人教版七年级数学上册整式练习题(含答案)

合集下载

人教版七年级上册数学:2.2 整式的加减练习题及答案

人教版七年级上册数学:2.2 整式的加减练习题及答案

2.2 整式的加减(1)◆课前预习1.含有_________的字母,并且_________字母的_______也相同的项,•叫做同类项.2.在合并同类项时,我们把同类项的_______相加,字母和字母的_______不变.◆互动课堂(一)基础热点【例1】下列各题中的两项哪些是同类项?(1)-2m2n与-23m2n;(2)x2y3与-12x3y2;(3)5a2b与5a2bc;(4)23a2与32a2;(5)3p2q与-qp2;(6)53与-33.分析:判断同类项要抓住“两同”:即字母相同,相同字母的指数相同,与系数和字母的排列顺序无关,常数项都是同类项.解:(1),(4),(5),(6).点拨:先判断字母是否相同,再判断相同字母的指数是否相同.【例2】合并同类项:4x2y-8xy2+7-4x2y+10xy2-4.分析:初学时可用不同记号标出各同类项,以防止错漏.解:4x2y-8xy2+7-4x2y+10xy2-4=(4-4)x2y+(-8+10)xy2+(+7-4)=2xy2+3点拨:合并同类项切忌漏项和忘记带上项的符号,两个同类项的系数互为相反数,则合并后结果为0.(二)易错疑难【例3】已知(a+1)2+│b-2│=0,求多项式a2b2+3ab-7a2b2-2ab+1+5a2b2的值.分析:先合并同类项,再求a、b值代入.解:由非负数性质,得a=-1,b=2.原式=(a2b2-7a2b2+5a2b2)+(3ab-2ab)+1=-a2b2+ab+1把a=-1,b=2代入得:原式=-5.点拨:对于多项式求值,有同类项应先合并同类项,再代值计算,可使计算便捷.(三)中考链接【例4】(1)化简:5a-2a=_______;(2)若-4x a y+x2y b=-3x2y,则a+b=_______.答案:(1)3a;(2)3点拨:考查合并同类项及同类项的概念.名师点津1.判断同类项有两个标准,一是字母相同,二是相同字母的指数也相同,•几个常数项也是同类项.2.合并同类项的方法可简记为“一加减两不变”,即合并同类项时,•把系数相加减,其值作为结果的系数,字母和字母的指数不变,同时要特别注意各项系数的符号.◆跟进课堂1.下列各组中的两项,不是同类项的是().A.a2b与-6ab2B.-x3y与2yx3C.2πR与π2R D.35与532.下列计算正确的是().A.3a2-2a2=1 B.5-2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a33.减去-4x等于3x2-2x-1的多项式为().A.3x2-6x-1 B.5x2-1 C.3x2+2x-1 D.3x2+6x-14.若A和B都是6次多项式,则A+B一定是().A.12次多项式B.6次多项式C.次数不高于6的整式D.次数不低于6的多项式5.多项式-3x2y-10x3+3x3+6x3y+3x2y-6x3y+7x3的值是().A.与x,y都无关B.只与x有关C.只与y有关D.与x,y都有关6.如果多项式3x3-2x2+x+│k│x2-5中不含x2项,则k的值为().A.±2 B.-2 C.2 D.07.若2x2y m与-3x n y3是同类项,则m+n________.8.计算:(1)3x-5x=_______;(2)(2008,河北)计算a2+3a2的结果是________.9.合并同类项:-12ab2+23ab2-14ab2=________.10.五个连续偶数中,中间一个是n,这五个数的和是_______.11.若m为常数,多项式mxy+2x-3y-1-4xy为三项式,则12m2-m+2的值是______.12.若单项式-12a2x b m与a n b y-1可合并为12a2b4,则xy-mn=_______.◆漫步课外13.合并下列各式的同类项:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b;(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).14.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-12;(2)5ab-92a2b+12a2b-114ab-a2b-5,其中a=1,b=-2;(3)2a2-3ab+b2-a2+ab-2b2,其中a2-b2=2,ab=-3.15.关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.◆挑战极限16.商店出售茶壶每只定价20元,茶杯每只定价5元,该店制定了两种优惠办法:(1)买一只茶壶赠送一只茶杯;(2)按总价的92%付款.某顾客需购茶壶4只,茶杯x•只(x≥4),付款数为y(元),试对两种优惠办法分别写出y与x之间的关系,并研究该顾客买同样多的茶杯时,两种方法哪一种更省钱?答案:1.A 2.D 3.A 4.C 5.A 6.A 7.5 8.(1)-2x (2)4a29.-112ab2•10.•5n •11.6 12.-3 13.(1)-3a2b-ab (2)(a-b)214.(1)原式=-2a2-5a,值为2 (2)•原式=94ab-5a2b-5,值为12(3)原式=a2-b2-2ab,值为815.m=16,n=-12.值为416.y1=20×4+5(x-4)=5x+60,y2=(20×4+5x)×92%=4.6x+73.6,由y1=y2,即5x+60=4.6x+73.6,得x=34.故当4≤x<34时,按优惠办法(1)更省钱;当x=34时,•两种办法付款相同;当x>34时,按优惠办法(2)更省钱。

