点N 运动速度快,则3×25+20=25V N ,解得V N =3.8.6.(2018·湖北广水期中)(阅读)如图1,等边∠ABC 中,P 是AC 边上一点,Q 是CB 延长线上一点,若AP =BQ .则过P 作PF ∠BC 交AB 于F ,可证∠APF 是等边三角形,再证∠PDF ∠QDB 可得D 是FB 的中点.请写出证明过程.(运用)如图2,∠ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A,C不重合),Q是CB 延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE∠AB 于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,直接写出线段ED的长;如果发生改变,请说明理由.【答案】见解析.【解析】解:【阅读】∠∠ABC是等边三角形,∠∠ABC=∠ACB=60°,∠PF∠BC,∠∠AFP=∠APF=∠ABC=∠ACB=60°,∠AP=PF,∠AP=BQ,∠PF=BQ,∠PF∠BQ,∠∠FPD=∠DQB,∠PFD=∠QBD,∠∠PFD∠∠QBD;∠DF=DB.【运用】(1)∠∠ABC是边长为6的等边三角形,∠∠ACB=60°,∠∠BQD=30°,∠∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∠QC=QB+BC=6+x,∠在Rt∠QCP中,∠BQD=30°,∠PC=12QC,即6﹣x=12(6+x),解得x=2,∠AP=2;(2)过Q作QG∠AB,交直线AB于点G,连接QE,PG,又∠PE∠AB于E,∠∠PGQ=∠AEP=90°,∠点P、Q速度相同,∠AP=BQ,∠∠ABC是等边三角形,∠∠A=∠ABC=∠GBQ=60°,在∠APE和∠BQG中,∠∠AEP=∠BGQ=90°,∠∠APE=∠BQG,∠∠APE∠∠BQG(AAS),∠AE=BG,PE=QG且PE∠QG,∠四边形PEQG是平行四边形,∠DE=12 EG,∠EB+AE=BE+BG=AB,∠DE=12 AB,又∠等边∠ABC的边长为6,∠DE=3,故运动过程中线段ED的长始终为3.7.(2020·乐清市月考)如图所示,∠ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B 点时,M、N同时停止运动.设运动时间为t秒.(1)M、N同时运动秒后,M、N两点重合?(2)当0<t<5时,M、N同时运动几秒后,可得等边三角形∠AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰∠AMN,如果存在,请求出此时M、N运动的时间,如果不存在请说明理由.【答案】见详解.【解析】解:(1)M、N同时运动10秒后,点M、N重合;故答案为10;(2)如图,根据题意得:AM=t,BN=2t,则AN=10-2t,∴t =10﹣2t ,解得t =103; ∴当0<t <5时,M 、N 同时运动103秒后,可得等边三角形∠AMN ; (3)M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,理由如下:由(1)知10秒时M 、N 两点重合,恰好在C 处.如图,∠AN =AM∠∠AMN =∠ANM∠∠AMC =∠ANB∠AB =BC =AC∠∠ACB 是等边三角形∠∠C =∠B在∠ACM 和∠ABN 中∠AC =AB ,∠C =∠B ,∠AMC =∠ANB∠∠ACM ∠∠ABN∠CM =BN设运动时间为y 秒时,∠AMN 是等腰三角形∠CM =y ﹣10,NB =30﹣2y∠y -10=30-2y ,解得y =403 ∠当运动时间为403秒时,M ,N 在BC 上使∠AMN 为等腰三角形. 8.(2020·南京月考)在ABC 中,90BAC ∠>︒,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F .(1)若AB AC =,120BAC ∠=︒,求证BM MN NC ==;(2)由(1)可知AMN 是______三角形;(3)去掉(1)中的“120BAC ∠=︒”的条件,其他不变,判断AMN 的形状,并证明你的结论; (4)当B 与C ∠满足怎样的数量关系时,AMN 是等腰三角形?直接写出所有可能的情况.【答案】见解析.【解析】解:(1)连接AM ,AN ,∠AB =AC ,∠BAC =120°∠∠B =∠C =30°∠AB 的垂直平分线交BC 于M ,AC 的垂直平分线交BC 于N ,∠BM =AM ,CN =AN ,∠∠C =∠CAN =30°,∠B =∠BAM =30°,∠∠AMN =60°,∠ANM =60°∠∠MAN =60°∠∠AMN 是等边三角形∠AM =AN =MN∠BM =MN =CN(2)等边;(3)等腰三角形,理由如下:∠AB =AC ,∠∠B =∠C ,∠AB 的垂直平分线交BC 于M ,AC 的垂直平分线交BC 于N ,∠BM =AM ,CN =AN ,∠∠C =∠CAN ,∠B =∠BAM ,∠∠AMN =2∠B ,∠ANM =2∠C∠∠B =∠C∠∠AMN=∠ANM,∠AM=AN∠∠AMN是等腰三角形(4)∠AMN=2∠B,∠ANM=2∠C,∠MAN=180°-2∠B-2∠C,∠当AM=AN时,∠B=∠C;∠当MN=AN时,得2∠B+∠C=90°;∠当MN=AM时,得∠B+2∠C=90°.9.(2020·长沙月考)点P是边长为3cm的等边∠ABC的边AB上的动点,点P从点A出发.沿线段AB向点B运动.(1)如图1,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点P,Q都以1cm/s的速度同时出发,设运动时问为t(s),连换AQ、CP交于点M,∠当t为何值时,∠PBQ是直角三角形?∠在P,Q运动的过程中,∠CMQ会发生变化吗?若变化,则说明理由,若不变,则求出它的度数.(2)如图2,若另一动点Q从点C出发,沿射线BC方向运动,连接PQ交AC于点D,如果动点P,Q都以1cm/s的速度同时出发,设运动时间为t(s),连接PC,∠当t为何值时,∠DCQ是等腰三角形?∠在点P,Q的运动过程中,请探究∠PCD和∠QCD的面积之间的数量关系.【答案】(1)∠t=1或2;∠不发生变化,∠CMQ=60°;(2)∠t=1;∠面积相等【解析】解:(1)∠当∠PBQ是直角三角形时,∠B=60°,BP=3-t,BQ=t∠PQB =90°,此时BP=2BQ∠根据题意,得3-t=2t解得t=1∠当∠BPQ=90°时,此时BQ=2BP∠根据题意,得t=2(3-t)解得:t=2∠当t=1或2时,∠PBQ是直角三角形;∠不发生变化,∠CMQ=60°在∠ABQ与∠CAP中,AP BQAPQ CAP AB CA=⎧⎪∠=∠⎨⎪=⎩∠∠ABQ∠∠CAP∠∠BAQ=∠ACP∠∠MAC+∠MCA=∠MAC+∠BAQ =∠CAP=60°∠∠CMQ=∠MAC+∠MCA∠∠CMQ=∠CAP=60°故不发生变化,∠CMQ=60°;(2)∠∠∠DCQ=120°,当∠DCQ是等腰三角形时,CD=CQ ∠∠PDA=∠CDQ=∠CQD=30°∠∠A=60°∠∠APD=90°∠AD=2AP,即AD=2t∠AC=AD+CD∠2t+t=3解得t=1故答案为t=1时,∠DCQ是等腰三角形;∠面积相等,如图所示:过P作PE∠AD于E,过Q作QG∠AD于G,则PE QG ∠∠G=∠AEP易证∠EAP∠∠GCQ∠PE=QG∠∠PCD和∠QCD同底等高∠∠PCD和∠QCD面积相等故答案为∠PCD和∠QCD面积相等.10.(2020·广东惠来期末)如图,在等边∠ABC中,AB=6cm,动点P从点A出发以1cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q 同时停止运动.设运动时间为t(s).过点P作PE∠AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,∠BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长.【答案】(1)2;(2)存在,t=3;(3)3cm【解析】解:(1)∠∠ABC是等边三角形,∠∠B=60°,∠当BQ=2BP时,∠BPQ=90°,∠6+t=2(6﹣t),∠t=2,∠t=2时,∠BPQ是直角三角形.(2)存在.理由:连接BF交AC于M.∠BF平分∠ABC,BA=BC,∠BF∠AC,AM=CM=3cm,∠EF ∠BQ ,∠∠EFM =∠FBC =12∠ABC =30°, ∠EF =2EM ,∠t =2•(3﹣12t ), 解得t =3.(3)过P 作PK //BC 交AC 于K .∠∠ABC 是等边三角形,∠∠B =∠A =60°,∠PK ∠BC ,∠∠APK =∠B =60°,∠∠A =∠APK =∠AKP =60°,∠∠APK 是等边三角形,∠P A =PK ,∠PE ∠AK ,∠AE =EK ,∠AP =CQ =PK ,∠PKD =∠DCQ ,∠PDK =∠QDC ,∠∠PKD ∠∠QCD ,∠DK =DC ,∠DE =EK +DK =12(AK +CK )=12AC =3cm . 11.(2019·哈尔滨市月考)如图,()(),6,00,4A B ,点B 关于x 轴的对称点为C 点,点D 在x 轴的负半轴上,∠ABD 的面积是30.(1)求点D坐标;(2)若动点P从点B出发,沿射线BC运动,速度为每秒1个单位,设P的运动时间为t秒,APC△的面积为S,求S与t的关系式.