【精选习题】最新人教版七年级数学第二章整式的加减单元练习(含答案).doc

【精选习题】最新人教版七年级数学第二章整式的加减单元练习(含答案).doc

人教版七年级上册数学单元练习题:第二章整式的加减一、选择题1.单项式的系数是()A. B. π C. 2 D.2.下列各组式子中,是同类项的是()A. 3x2y与-3xy2B. 3xy与-2yxC. 2x与2x2D. 5xy与5yz3.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个4.下列各式计算结果正确的是()A. a+a=a2B. (a﹣1)2=a2﹣1C. a•a=a2D. (3a)3=9a25.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 36.下列说法错误的是()A. 2x2﹣3xy﹣1是二次三项式B. ﹣x+1不是单项式C. 的系数是D. ﹣22xab2的次数是67.计算2a3+3a3结果正确的是()A. 5a6B. 5a3C. 6a6D. 6a38.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=2bB. a=3bC. a=4bD. a=b10.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 111.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题12.单项式﹣x3y的系数是________.13.多项式是a -2a -1 是________次________项式.14.下面是按一定规律排列的一列数:,- ,,- …那么第8个数是________.15.观察下列数:,,,,…按规律写出第6个数是________,第10个数是________,第n个数是________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________17.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有________个★.三、解答题18.化简:(1)2x-5y-3x+y(2)19.先化简,再求值.,其中.20.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.21.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.参考答案一、选择题1.D2. B3.B4.C5. A6. D7. B8. C9.A 10.C 11. B二、填空题12. 13.三;三14. 15.;;16.x n+n217.(1+3n)三、解答题18.(1)解:2x-5y-3x+y=(2-3)x+(-5+1)y=-x-4y(2)解:=2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b19.解:原式=3x²-2xy- [x²-8x+8xy],=3x²-2xy- x²+4x-4xy,= x²-6xy+4x,当时,原式= ×(-2)2-6×(-2)×1+4×(-2),=10+12-8,=14.20.(1)解:上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)(2)解:∵左边=(10m+n)(10m﹣n+10),=(10m+n)[10(m+1)﹣n],=100m(m+1)﹣10mn+10n(m+1)﹣n2,=100m(m+1)﹣10mn+10mn+10n﹣n2,=100m(m+1)+n(10﹣n)=右边,∴(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)成立21.(1)④4×6﹣52=﹣1(2)(2n﹣1)(2n+1)﹣(2n)2=﹣1(3)解:左边=(2n﹣1)(2n+1)﹣(2n)2=4n2﹣1﹣4n2=﹣1所以(2)中所写的等式一定成立人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式的系数和次数分别是()A.2,2B.2,3C.3,2D.2,4 2.下列说法正确的是()A.ab+c是二次三项式B.多项式2x2+3y2的次数是4C.0是单项式D.34ba是整式3.下列各式中,代数式有()个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23xx+;(5)s =πr 2;(6)-6kA.2 B.3 C.4 D.54.a的5倍与b的和的平方用代数式表示为()A.(5a+b)2B.5a+b2C.5a2+b2D.5(a+b)2 5.下列各式中,不是整式的是().A.3a B.2x = 1 C.0 D.xy 6.23-x yz的系数和次数分别是()A.系数是0,次数是5 B.系数是1,次数是6C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( ) A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______. 15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy - 人教版七年级上册第二章整式的加减单元测试一、选择题(每题3分,共21分)1. 下列说法正确的是( )A.213x π的系数为13B.212xy 的系数为12x C. ()23x -的系数为3D. ()23x π-的系数为3π-2. 下列各组式子中,是同类项的是( )A. 2233x y xy -与B. 222x x 与C. 32xy yx -与D. 55xy yz 与3. 下面计算正确的是( )A. 2233x x -=B. 235325a a a +=C. 33x x +=D. 10.2504ab ba -+=4. 如果12a b -=,那么()3b a --的值是( ) A. 35-B. 23C.32D.165. 将()()()24x y x y x y +++-+合并同类项得( )A. x y +B. x y -+C. x y --D. x y -6. 若8a =,3b =,且a b <,则a b -的值为( )A. 11-B. 5-C. 5-或5D. 11-或5-7. 观察图中正方形四个顶点所标的数字规律,可知数2013应标在( )A. 第503个正方形的左上角B. 第503个正方形的右下角C. 第504个正方形的左上角D. 第504个正方形的右下角二、填空题(每题3分,共21分)8. 已知单项式23m a b 与4123n a b --人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y -的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ) .22.(1)化简 :()()222252423-+-+-a b ab c c a b ab ;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)24. 、 两仓库分别有水泥 吨和 吨, 、 两工地分别需要水泥 吨和 吨.已知从 、 仓库到 、 工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式的系数是,次数=2+1+3=6.故选:C.2.下列语句中错误的是()A.单项式﹣a的系数与次数都是1 B.12xy是二次单项式C.﹣23ab的系数是﹣23D.数字0也是单项式【答案】A解A、单项式﹣a的系数是﹣1,次数是1,故此选项错误,符合题意;B、12xy是二次单项式,正确,不合题意;C、﹣23ab系数是﹣23,正确,不合题意;D、数字0也是单项式,正确,不合题意;故选:A.3.某企业今年月份产值为万元,月份比月份增加了,月份比月份减少了,则月份的产值为()A. 万元B. 万元C. 万元D. 万元【答案】C 解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C .4.已知单项式﹣25m 2x-1n 9和25m 5n 3y 是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .0 【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( )A .33(2)6x x =B .33x x x ÷=C .325x x x ?D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误; B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误;故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C 解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7.故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<, 0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c ,所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( )A .0B .1-C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++, ()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,,b=1a=-3∴, ,当b=1,a=-3时 ,a+2b=-3+2=-1,所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( )A.P +Q 是关于x 的八次多项式B.P -Q 是关于x 的二次多项式C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误;B 、P−Q 人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分)1、用代数式表示比b 的18小7的数( ) A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是( ) A.5 B.2x C.2x D.23a 3、①; ②;③; ④分别是同类项的是( )(A )①② ; (B )①③;(C )②③ ; (D )②④4、-( a-1)-(-a-2)+3的值是( )(A )4; (B )6;(C )0; (D )与的值有关。

人教版七年级上册数学《整式》练习题(含答案)

人教版七年级上册数学《整式》练习题(含答案)

2.1整 式一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x6.下列单项式次数为3的是( )×3×4 417.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, , a 个 个 个 个8.下列整式中,单项式是( )+1 -y D.21+x 9.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -110.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是31 11.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2512.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,313.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式14.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 15.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个B .2个C .3个D .4个 三.填空题1填一填 整式-ab πr 2 232ab - -a+b 2453-+y x A 3b 2-2a 2b 2+b 3-7ab+5 系数次数项2.单项式: 3234y x -的系数是 ,次数是 ; 3.220053xy 是 次单项式;4.y x 342-的一次项系数是 ,常数项是 ;5.单项式21xy 2z 是_____次单项式. 6.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 7.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有8.x+2xy +y 是 次多项式.9.b 的311倍的相反数是 ; 10.设某数为x ,10减去某数的2倍的差是 ;11.42234263y y x y x x --+-的次数是 ;12.当x =2,y =-1时,代数式||||x xy -的值是 ;13.当y = 时,代数式3y -2与43+y 的值相等; 14.-23ab 的系数是 ,次数是 次.15.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .16.若2313m x y z -与2343x y z 是同类项,则m = . 17.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .18.单项式7532c ab 的系数是____________,次数是____________.19.多项式x2y+xy-xy2-53中的三次项是____________.20.当a=____________时,整式x2+a-1是单项式.21.多项式xy-1是____________次____________项式.22.当x=-3时,多项式-x3+x2-1的值等于____________.23.一个n次多项式,它的任何一项的次数都____________.24.如果3x k y与-x2y是同类项,那么k=____ ____.四、合并下列多项式中的同类项(1)3x2+4x-2x2-x+x2-3x-1;(2)-a2b+2a2b(3)a3-a2b+ab2+a2b-2ab2+b3;(4)2a2b+3a2b-12a2b(5)(2x+3y)+(5x-4y);(6)(8a-7b)-(4a-5b)(7)(8x-3y)-(4x+3y-z)+2z;(8)(2x-3y)-3(4x-2y)(9)3a2+a2-2(2a2-2a)+(3a-a2)(10)3b-2c-[-4a+(c+3b)]+c五.先去括号,再合并同类项:(1)(2x+3y )+(5x -4y ); (2)(8a -7b )-(4a -5b )(3)(8x -3y )-(4x+3y -z )+2z (4)(2x -3y )-3(4x -2y )(5)3a 2+a 2-2(2a 2-2a )+(3a -a 2) (6)3b -2c -[-4a+(c+3b )]+c六、求代数式的值1.当x =-2时,求代数式132--x x 的值。

人教版七年级数学第二章整式练习题(含答案)

人教版七年级数学第二章整式练习题(含答案)