【答案】见解析.【解析】解:(1)由题意知,130 2AD BO⋅⋅=,∠AD=15,OD=9,∠点D坐标为(-9,0);(2)∠点B(0,4)关于x轴的对称点为C点,∠点C坐标(0,-4),∠当0<t≤8时,S=-3t+24,当t>8时,S=3t-2412.(2020·湖北襄州期末)已知等边∠ABC的边长为4cm,点P,Q分别是直线AB,BC上的动点.图1 图2(1)如图1,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为lcm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.∠当t=2时,求∠AQP的度数.∠当t为何值时∠PBQ是直角三角形?(2)如图2,当点P在BA的延长线上,Q在BC上,若PQ=PC,请判断AP,CQ和AC之间的数量关系,并说明理由.【答案】见解析.【解析】解:(1)∠根据题意得AP=PB=BQ=CQ=2,∠∠ABC是等边三角形,∠AQ∠BC,∠B=60°,∠∠AQB=90°,∠BPQ是等边三角形,∠∠BQP=60°,∠∠AQP=∠AQB﹣∠BQP=90°﹣60°=30°;∠由题意知AP=BQ=t,PB=4﹣t,当∠PQB=90°时,∠∠B=60°,∠PB=2BQ,得:4﹣t=2t,解得t=43;当∠BPQ=90°时,∠∠B=60°,∠BQ=2BP,得t=2(4﹣t),解得t=83;∠当t=43秒或t=83秒时,∠PBQ为直角三角形;(2)AC=AP+CQ,理由如下:过点Q作QF∠AC,交AB于F,则∠BQF是等边三角形,∠BQ=QF,∠BQF=∠BFQ=60°,∠∠ABC为等边三角形,∠BC=AC,∠BAC=∠BFQ=60°,∠∠QFP=∠P AC=120°,∠PQ=PC,∠∠QCP=∠PQC,∠∠QCP=∠B+∠BPQ,∠PQC=∠ACB+∠ACP,∠B=∠ACB,∠∠BPQ=∠ACP,在∠PQF和∠CP A中,BPQ ACPQFP PAC PQ PC∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠PQF∠∠CP A,∠AP=QF,∠AP=BQ,∠BQ+CQ=BC=AC,∠AP+CQ=AC.13.(2019·连云港市期中)如图,∠ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A.点B同时出发,沿三角形的边运动,已知点M的速度为2cm/s,点N的速度为3cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动秒后,∠AMN是等边三角形?(2)点M、N在BC边上运动时,运动秒后得到以MN为底边的等腰三角形∠AMN?(3)M、N同时运动几秒后,∠AMN是直角三角形?请说明理由.【答案】见解析.【解析】解:(1)当AM=AN时,∠MNA是等边三角形,设运动时间为t秒则:2t=12﹣3t解得t=12 5故点M、N运动125秒后,∠AMN是等边三角形;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形∠AMN解得t=48 5运动485秒后得到以MN为底边的等腰三角形∠AMN;(3)设点M、N运动t秒后,可得到直角三角形∠AMN ∠当M在AC上,N在AB上,∠ANM=90°时,∠∠A=60°∠∠AMN=30°∠AM=2AN则有2t=2(12﹣3t)∠t=3;∠当M在AC上,N在AB上,∠AMN=90°时,∠∠A=60°∠∠ANM=30°∠2AM=AN∠4t=12﹣3t∠t=127;∠当M、N都在BC上,∠ANM=90°时,解得t=10;∠当M、N都在BC上,∠AMN=90°时,则N与B重合,M正好处于BC的中点,此时2t=12+6解得t=9;综上所述,点M、N运动3秒或127秒或10秒或9秒后,∠AMN为直角三角形.。
专题05 动点与特殊三角形存在性问题大视野(解析版)

专题05 动点与特殊三角形存在性问题大视野【例题精讲】题型一、等腰三角形存在性问题例1. 【2019·黄石期中】如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC 的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=______时,△PQF为等腰三角形.【答案】2.【解析】解:∵∠ABC=90°,∠ACB=30°,AB=2,∴AC=2AB=4,BC=√42−22=2√3,∵E、F分别是AB、AC的中点,∴EF=12BC=√3,BF=12AC=2,EF∥BC,由题意得:EP=t,BQ=2t,∴PF=√3-t,FQ=2-2t,①当PF =FQ 时,则√3-t =2-2t , 解得:t =2-√3;②当PQ =FQ 时,过Q 作QD ⊥EF 于D ,则PF =2DF , ∵BF =CF ,∴∠FBC =∠C =30°, 由上知,EF ∥BC , ∴∠BFP =∠C =30°,则DF DQ ,PF ,-t 2-2t )解得:t =611; ③当PF =PQ 时,∠PFQ =∠PQF =30°, ∴∠FPQ =120°,而在P 、Q 运动过程中,∠FPQ 最大为90°,所以此种情况不成立;故答案为:2-√3或611+. 例2. 【2019·广州市番禺区期末】已知:如图,在Rt ∥ABC 中,∥C =90°,AB =5cm ,AC =3cm ,动点P 从点B 出发沿射线BC 以1cm /s 的速度移动,设运动的时间为t 秒.(1)求BC边的长;(2)当∥ABP为直角三角形时,求t的值;(3)当∥ABP为等腰三角形时,求t的值.【答案】见解析.【解析】解:(1)在Rt∥ABC中,BC2=AB2-AC2=52-32=16,∥BC=4(cm);(2)由题意知BP=t cm,∥当∥APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;∥当∥BAP为直角时,BP=tcm,CP=(t-4)cm,AC=3cm,在Rt∥ACP中,AP2=32+(t-4)2,在Rt∥BAP中,AB2+AP2=BP2,即:52+[32+(t-4)2]=t2,解得:t=254,当∥ABP为直角三角形时,t=4或t=254;(3)如图所示,∥当AB=BP时,t=5;∥当AB=AP时,BP=2BC=8cm,t=8;∥当BP=AP时,AP=BP=tcm,CP=(4-t)cm,AC=3cm,在Rt∥ACP中,AP2=AC2+CP2,所以t2=32+(4-t)2,解得:t=258,综上所述:当∥ABP为等腰三角形时,t=5或t=8或t=258.例3. 【2019·乐亭县期末】如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P 是边AB或边BC上的一点,连接OP,DP,当∥ODP为等腰三角形时,点P的坐标为______.【答案】(8,4)或(52,7).【解析】解:∥四边形OABC是矩形,B(8,7),∥OA=BC=8,OC=AB=7,∥D(5,0),∥OD=5,∥点P是边AB或边BC上的一点,∥当点P在AB边时,OD=DP=5,∥AD=3,由勾股定理得:P A=√52−32=4,∥P(8,4).当点P在边BC上时,只有PO=PD,此时P(52,7).故答案为:(8,4)或(52,7).题型二、直角三角形存在性问题例1. 【2019·厦门六中月考】如图,在RtΔABC中,∥B=90°,AC=60,∥A=60°.点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,设点D、E运动的时间是t秒(0<t≤15).过点D作DF∥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,ΔDEF为直角三角形?请说明理由.【答案】见解析.【解析】解:(1)证明:在ΔDFC中,∥DFC=90°,∥A=60°,DC=4t,∥DF=2t又∥AE=2t∥AE=DF;(2)能;理由如下:∥AB∥BC,DF∥BC,∥AE∥DF.又AE=DF,∥ 四边形AEFD为平行四边形.∥∥A=60°,AC=60,∥AB=30,BC∥AD=AC-DC=60-4t,∥平行四边形AEFD为菱形,则AE=AD∥2t=60-4t,解得:t=10即当t=10时,四边形AEFD为菱形;(3)当t=7.5或12时,ΔDEF为直角三角形;理由如下:∥∥EDF=90°时,四边形EBFD为矩形.在RtΔAED中,∥CDF=∥A=60°,∥AD=2AE.即60-4t=4t,∥t=7.5∥∥DEF=90°时,由(2)知EF∥AD,∥∥ADE=∥DEF=90°.∥∥C=90°-∥A=30°可得:60-4t=t解得:t=12∥∥EFD=90°时,∥DF∥BC,∥点E运动到点B处,用了AB÷2=15秒,点D就和点A重合,点F也就和点B重合,点D,E,F不能构成三角形.此种情况不存在;综上所述,当t=7.5或12时,∥DEF为直角三角形.题型三、等腰直角三角形存在性问题例1. 【2019·株洲市期末】(1)操作思考:如图1,在平面直角坐标系中,等腰Rt∥ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则∥OA的长为______;∥点B的坐标为______.(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰Rt∥ACB如图放置,直角顶点C(-1,0),点A(0,4),试求直线AB的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点B(4,3),过点B作BA∥y轴,垂足为点A,作BC∥x轴,垂足为点C,P是线段BC上的一个动点,点Q是直线y=2x-6上一动点.问是否存在以点P为直角顶点的等腰Rt∥APQ,若存在,请求出此时P的坐标,若不存在,请说明理由.【答案】(1,B(-2,1);(2)(3)见解析.【解析】解:(1)过点B作BE∥x轴于E,过点A作AF∥x轴于F,∥A(1,2),∥OF=1,AF=2,OA=√12+22=√5,∥∥AOB=90°,AO=OB,∥∥BEO∥∥OF A,∥BE=OF=1,OE=AF=2,∥B(-2,1).故答案为√5,(-2,1);(2)过点B作BH∥x轴于H,∥∥ACB=90°,AC=CB,∥∥BHC∥∥COA,∥HC=OA=4,BH=CO=1,OH=HC+CO=4+1=5,∥B(-5,1).设直线AB的表达式为:y=kx+b,将A(0,4)和B(-5,1)代入得,b=4, -5k+b=1,解得:k=0.6,b=4,即直线AB的函数表达式为:y=0.6x+4.(3)设Q(t,2t-6),分两种情况:∥当点Q在x轴下方时,Q1M∥x轴,与BP的延长线交于点Q1.∥∥AP1Q1=90°,∥∥AP1B+∥Q1P1M=90°,∥∥AP1B+∥BAP1=90°,∥∥BAP1=Q1P1M,∥∥AP1B∥∥P1Q1M,∥BP1=Q1M,P1M=AB=4,∥B(4,3),Q(t,2t-6),∥MQ1=4-t,BP1=BM-P1M=-2t+5,即4-t=-2t+5,解得:t=1∥BP1=-2t+5=3,此时点P与点C重合,∥P1(4,0);∥当点Q在x轴上方时,Q2N∥x轴,与PB的延长线交于点Q2.同理可证∥ABP2∥∥P2NQ2.同理求得P2(4,43).综上,P的坐标为:P1(4,0),P2(4,43).【刻意练习】1. 【2019·大连市期末】如图,直线x=t与直线y=x和直线y=12-x+2分别交于点D、E(E在D的上方).(1)直线y=x和直线y=12-x+2交于点Q,点Q的坐标为______;(2)求线段DE的长(用含t的代数式表示);(3)点P是y轴上一动点,且∥PDE为等腰直角三角形,求t的值及点P的坐标.【答案】见解析.【解析】解:(1)联立y=x和y=12-x+2,得:4343xy⎧=⎪⎪⎨⎪=⎪⎩,∥Q(43,43),故答案为:(43,43);(2)在y=x中,当x=t时,y=t;在y=12-x+2中,当x=t时,y=12-t+2,∥E(t,-12t+2),D(t,t).∥E在D的上方,∥DE=12-t+2-t=32-t+2.(3)当t>0时,∥当PE=DE时,32-t+2=t,解得:t=45,12-t+2=85,∥P点坐标为(0,85).∥当PD=DE时,32-t+2=t,解得:t=45,∥P点坐标为(0,45).∥当PE=PD时,即DE为斜边,∥32-t+2=2t,解得:t=47,∥P点坐标为(0,87).当t<0时,∥PE=DE和PD=DE时,得32-t+2=-t,解得t=4>0(不符合题意,舍去);∥PE=PD时,即DE为斜边,32-t+2=-2t,解得:t=-4,∥P点坐标为(0,0).综上所述:当t=45时,∥PDE为等腰直角三角形,此时P点坐标为(0,85)或(0,45);当t=47时,∥PDE为等腰直角三角形,此时P点坐标为(0,87);当t=-4时,∥PDE为等腰直角三角形,此时P点坐标为(0,0).2. 【2019·兴城市期末】如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标是1.(1)求此一次函数的解析式;(2)请直接写出不等式(k-3)x+b>0的解集;(3)设一次函数y=kx+b的图象与y轴交于点M,点N在坐标轴上,当∥CMN是直角三角形时,请直接写出所有符合条件的点N的坐标.【答案】见解析. 【解析】解:(1)当x =1时,y =3x =3, ∥点C (1,3),将A (-2,6),C (1,3)代入y =kx +b ,得:263k b k b -+=⎧⎨+=⎩, 解得:14k b =-⎧⎨=⎩,∥直线AC 的解析式为:y =-x +4. (2)(k -3)x +b >0,即kx +b >3x ,由图象可知,当x <1时,y =kx +b 的图象在y =3x 图象的上方, ∥(k -3)x +b >0的解集为:x <1. (3)∥直线AB 的解析式为y =-x +4, ∥点M 的坐标为(0,4), ∥OB =OM , ∥∥OMB =45°.∥当∥CMN =90°时, ∥∥OMN =45°,∥MON =90°, ∥∥MNO =45°, ∥OM =ON ,∥点N 1的坐标为(-4,0); ∥当∥MCN =90°时, ∥∥CMN =45°,∥MCN =90°, ∥∥MNC =45°,∥CN =CM ,∥MN CM =2, ∥点N 2的坐标为(0,2). 同理:点N 3的坐标为(-2,0); ∥当∥CNM =90°时,CM ∥x 轴, ∥点N 4的坐标为(0,3).综上所述:当∥CMN 是直角三角形时,点N 的坐标为(-4,0),(0,2),(-2,0),(0,3).3. 【2019·泉州市晋江区期中】如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、b 满足(a ﹣2)2+0.(1)求直线AB 的解析式;(2)若点M 为直线y =mx 上一点,且∥ABM 是等腰直角三角形,求m 值;(3)过A 点的直线y =kx ﹣2k 交y 轴于负半轴于P ,N 点的横坐标为﹣1,过N 点的直线y =2k x ﹣2k交AP于点M ,试证明PM PNAM-的值为定值.【答案】见解析.【解析】解:(1)∥(a﹣2)20,∥a=2,b=4,∥A(2,0),B(0,4),设直线AB的解析式是y=kx+b,得:204k bb+=⎧⎨=⎩,解得:k=﹣2,b=4,∥直线AB的函数解析式为:y=﹣2x+4;(2)当m>0时,分三种情况:∥如图,当BM∥BA,BM=BA时,过点M作MN∥y轴于N,∥∥MBA=∥MNB=∥BOA=90°,∥∥NBM+∥NMB=90°,∥ABO+∥NBM=90°,∥∥ABO=∥NMB,∥∥BMN∥∥ABO,∥MN=OB=4,BN=OA=2,∥ON=2+4=6,∥M的坐标为(4,6),将(4,6)代入y=mx得:m=32;∥如图,AM∥BA,AM=BA,过点M作MN∥x轴于N,∥BOA∥∥ANM,同理,得M的坐标为(6,2),m=13;∥如图,AM∥BM,AM=BM,过M作MN∥X轴于N,MH∥Y轴于H,则∥BHM∥∥AMN,∥MN=MH,设M(x,x)代入y=mx得:x=mx,∥m=1,m的值是32或13或1;当m<0时,同理可得:m=14-或32-或﹣2;(3)解:设NM与x轴的交点为H,过M作MG∥x轴于G,过H作HD∥x轴,HD交MP于D点,连接ND,由题意得:H(1,0),M(3,k),A(2,0),∥A为HG的中点,∥∥AMG∥∥ADH,由题意得:N点坐标为(-1,-k),P(0,-2k),∥ND∥x轴,N与D关于y轴对称,∥∥AMG∥∥ADH∥∥DPC∥∥NPC,∥PN=PD=AD=AM,∥PM-PN=PM-PD=DM=2AM,即PM PNAM=2.4. 【2019·厦门大学附中期末】如图(1),Rt∥AOB中,∥A=90°,∥AOB=60°,OB=,∥AOB的平分线OC交AB于C,过O点作与OB垂直的直线ON.动点P从点B出发沿折线BC﹣CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线CO﹣ON以相同的速度运动,当点P到达点O时P、Q同时停止运动.(1)求OC、BC的长;(2)当t=1时,求∥CPQ的面积;(3)当P在OC上,Q在ON上运动时,如图(2),设PQ与OA交于点M,当t为何值时,∥OPM为等腰三角形?求出所有满足条件的t值.【答案】见解析.【解析】解:(1)∥∥A =90°,∥AOB =60°,OB = ∥∥B =30°,∥OA =12OB ,由勾股定理得:AB =3, ∥OC 平分∥AOB ,∥∥AOC =∥BOC =∥B =30°, ∥OC =BC ,在∥AOC 中,由勾股定理得:AO 2+AC 2=CO 2,∥2+(3﹣OC )2=OC 2, 解得:OC =2, 即BC =2, ∥OC =2,BC =2.(2)如图,过点C 作CH ∥PQ 于H ,当t =1时,CQ =OQ =PC =PB =1, ∥PQ ∥OB ,∥∥CPQ =∥B =30°, ∥CQ =CP .CH ∥QP ,∥QH =PH ,∥CH =12PC =12,AH =PH ,∥QP∥S ∥PQC =12•PQ •CH =12×12=4.(3)∥ON ∥OB , ∥∥NOB =90°, ∥∥B =30°,∥A =90°, ∥∥AOB =60°, ∥OC 平分∥AOB , ∥∥AOC =∥BOC =30°, ∥∥NOC =90°﹣30°=60°, ∥OM =PM 时, ∥MOP =∥MPO =30°,∥∥PQO =180°﹣∥QOP ﹣∥MPO =90°, ∥OP =2OQ , 即2(t ﹣2)=4﹣t ,解得:t =83,∥PM =OP 时,此时∥PMO =∥MOP =30°, ∥∥MPO =120°, ∥∥QOP =60°,不存在; ∥OM =OP 时,过点M 作MH ∥ON 于M ,由题意得:OP =OM =4﹣t ,∥MH =12(4-t ),OH (4-t ),∥OHM =∥OPM =75°, ∥∥HQM =45°,∥QH =HM =12(4-t ),∥OQ =QH +OH ,即12(4-t )(4-t )=t -2,解得:t ,综合上述:当t 为83或63+时,∥OPM 是等腰三角形.5. 