七年级数学第二章整式习题(含答案)一.解答题(共26小题)1.化简:x +(5x ﹣3y )﹣(x ﹣2y ).2.化简下列各式:(1)3xy ﹣6xy +2xy ;(2)2a +(4a 2﹣1)﹣(2a ﹣3).3.计算:14a 2b ﹣0.4ab 2−12a 2b +25ab 2.4.计算:2(x 2﹣2x +5)﹣3(2x 2﹣5).5.计算:(1)(﹣1)×(﹣4)+(﹣9)÷3×13+(﹣2);(2)﹣12022+(﹣2)3×(−12)﹣|﹣1﹣5|;(3)4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3;(4)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)].6.先化简,再求值:5x2﹣2(y2+4xy)+(2y2﹣5x2),其中x=−18,y=1.7.先化简,再求值:﹣3a2+3b+8﹣10b+5a2,其中a=﹣5,b=﹣1.8.先化简,再求值:2x2+4y2+(2y2﹣3x2)﹣2(y2﹣2x2),其中x=﹣1,y=1 2.9.先化简,再求值:(4a+3a2﹣3﹣3a3)﹣(﹣a+4a3),其中a=﹣1.10.先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+4x2],其中x=﹣2.11.先化简,再求值:(3x2y﹣5xy)﹣[x2y﹣2(xy﹣x2y)],其中(x+1)2+|y−13|=0.12.代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.13.已知:|x+1|+(y﹣5)2=0,求代数式3x2y﹣[5xy2﹣2(4xy2﹣3)+2x2y]的值.14.已知|a−2|+(b+12)2=0,求a2b﹣(3ab2﹣a2b)+2(2ab2﹣a2b)的值.15.先化简,再求值:3x2y−[2xy2−2(xy−32x2y)]+3xy2−xy,其中x,y满足(x−3)2+|y+13|=0.16.先化简,再求值.(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2),其中(x+2)2+|y﹣1|=0;(2)(﹣a2+3ab﹣2b)﹣2(−12a2+4ab−32b2),其中a=3,b=﹣2.17.先化简再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中|a+2|+|b﹣3|=0.18.先化简,再求值:3a2b+2(ab−32a2b)﹣[2ab2﹣(3ab2﹣ab)],其中a,b满足(a﹣2)2+|b+12|=0.19.已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5(1)求A﹣3B;(2)若(x+y−45)2+|xy+1|=0,求A﹣3B的值;(3)若A﹣3B的值与y的取值无关,求x的值.20.已知A=3b2﹣2a2+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.21.当多项式﹣5x3﹣(m﹣2)x2﹣2x+6x2+(n﹣3)x﹣1不含二次项和一次项时,求m、n的值.22.若12a 6+x b 3y 与3a 4b 6是同类项, 试求3y 3﹣4x 3y ﹣4y 3+2x 3y 的值.23.已知:A =3x 2+2xy +3y ﹣1,B =3x 2﹣3xy .(1)计算:A +B ;(2)若A +B 的值与y 的取值无关,求x 的值.24.已知A =3x 2+xy +y ,B =2x 2﹣xy +2y .(1)化简2A ﹣3B .25.