【2019·潮州市期末】如图,在∥ABC 中,∥A =120°,AB =AC =4,点P 、Q 同时从点B 出发,以相同的速度分别沿折线B →A →C ,射线BC 运动,连接PQ . 当点P 到达点C 时,点P 、Q 同时停止运动. 设BQ =x ,∥BPQ 和∥ABC 重叠部分的面积为S . (1)求BC 的长;(2)求S 关于x 的函数关系式,并写出x 的取值范围; (3)请直接写出∥PCQ 为等腰三角形时,x 的值.【答案】见解析. 【解析】解:(1)过点A 作AD ∥BC 于D ,∥∥A =120°,AB =AC =4, ∥∥B =∥C =30°,∥AD =12AB =2,BD∥BC =2BD(2)当0<x ≤4时,点P 在线段AB 上,如图,过点P 作PN ∥BC 于点N ,在Rt ∥PBN 中,BP =BQ =x ,∥B =30°, ∥PN =0.5x , S =S ∥BPQ=12×BQ ×PN =12×x ×12x =14x 2,当4<x P 在线段AC 上,过点P 作PN ∥BC 于点N , BQ =AB +AP , ∥BQ =x ,AB =AC =4,∥AP =BQ -AB =X -4,PC =AC -AP =8-x , 在Rt ∥PCN 中,∥C =30°, ∥PN =12PC =4- 12x , S =S ∥BPQ=12×BQ ×PN =12×x (4- 12x ) =14x 2+2x当<x <8时,点P 在线段AC 上,点Q 在线段BC 的延长线上,过点P 作PN ∥BC 于点N ,S=12×BC×PN=12×(4-12x)=.综上所述,S=()(()22104412448x xx x xx⎧<≤⎪⎪⎪-+<≤⎨⎪⎪+<<⎪⎩(3)∥当点P在AB上,点Q在BC上时,∥PQC不可能是等腰三角形;∥当点P在AC上,点Q在BC上时,PQ=QC,此时x;∥当点P在AC上,点Q在BC的延长线时,PC=CQ,此时x6. 【2019·南宁市期末】如图,在四边形ABCD中,AD∥BC,∥B=90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向点C运动,P、Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s).(1)直接写出:QD=,PC=;(用含t的式子表示)(2)当t为何值时,四边形PQDC为平行四边形?(3)若点P与点C不重合,且DQ≠DP,当t为何值时,∥DPQ是等腰三角形?【答案】(1)8-t;10-2t;(2)(3)见解析.【解析】解:(2)∥四边形PQDC为平行四边形,∥QD=PC,即8-t=10-2t,解得:t=2.(3)∥∥DPQ是等腰三角形,且DQ≠DP,∥DQ=PQ或DP=PQ,∥DQ=PQ,过点Q作QH∥BC于H,则BP=2t,AQ=BH=t,PH=t,QH=AB=6,∥DQ2=PQ2,(8-t)2=62+t2,解得:t=74;∥DP=PQ,过点P作PM∥AD于M,则QM+AQ=BP,即822tt t-+=,解得:t=85,综上所述,当t为74或85秒时,∥DPQ是等腰三角形.7. 【2019·涟源市期末】如图,已知矩形ABCD,AB=8,AD=4,E为CD边上一点,CE=5,动点P从点B 出发,以每秒1个单位的速度沿着边BA向终点A运动,连接EP,设点P的运动时间为t秒,则当t为何值时,∥P AE为等腰三角形.【答案】见解析.【解析】解:∥ABCD为矩形,AB=8,AD=4,∥∥D=90°,∥CE=5,∥DE=CD-CE=3在Rt∥ADE中,由勾股定理得:AE=5,(1)当AP=AE时,即8-t=5,解得:t=3;(2)当PE=AE时,过点E作EF∥AB于F,则PF=AF=5,EF=4,由勾股定理得:PF=3,AP=2PF=6,∥BP=t,则AP=8-t=6,解得:t=2;(3)当PE=P A时,过点E作EF∥AB于F,∥BP=t,∥AP=8-t,BF=CE=5,PF=5-t,由勾股定理得:PE2=EF2+PF2,∥42+(5-t)2=(8-t)2,解得:t=236,综上所述,当t为2秒、3秒或236秒时,∥P AE为等腰三角形.8. 【2019·重庆外国语月考】如图,在Rt∥ABC中,∥ACB=90°,∥A=30°,AB=12,点F是AB的中点,过点F作FD∥AB交AC于点D.若∥AFD以每秒2个单位长度的速度沿射线FB向右移动,得到∥A1F1D1,当F1与点B重合时停止移动.设移动时间为t秒,如果D1,B,F构成的∥D1BF为等腰三角形,求出t值.【答案】见解析.【解析】解:∥如图,当BF=BD1=6时,在Rt∥BF1D1中,BF1=∥AA1=FF1=6﹣∥t=3∥如图,当D1F=D1B时,易知AA1=FF1=F1B=3,可得t=32.∥如图,当FD1=FB=6时,可得AA1=FF1=t综上所述,满足条件的t 的值为332 9. 【2019·平潭期中】如图,在平面直角坐标系中,A (0,8),B (4,0),AB 的垂直平分线交y 轴与点D ,连接BD ,M (a ,1)为第一象限内的点.(1)求点D 坐标;(2)当S ∥DBC =S ∥DBM 时,求a 的值;(3)点E 为y 轴上的一个动点,当∥CDE 为等腰三角形时,直接写出点E 的坐标.【答案】见解析..【解答】解:(1)设D 点坐标为(0,m ),由题意知,CD 是线段AB 的垂直平分线,∥AD =BD ,∥(8-m )2=m 2+42,解得:m =3,即D 点坐标为(0,3).(2)由(1)知,AD =5, ∥S ∥BDA =12×5×4=10, ∥S ∥DBC =12S ∥BDA =5, ∥S ∥DBC =S ∥DBM ,即S∥DBM=5,求得直线BD的解析式为:y=-34x+3,当y=1时,x=83,∥12×(a-83)×3=5,解得:a=6(3)设E点坐标为(0,x),设C点坐标为(n,t)则n=2DCASAD△=2, t=4,即C点坐标为(2,4),∥D(0,3),则CD2=5,DE2=(x-3)2,CE2=4+(x-4)2,∥当CD=DE时,5=(x-3)2解得:x x=3;∥当CD=CE时,5=4+(x-4)2解得:x=5或x=3(舍);∥当DE=CE时,(x-3)2=4+(x-4)2解得:x=112,综上所述,当∥CDE为等腰三角形时,E点坐标为(0,,(0,3,(0,5),(0,112).。
特殊三角形的存在性(讲义及答案).

4
10. 在等腰梯形 ABCD 中,AD∥BC,AD=2,AB=CD=4,且 ∠B=60°,M 是 CD 上一动点,作 MN⊥CD,交 BC 于 N,将 ∠C 沿 MN 翻折,使点 C 落在射线 CD 上的点 E 处.当 △ANE 为等腰三角形时,CM 的长为_______________.
11. 如图,BC⊥y 轴,BC<OA,点 A,点 C 分别在 x 轴、y 轴的 正半轴上,D 是线段 BC 上一点,BD= 1 OA= 2 ,AB=3, 4 ∠OAB=45°,E,F 分别是线段 OA,AB 上的两动点,且始终 保持∠DEF=45°.使△AEF 为等腰三角形,则线段 OE 的值 为___________.
12. 如图,在矩形 ABCD 中,AB=8,AD=6,点 E 为 AB 上一点, AE= 2 3 ,点 F 在 AD 上,将△AEF 沿 EF 折叠,当折叠后点 A 的对应点 A′恰好落在 BC 的垂直平分线上时,折痕 EF 的长 为__________.
5
13. 如图,四边形 ABCD 是菱形,AB=2,∠ABC=30°,点 E 是射 线 DA 上一动点,把△CDE 沿 CE 折叠,其中点 D 的对应点 为点 D′,若 CD′垂直于菱形 ABCD 的边时,则 DE 的长为 ___________.
3.Байду номын сангаас直角三角形的存在性特征分析及特征下操作要点: 理论上三角形的三个顶点分别作为直角顶点进行分类(往往 存在不变特征,分析排除不可能为直角顶点的情况),通常借 助三等角模型,k1·k2=-1 或勾股定理等进行求解.
八年级 专题05 动点中特殊三角形存在性的勾股求解基础巩固提升训练((学生版)

基础巩固+技能提升【基础巩固】1. (2020·江苏苏州期中)如图,Rt ACB ∆中,90ACB ∠=︒,13AB =,5AC =,动点P 从点B 出发沿射线BC 运动,当APB ∆为等腰三角形时,这个三角形底边的长为________.2.(2020·浙江宁波期中)老师请同学在一张长为17cm ,宽为16cm 的长方形纸板上剪下一个腰长为10cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上)请你计算剪下的等腰三角形的面积.3.(2020·山东烟台期中)Rt △AB C 中,∠ACB=90°,AB=10cm ,AC=6cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为t (s ).当t 为何值时,△ABP 为直角三角形?4.(2020·仪征市月考)如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.(1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,①则当t为何值时,△PAE为等腰三角形?②当t为何值时,△PAE为直角三角形,直接写出答案.5.(2019·广东深圳宝安期中)如图,△ABC中,∠ACB=90°,AB=10cm,BC=8cm,若点P 从点A出发,以每秒2cm的速度沿折线A-B-C-A运动,设运动时间为t(t>0)秒.(1)AC=cm;(2)若点P恰好在∠ABC的角平分线上,求此时t的值;(3)在运动过程中,当t为何值时,△ACP为等腰三角形.6.(2019·渠县月考)如图,在ABC 中,5cm AB AC ==,6cm BC ,动点P 从点C 出发,按C A B C →→→的路径运动,且速度为2cm ,设运动时间为(s)t . (1)求ABC 的面积; (2)求AC 边上的高BD 的长;(3)当t 为何值时,APC △的面积为29.6(cm );(4)当点P 在BC 边上运动时,若PCD 是等腰三角形,请求出满足条件的t 的值.7. 已知在Rt ABC 中,∠ACB=90°,AC=6cm ,BC=8cm ,CD 为AB 边上的高.动点P 从点A 出发,沿着ABC 的三条边逆时针走一圈回到A 点,速度为2cm/s ,设运动时间为t . (1)求CD 的长;(2)当P 在AB 边上运动,t 为何值时,ACP 为等腰三角形?8.(2020·河南南阳月考)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.9.(2019·四川师范大学附属中学期中)如图,在长方形ABCD中,已知AB=8cm,BC=10cm,折叠长方形的一边AD,使点D落在BC边上的点F处,折痕为AE.以点A为原点,分别以AD所在的直线为x轴,AB所在的直线为y轴建立坐标系.(1)求出点B、E、F的坐标.是以AF为腰长的等腰三角形?若存在,请直接(2)在x轴上是否存在点G,使AFG写出点G的坐标;若不存在,请说明理由.【技能提升】1. 如图,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的“勾股分割点”已知点M ,N 是线段AB 的“勾股分割点”,若2AM =,3MN =,则BN 的长为__________.2.(2020·泰州市月考)如图,在△ABC 中,已知BA =BC ,∠B =120°.(1)画AB 的垂直平分线DE 交AC 、AB 于点D 、E (保留作图痕迹,作图痕迹请加黑描重); (2)求∠A 的度数;(3)若AC =6cm ,求AD 的长度.3.已知在Rt ABC 中,∠ACB=90°,AC=8,BC=16,点P 从B 点出发沿射线BC 方向以每秒2个单位的速度向右运动.设点P 的运动时间为t .连结AP . (1)当t=3秒时,求AP 的长度(结果保留根号); (2)当ABP 为等腰三角形时,求t 的值.4.(2020·信阳市期中)(1)发现:如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E ,由∠1+∠2=∠2+∠D =90°,得∠1=∠D ,∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE ,进而得到AC=______,BC=_______.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)应用:如图2,在△ABC 中,D 是BC 上一点,AC =AD =BD ,∠CAD =90°,AB =6,请求出△ABC 的面积;(3)拓展:如图3,在平面直角坐标系xOy 中,点A 的坐标为(-1,-4),点B 为平面内一点.若△AOB 是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标5.(2020·河南南阳期末)如图,在Rt ABC 中,90C ∠=︒,8cm AC ,6cm BC ,M 在AC 上,且6cm AM =,过点A (与BC 在AC 同侧)作射线AN AC ⊥,若动点P 从点A 出发,沿射线AN 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.(1)经过_________秒时,Rt AMP △是等腰直角三角形?(2)经过_________秒时,△AMP ≌△CBM ?判断这时的BM 与MP 的位置关系,说明理由.(3)经过几秒时,PM AB ⊥?说明理由.6.(2019·盐城市期中)如图1,在平面直角坐标系中,点B (8,0),点C (0,6),点A在x轴负半轴上,且AB=BC.(1)求点A的坐标;(2)如图2,若点E是BC的中点,动点M从点.A.出发..以每秒1个单位长度的速度沿线段AB向点B匀速运动,设点M的运动时间为t(秒);①若△OME的面积为2,求t的值;②如图3,在点M的运动过程中,△OME能否成为直角三角形?若能,求出此时t的值,并写出相应的点M的坐标;若不能,请说明理由.7.(2020·吉林长春期末)如图,在长方形ABCD中,AB=4,BC=6.延长BC到点E,使CE=3,连结DE.动点P从点B出发,沿着BE以每秒1个单位的速度向终点E运动,点P运动的时间为t秒.(1)DE的长为.(2)连结AP,求当t为何值时,△ABP≌△DCE.(3)连结DP.①求当t为何值时,△PDE是直角三角形.②直接写出当t为何值时,△PDE 是等腰三角形.8.(2020·常州武进区月考)如图,OC、AB互相垂直,已知OA=8,OC=6,且AB=AC.(1)求OB的长;(2)如图②,若点E为边AC的中点,动点M从点B出发以每秒2个单位长度的速度沿线段BA向点A匀速运动,设点M运动的时间为t(秒);①若OME的面积为1,求t的值;②如图③,在点M运动的过程中,OME能否成为直角三角形?若能,求出此时t的值,并写出相应的OM的长;若不能,请说明理由.9.(2020·浙江杭州期中)如图,已知在Rt ABC 中,90ACB ∠=︒,8AC =,16BC =,D 是AC 上的一点,3CD =,点P 从B 点出发沿射线BC 方向以每秒2个单位的速度向右运动,设点P 的运动时间为t .连结AP .(1)当5t =秒时,求AP 的长度;(2)当ABP △为等腰三角形时,求t 的值;(3)过点D 做DE AP ⊥于点E ,在点P 的运动过程中,当t 为何值时,能使DE CD =?10.(2020·盐城市期中)如图,△ABC中,AB=10cm,BC=6cm,AC=8cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒2cm,设出发的时间为t秒.(1)请判断△ABC的形状,说明理由.(2)当t为何值时,△BCP是以BC为腰的等腰三角形.(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.直接写出t为何值时,P、Q?。
专题05二次函数中特殊平行四边形存在性问题(原卷版)

挑战2023年中考数学解答题压轴真题汇编专题05 二次函数中特殊平行四边形存在性问题一.平行四边形的存在性1.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.2.(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.3.(2022•攀枝花)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为﹣1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结P A,PB,设点P的横坐标为t,△P AB的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.4.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D(﹣2,﹣)两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)5.(2022•资阳)已知二次函数图象的顶点坐标为A(1,4),且与x轴交于点B (﹣1,0).(1)求二次函数的表达式;(2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180°,此时点A、B的对应点分别为点C、D.①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.二.矩形的存在性6.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.8.(2021•齐齐哈尔)综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是2;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.9.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形P ABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.10.(2023•秦都区校级二模)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B两点(点B在点A的右侧),与y轴交于点C,且OC=3OA,点D为抛物线的对称轴与x轴的交点,连接CD.(1)求抛物线的函数表达式;(2)点F为坐标平面内一点,在第一象限的抛物线上是否存在点E,使得以点C、D、E、F为顶点的四边形是以CD为边的矩形?