已知关于x的多项式mx3﹣2x2+3x﹣2x3+5x2﹣nx不含三次项和一次项,求m n的值.26.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m,n的值.整式练习题1参考答案与试题解析一.解答题(共26小题)1.化简:x +(5x ﹣3y )﹣(x ﹣2y ).【解答】解:原式=x +5x ﹣x ﹣3y +2y=5x ﹣y .2.化简下列各式:(1)3xy ﹣6xy +2xy ;(2)2a +(4a 2﹣1)﹣(2a ﹣3).【解答】解:(1)原式=(3﹣6+2)xy=﹣xy ;(2)原式=2a +4a 2﹣1﹣2a +3=4a 2+2.3.计算:14a 2b ﹣0.4ab 2−12a 2b +25ab 2. 【解答】解:原式=(14a 2b −12a 2b )+(﹣0.4ab 2+25ab 2) =−14a 2b .4.计算:2(x 2﹣2x +5)﹣3(2x 2﹣5).【解答】解:2(x 2﹣2x +5)﹣3(2x 2﹣5)=2x 2﹣4x +10﹣6x 2+15=﹣4x 2﹣4x +25.5.计算:(1)(﹣1)×(﹣4)+(﹣9)÷3×13+(﹣2);(2)﹣12022+(﹣2)3×(−12)﹣|﹣1﹣5|;(3)4a 3﹣3a 2b +5ab 2+a 2b ﹣5ab 2﹣3a 3;(4)5x 2﹣7x ﹣[3x 2﹣2(﹣x 2+4x ﹣1)].【解答】解:(1)(﹣1)×(﹣4)+(﹣9)÷3×13+(﹣2) =4﹣3×13−2=4﹣1﹣2(2)﹣12022+(﹣2)3×(−12)﹣|﹣1﹣5| =﹣1﹣8×(−12)﹣6=﹣1+4﹣6=﹣3;(3)4a 3﹣3a 2b +5ab 2+a 2b ﹣5ab 2﹣3a 3=(4﹣3)a 3+(﹣3+1)a 2b +(5﹣5)ab 2 =a 3﹣2a 2b ;(4)5x 2﹣7x ﹣[3x 2﹣2(﹣x 2+4x ﹣1)]=5x 2﹣7x ﹣(3x 2+2x 2﹣8x +2)=5x 2﹣7x ﹣3x 2﹣2x 2+8x ﹣2=x ﹣2.6.先化简,再求值:5x 2﹣2(y 2+4xy )+(2y 2﹣5x 2),其中x =−18,y =1.【解答】解:原式=5x 2﹣2y 2﹣8xy +2y 2﹣5x 2 =﹣8xy ,当x =−18,y =1时,原式=﹣8×(−18)×1=1.7.先化简,再求值:﹣3a 2+3b +8﹣10b +5a 2,其中a =﹣5,b =﹣1.【解答】解:原式=2a 2﹣7b +8,当a =﹣5,b =﹣1时,原式=2×25+7+8=65.8.先化简,再求值:2x 2+4y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =12.【解答】解:原式=2x 2+4y 2+2y 2﹣3x 2﹣2 y 2+4x 2 =3x 2+4y 2;当x =﹣1,y =12时,原式=3×(﹣1)2+4×(12)2 =3+1=4.233=5a+3a2﹣7a3﹣3,当a=﹣1时,原式=5×(﹣1)+3×1﹣7×(﹣1)﹣3=﹣5+3+7﹣3=2.10.先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+4x2],其中x=﹣2.【解答】解:原式=5x2﹣(3x﹣4x+6+4x2)=5x2+x﹣6﹣4x2=x2+x﹣6,当x=﹣2时,原式=(﹣2)2+(﹣2)﹣6=4﹣2﹣6=﹣4.11.先化简,再求值:(3x2y﹣5xy)﹣[x2y﹣2(xy﹣x2y)],其中(x+1)2+|y−13|=0.【解答】解:原式=3x2y﹣5xy﹣(x2y﹣2xy+2x2y)=3x2y﹣5xy﹣x2y+2xy﹣2x2y=﹣3xy,∵(x+1)2+|y−13|=0,且(x+1)2≥0,|y−13|≥0,∴x+1=0,y−13=0,解得:x=﹣1,y=1 3,∴原式=﹣3xy=﹣3×(﹣1)×1 3=1.12.代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【解答】解:(1)原式=5ab﹣(2a2b﹣4b2﹣2a2b)=5ab﹣2a2b+4b2+2a2b=5ab+4b2,由题意可知:a﹣2=0,b+1=0,∴a=2,b=﹣1,原式=5×2×(﹣1)+4×1=﹣10+4=﹣6.(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=5﹣5=0.13.已知:|x+1|+(y﹣5)2=0,求代数式3x2y﹣[5xy2﹣2(4xy2﹣3)+2x2y]的值.【解答】解:∵|x+1|+(y﹣5)2=0,∴x=﹣1,y=5,∴原式=3x2y﹣5xy2+8xy2﹣6﹣2x2y=x2y+3xy2﹣6,当x=﹣1,y=5时,原式=(﹣1)2×5+3×(﹣1)×52﹣6=5﹣75﹣6=﹣76.14.已知|a−2|+(b+12)2=0,求a2b﹣(3ab2﹣a2b)+2(2ab2﹣a2b)的值.【解答】解:原式=a2b﹣3ab2+a2b+4ab2﹣2a2b =ab2,∵|a﹣2|+(b+12)2=0,∴a=2,b=−1 2,∴原式=2×1 4=12.15.先化简,再求值:3x2y−[2xy2−2(xy−32x2y)]+3xy2−xy,其中x,y满足(x−3)2+|y+13|=0.【解答】解:3x2y−[2xy2−2(xy−32x2y)]+3xy2−xy=3x2y﹣(2xy2﹣2xy+3x2y)+3xy2﹣xy =3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,因为x,y满足(x−3)2+|y+13|=0,所以x﹣3=0且y+13=0,所以x=3,y=−1 3,所以原式=xy2+xy=3×19+3×(−13)=−23.16.先化简,再求值.(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2),其中(x+2)2+|y﹣1|=0;(2)(﹣a2+3ab﹣2b)﹣2(−12a2+4ab−32b2),其中a=3,b=﹣2.【解答】解:(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy,∵(x+2)2+|y﹣1|=0,(x+2)2≥0,|y﹣1|≥0,∴x+2=0,y﹣1=0.∴x=﹣2,y=1.当x=﹣2,y=1时,原式=﹣6×(﹣2)×1=12.(2)(﹣a2+3ab﹣2b)﹣2(−12a2+4ab−32b2)=﹣a2+3ab﹣2b+a2﹣8ab+3b2=﹣5ab+3b2﹣2b,当a=3,b=﹣2时,原式=﹣5×3×(﹣2)+3×(﹣2)2﹣2×(﹣2)=30+3×4+4=30+12+4=46.17.先化简再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中|a+2|+|b﹣3|=0.【解答】解:原式=15a2b﹣5ab2﹣12a2b+4ab2=3a2b﹣ab2,∵|a+2|+|b﹣3|=0,∴a=﹣2,b=3,∴原式=3×(﹣2)2×3﹣(﹣2)×32=3×4×3+2×9=36+18=54.18.先化简,再求值:3a2b+2(ab−32a2b)﹣[2ab2﹣(3ab2﹣ab)],其中a,b满足(a﹣2)2+|b+12|=0.【解答】解:3a2b+2(ab−32a2b)﹣[2ab2﹣(3ab2﹣ab)]=3a2b+2ab﹣3a2b﹣(2ab2﹣3ab2+ab)=3a2b+2ab﹣3a2b﹣2ab2+3ab2﹣ab=ab2+ab.