若存在,请求出符合条件的点E的横坐标;若不存在,请说明理由.7.(2022•元宝区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是11;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.8.(2022•鱼峰区模拟)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.(1)求该抛物线的解析式;(2)在第二象限内是否存在一点M,使得四边形ABCM为矩形?如果存在,求出点M的坐标;如果不存在,请说明理由.三.菱形的存在性9.(2022•朝阳)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.(1)求抛物线的解析式及点B的坐标.(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P 作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.(3)动点P以每秒个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.10.(2021•湘潭)如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.11.(2021•鄂尔多斯)如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A 在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标;(2)连接AC,直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.12.(2021•通辽)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.13.(2021•娄底)如图,在直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求b、c的值;(2)点P(m,n)为抛物线上的动点,过P作x轴的垂线交直线l:y=x于点Q.①当0<m<3时,求当P点到直线l:y=x的距离最大时m的值;②是否存在m,使得以点O、C、P、Q为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.14.(2021•山西)综合与探究如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN =S△AOC时,请直接写出DM的长.15.(2020•阜新)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.。
中考数学难题突破题型05 特殊三角形存在性问题33页PPT

1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
10.中考数学专题05 八年级数学上册期中考试重难点题型(举一反三)(苏科版)(原卷版)

专题05 八年级数学上册期中考试重难点题型【举一反三】【苏科版】【知识点1】全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.【知识点2】全等三角形的判定两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。
两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”三边对应相等的三角形全等,简写为“边边边”或“SSS”斜边、直角边公理斜边和一直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边公理”或“HL”)【知识点3】轴对称的概念把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,那么这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫对称轴,两个图形中对应点叫做对称点【知识点4】轴对称图形的概念把一个图形沿某条直线折叠,如果直线两旁的部分能够完全重合,那么成这个图形是轴对称图形,这条直线式对称轴【知识点5】垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线【知识点6】轴对称性质:1、成轴对称的两个图形全等2、如歌两个图形成轴对称,那么对称轴是对应点连线的垂直平分线3、成轴对称的两个图形的任何对应部分成轴对称4、成轴对称的两条线段平行或所在直线的交点在对称轴上【知识点7】线段的对称性1、线段是轴对称图形,线段的垂直平分线是对称轴2、线段的垂直平分线上的点到线段两端距离相等3、到线段两端距离相等的点在垂直平分线上【知识点8】角的对称性1、角是轴对称图形,角平分线所在的直线是对称轴2、角平分线上的点到角的两边距离相等3、到角的两边距离相等的点在角平分线上【知识点9】等腰三角形的性质1、等腰三角形是轴对称图形,顶角平分线所在直线是对称轴2、等边对等角3、三线合一【知识点10】等腰三角形判定1、两边相等的三角形是等边三角形2、等边对等角直角三角形斜边上中线等于斜边一半【知识点11】等边三角形判定及性质1、三条边相等的三角形是等边三角形2、等边三角形是轴对称图形,有3条对称轴3、等边三角形每个角都等于60°(补充) 等腰梯形:两腰相等的梯形是等腰梯形【知识点12】等腰梯形性质1、等腰梯形是轴对称图形,过两底中点的直线是对称轴2、等腰梯形在同一底上的两个角相等3、等腰梯形对角线相等【知识点13】等腰梯形判定1.、两腰相等的梯形是等腰梯形2、在同一底上两个角相等的梯形是等腰梯形【知识点14】勾股定理直角三角形两直角边的平方和等于斜边的平方a²+b²=c²【知识点15】勾股定理逆定理如果一个三角形三边a、b、c满足a²+b²=c²,那么这个三角形是直角三角形【知识点16】勾股数满足a²+b²=c²的三个正整数a、b、c称为勾股数【考点1 全等三角形的判定】【例1】(2018秋•利津县期中)如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形的对数是()A.4 B.3 C.2 D.1【变式1-1】(2018秋•思明区校级期中)如图,已知,∠CAB=∠DAE,AC=AD,增加下列条件:①AB =AE;②BC=ED;③∠C=∠D;④∠B=∠E;⑤∠1=∠2.其中能使△ABC≌△AED的条件有()A.2个B.3个C.4个D.5个【变式1-2】(2018秋•东台市期中)根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8 D.∠A=40°,∠B=50°,∠C=90°【变式1-3】(2018秋•东台市期中)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,BC=EF,∠B=∠E;③∠B=∠E,∠C=∠F,BC=EF;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点2 等腰三角形中的分类讨论思想】【例2】(2018春•鄄城县期末)等腰三角形的周长为15cm,其中一边长为3cm,则该等腰三角形的腰长为()A.3cm B.6cm C.3cm或6cm D.8cm【变式2-1】(2018春•金水区校级期中)已知等腰三角形一腰的垂直平分线与另一腰所在的直线的夹角为40°,则此等腰三角形的顶角是()A.50°B.130°C.50°或140°D.50°或130°【变式2-2】(2018秋•绥棱县期末)已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为()A.2cm B.8cm C.2cm或8cm D.10cm【变式2-3】(2018秋•沙依巴克区校级期中)等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于()A.30°B.30°或150°C.120°或150°D.30°或120°或150°【考点3 勾股定理与折叠】【例3】(2019•云阳县校级模拟)如图,在矩形ABCD中,AB=1,BC=2,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为()A.B.C.D.【变式3-1】(2018春•江夏区期中)如图,矩形ABCD中,AB=5,AD=4,M是边CD上一点,将△ADM 沿直线AM对折,得△ANM,连BN,若DM=1,则△ABN的面积是()A.B.C.D.【变式3-2】如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B 落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【变式3-3】如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【考点4 轴对称中的最值问题】【例4】(2018秋•吴江区期中)如图,∠AOB=45°,点P是∠AOB内的定点,且OP=1,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.2 D.1.5【变式4-1】(2018秋•如皋市期中)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD 是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4 B.4.8 C.4 D.5【变式4-2】(2018秋•大连期中)如图,点P是∠AOB内任意一点,OP=4,点C和点D分别是射线OA 和射线OB上的动点,△PCD周长的最小值是4,则∠AOB的度数是()A.25°B.30°C.35°D.40°【变式4-3】(2018•营口)如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC 于点D,M,N分别是BD,BC上的动点,则CM+MN的最小值是()A.B.2 C.2D.4【考点5 线段垂直平分线的应用】【例5】(2018•太仓市模拟)如图,在钝角△ABC中,已知∠A为钝角,边AB、AC的垂直平分线分别交BC于点D、E,若BD2+CE2=DE2,则∠A的度数为°.【变式5-1】(2018春•叶县期中)如图所示,在△ABC中,AB=AC,∠BAC为钝角,BC=6,AB、AC的垂直平分线分别交BC于点D、E,连接AD、AE,那么△ADE的周长为.【变式5-2】(2018秋•江都区期中)如图,在△ABC中,DM、EN分别垂直平分AC和BC交AB于M、N,∠ACB=118°,则∠MCN的度数为.【变式5-3】(2018秋•丰县期中)如图,∠BAC的平分线与BC的垂直平分线相交于D,过D作DE⊥AB 于E,作DF⊥AC于F,若CD=5,DF=4,则BE=.【考点6 复杂的尺规作图】【例6】(2018秋•六合区期中)在七年级我们就学过用一副三角板画出一些特殊度数的角.在八年级第二章,我们学会了一些基本的尺规作图,这些特殊的角也能用尺规作出.下面请各位同学开动脑筋,只用直尺和圆规完成下列作图.已知:如图,射线OA.求作:∠AOB,使得∠AOB在射线OA的上方,且∠AOB=45°(保留作图痕迹,不写作法)【变式6-1】(2018秋•泗洪县期中)已知:如图,在△ABC中,AC<AB且∠C=2∠B (1)用直尺和圆规作出一条过点A的直线1,使得点C关于直线的对称点落在边AB上(不写作法,保留作图痕迹)(2)设(1)中直线l与边BC的交点为D,请写出线段AB、AC、CD之间的数量关系并说明理由.【变式6-2】(2018秋•丹阳市期中)如图,△ABC中,AB=3,AC=4,BC=5.(1)试用直尺和圆规,在直线AB上求作点P,使△PBC为等腰三角形.要求:①保留作图痕迹;②若点P有多解,则应作出所有的点P,并在图中依次标注P1、P2、P3、…;(2)根据(1)求P A的长(所有可能的值)【变式6-3】(2018•惠山区二模)如图,已知△ABC(AC<AB<BC),请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)在边BC上确定一点P,使得P A+PC=BC;(2)作出一个△DEF,使得:①△DEF是直角三角形;②△DEF的周长等于边BC的长.【考点7 与直角三角形性质的有关综合】【例7】(2018秋•泗洪县期中)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.(1)说明DC=DG;(2)若DG=7,EC=4,求DE的长.【变式7-1】(2018秋•海州区校级期中)如图,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)请说明:DE=DF;(2)请说明:BE2+CF2=EF2;(3)若BE=6,CF=8,求△DEF的面积(直接写结果).【变式7-2】(2018秋•高邮市期中)如图,AD是△ABC的高,CE是△ABC的中线.(1)若AD=12,BD=16,求DE;(2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.【变式7-3】(2018秋•太仓市期末)如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,BC=10.(1)若∠ABC=50°,∠ACB=60°,求∠EMF的度数;(2)若EF=4,求△MEF的面积.【考点8 等腰三角形与全等三角形的综合】【例8】(2019•东莞市模拟)如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=3,求AF的长.【变式8-1】(2018秋•临清市期末)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:CD=BF;(2)求证:AD⊥CF;(3)连接AF,试判断△ACF的形状.【变式8-2】(2019秋•宁河县校级月考)如图,在△ABC中,AB=AC,∠BAC=45°,点D是BC的中点,过点C作CE⊥AB,垂足为点E,交AD于点F.(1)求证:AE=CE;(2)求证:△AEF≌△CEB.【变式8-3】如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【考点9 与三角形有关的动点问题】【例9】(2018秋•全椒县期末)已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.【变式9-1】(2019秋•本溪期末)△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB 于点F,连接BE.(1)如图1,若∠BAC=∠DAE=60°,则△BEF是三角形;(2)若∠BAC=∠DAE≠60°①如图2,当点D在线段BC上移动,判断△BEF的形状并证明;②当点D在线段BC的延长线上移动,△BEF是什么三角形?请直接写出结论并画出相应的图形.【变式9-2】(2018秋•十堰期末)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.【变式9-3】(2019秋•上城区期末)如图1,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM(点D与点A重合除外)上时,以CD为一边且在CD的下方作等边△CDE,连接BE.(1)判断AD与BE是否相等,请说明理由;(2)如图2,若AB=8,点P、Q两点在直线BE上且CP=CQ=5,试求PQ的长;(3)在第(2)小题的条件下,当点D在线段AM的延长线(或反向延长线)上时.判断PQ的长是否为定值,若是请直接写出PQ的长;若不是请简单说明理由.【考点10 与等边三角形的性质与判定有关问题综合】【例10】(2018春•天心区校级期末)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.【变式10-1】(2018秋•广州期末)如图1,点A是线段BC上一点,△ABD,△AEC都是等边三角形,BE 交AD于点M,CD交AE于N.(1)求证:BE=DC;(2)求证:△AMN是等边三角形;(3)将△ACE绕点A按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断(1)、(2)两小题结论是否仍然成立,并加以证明.【变式10-2】(2018秋•麻城市校级期末)(1)如图,△ABC中,AB=AC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由.【变式10-3】(2017秋•仁寿县期末)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.【考点11 等腰三角形新定义问题】【例11】(2018秋•滨湖区期中)【定义】数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】如图①,在△ABC中,∠A=36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值;(2)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在BC边上,点E在AB 边上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.【变式11-1】(2019春•顺德区月考)如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的角平分线BD交AC于点D,且BD是△ABC的一条特异线,则∠BDC=度;(2)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE 是△ABC的一条特异线;(3)如图3,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数(如有需要,可在答题卡相应位置另外画图).【变式11-2】(2019秋•余姚市校级期中)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.请你在图2中用三种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)【变式11-3】(2019秋•常州期中)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.如图1,把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,我们把这两条线段叫做等腰三角形的三分线.(1)如图2,请用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.【考点12 旋转法探索几何证明题】【例12】(2019•广州模拟)(1)如图(1),在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF.②若∠A=90°,探索线段BE、CF、EF之间的数量关系,并加以证明;(2)如图(2),在四边形ABCD中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.【变式12-1】(2018秋•灌云县期中)解决问题(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD.小明想到条件∠EAF=∠BAD应用需要转化,将△ADF绕顶点A旋转到△ABG处,此时△ABG≌△ADF,把线段BE、FD集中到一起,进一步可以再证明EF=EG=BE+FD.证明:(1)延长EB到G,使BG=DF,连接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD∴△ABG≌△ADF.小明没有证明结束,请你补齐证明过程.基本运用:请你用第(1)题的解答问题的思想方法,解答下面的问题(2)已知如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°,求证:EF2=BE2+CF2;拓展延伸(3)已知如图3,等边△ABC内有一点P,AP=8,BP=15,AP=17,求∠APB的度数.【变式12-2】(2018秋•丰县期中)如图,画∠AOB=90°,并画∠AOB的平分线OC.(1)将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别垂直,垂足为E、F(如图1),则PE PF(选填<,>,=)(2)把三角尺绕着点P旋转(如图2),PE与PF相等吗?试猜想PE、PF的大小关系,并说明理由.拓展延伸1:在(2)条件下,过点P作直线GH⊥OC,分别交OA、OB于点G、H,如图3①图中全等三角形有对(不添加辅助线)②猜想GE、FH、EF之间的关系,并证明你的猜想.拓展延伸2:画∠AOB=70°,并画∠AOB的平分线OC,在OC上任取一点P,作∠EPF=110°.∠EPF的两边分别与OA、OB相交于E、F两点(如图4),PE与PF相等吗?请说明理由.【变式12-3】(2018秋•盐都区校级期中)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题05 动点与特殊三角形存在性问题大视野
【例题精讲】
题型一、等腰三角形存在性问题
例1. 【2019·黄石期中】如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC 的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=______时,△PQF为等腰三角形.
例2. 【2019·广州市番禺区期末】已知:如图,在Rt△ABC中,△C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值;
(3)当△ABP为等腰三角形时,求t的值.
例3. 【2019·乐亭县期末】如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P 是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为______.
题型二、直角三角形存在性问题
例1. 【2019·厦门六中月考】如图,在RtΔABC中,△B=90°,AC=60,△A=60°.点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,设点D、E运动的时间是t秒(0<t≤15).过点D作DF△BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,ΔDEF为直角三角形?请说明理由.
题型三、等腰直角三角形存在性问题
例1. 【2019·株洲市期末】(1)操作思考:如图1,在平面直角坐标系中,等腰Rt△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则△OA的长为______;△点B的坐标为______.(直接写结果)
(2)感悟应用:如图2,在平面直角坐标系中,将等腰Rt△ACB如图放置,直角顶点C(-1,0),点A(0,4),试求直线AB的函数表达式.
(3)拓展研究:如图3,在直角坐标系中,点B(4,3),过点B作BA△y轴,垂足为点A,作BC△x轴,垂足为点C,P是线段BC上的一个动点,点Q是直线y=2x-6上一动点.问是否存在以点P为直角顶点的等腰Rt△APQ,若存在,请求出此时P的坐标,若不存在,请说明理由.
【刻意练习】
1. 【2019·大连市期末】如图,直线x=t与直线y=x和直线y=
1
2
-x+2分别交于点D、E(E在D的上方).
(1)直线y=x和直线y=
1
2
-x+2交于点Q,点Q的坐标为______;
(2)求线段DE的长(用含t的代数式表示);
(3)点P是y轴上一动点,且△PDE为等腰直角三角形,求t的值及点P的坐标.
2. 【2019·兴城市期末】如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (-2,6),且与x 轴交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标是1. (1)求此一次函数的解析式;
(2)请直接写出不等式(k -3)x +b >0的解集;
(3)设一次函数y =kx +b 的图象与y 轴交于点M ,点N 在坐标轴上,当△CMN 是直角三角形时,请直接写出所有符合条件的点N 的坐标.
3. 【2019·泉州市晋江区期中】如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、b 满足(a ﹣2)
2+
0.
(1)求直线AB 的解析式;
(2)若点M 为直线y =mx 上一点,且△ABM 是等腰直角三角形,求m 值;
(3)过A 点的直线y =kx ﹣2k 交y 轴于负半轴于P ,N 点的横坐标为﹣1,过N 点的直线y =2k x ﹣2
k
交AP
于点M ,试证明
PM PN
AM
-的值为定值.
4. 【2019·厦门大学附中期末】如图(1),Rt △AOB 中,△A =90°,△AOB =60°,OB =,△AOB 的平分
线OC交AB于C,过O点作与OB垂直的直线ON.动点P从点B出发沿折线BC﹣CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线CO﹣ON以相同的速度运动,当点P到达点O时P、Q同时停止运动.
(1)求OC、BC的长;
(2)当t=1时,求△CPQ的面积;
(3)当P在OC上,Q在ON上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.
5. 【2019·潮州市期末】如图,在△ABC中,△A=120°,AB=AC=4,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C,射线BC运动,连接PQ. 当点P到达点C时,点P、Q同时停止运动. 设BQ=x,△BPQ和△ABC重叠部分的面积为S.
(1)求BC的长;
(2)求S关于x的函数关系式,并写出x的取值范围;
(3)请直接写出△PCQ为等腰三角形时,x的值.
6. 【2019·南宁市期末】如图,在四边形ABCD中,AD△BC,△B=90°,AD=8cm,BC=10cm,AB=6cm,点
Q从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向点C运动,P、Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s).
(1)直接写出:QD=,PC=;(用含t的式子表示)
(2)当t为何值时,四边形PQDC为平行四边形?
(3)若点P与点C不重合,且DQ≠DP,当t为何值时,△DPQ是等腰三角形?
7. 【2019·涟源市期末】如图,已知矩形ABCD,AB=8,AD=4,E为CD边上一点,CE=5,动点P从点B 出发,以每秒1个单位的速度沿着边BA向终点A运动,连接EP,设点P的运动时间为t秒,则当t为何值时,△P AE为等腰三角形.
8. 【2019·重庆外国语月考】如图,在Rt△ABC中,△ACB=90°,△A=30°,AB=12,点F是AB的中点,
过点F作FD△AB交AC于点D.若△AFD以每秒2个单位长度的速度沿射线FB向右移动,得到△A1F1D1,当F1与点B重合时停止移动.设移动时间为t秒,如果D1,B,F构成的△D1BF为等腰三角形,求出t值.
9. 【2019·平潭期中】如图,在平面直角坐标系中,A(0,8),B(4,0),AB的垂直平分线交y轴与点D,连接BD,M(a,1)为第一象限内的点.
(1)求点D坐标;
(2)当S△DBC=S△DBM时,求a的值;
(3)点E为y轴上的一个动点,当△CDE为等腰三角形时,直接写出点E的坐标.。