∵(a﹣2)2+|b+12|=0,(a﹣2)2≥0,|b+12|≥0,∴a﹣2=0,b+12=0.∴a=2,b=−1 2.当a=2,b=−12时,原式=2×(−12)2+2×(−12)=2×14−1=12−1=−12.19.已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5(1)求A﹣3B;(2)若(x+y−45)2+|xy+1|=0,求A﹣3B的值;(3)若A﹣3B的值与y的取值无关,求x的值.【解答】解:(1)原式=3x2﹣x+2y﹣4xy﹣3(x2﹣2x﹣y+xy﹣5)=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy+15=5x+5y﹣7xy+15;(2)∵(x+y−45)2+|xy+1|=0,(x+y−45)2≥0,|xy+1|≥0,∴x+y−45=0,xy+1=0,∴x+y=45,xy=﹣1,∴原式=5(x+y)﹣7xy+15=5×45−7×(﹣1)+15=4+7+15=26;(3)由(1)知:A﹣3B=5x+5y﹣7xy+15=5x+(5﹣7x)y+15,∵A ﹣3B 的值与y 的取值无关,∴5﹣7x =0,解得:x =57.∴若A ﹣3B 的值与y 的取值无关,x 的值为57. 20.已知A =3b 2﹣2a 2+5ab ,B =4ab +2b 2﹣a 2.(1)化简:2A ﹣3B ;(2)当a =﹣1,b =2时,求2A ﹣3B 的值.【解答】解:(1)∵A =3b 2﹣2a 2+5ab ,B =4ab +2b 2﹣a 2,∴2A ﹣3B=2(3b 2﹣2a 2+5ab )﹣3(4ab +2b 2﹣a 2)=6b 2﹣4a 2+10ab ﹣12ab ﹣6b 2+3a 2=﹣a 2﹣2ab ;(2)当a =﹣1,b =2时,2A ﹣3B=﹣a 2﹣2ab=﹣(﹣1)2﹣2×(﹣1)×2=﹣1+4=3.21.当多项式﹣5x 3﹣(m ﹣2)x 2﹣2x +6x 2+(n ﹣3)x ﹣1不含二次项和一次项时,求m 、n 的值.【解答】解:﹣5x 3﹣(m ﹣2)x 2﹣2x +6x 2+(n ﹣3)x ﹣1=﹣5x 3﹣(8﹣m )x 2+(n ﹣5)x ﹣1, ∵多项式﹣5x 3﹣(m ﹣2)x 2﹣2x +6x 2+(n ﹣3)x ﹣1不含二次项和一次项,∴8﹣m =0,n ﹣5=0,解得m =8,n =5.22.若12a 6+x b 3y 与3a 4b 6是同类项,试求3y 3﹣4x 3y ﹣4y 3+2x 3y 的值. 【解答】解:∵12a 6+x b 3y 与3a 4b 6是同类项, ∴6+x =4,3y =6,解得:x =﹣2,y =2,3y 3﹣4x 3y ﹣4y 3+2x 3y=(3y 3﹣4y 3)+(﹣4x 3y +2x 3y )=﹣y 3﹣2x 3y ,当x =﹣2,y =2,原式=﹣23﹣2×(﹣2)3×2=﹣8+32=24.23.已知:A=3x2+2xy+3y﹣1,B=3x2﹣3xy.(1)计算:A+B;(2)若A+B的值与y的取值无关,求x的值.【解答】解:(1)A+B=3x2+2xy+3y﹣1+3x2﹣3xy=6x2﹣xy+3y﹣1.(2)A+B=6x2+(3﹣x)y﹣1,∵A+B的值与y的取值无关,∴3﹣x=0,解得x=3,∴x的值为3.24.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.【解答】解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.25.已知关于x的多项式mx3﹣2x2+3x﹣2x3+5x2﹣nx不含三次项和一次项,求m n的值.【解答】解:mx3﹣2x2+3x﹣2x3+5x2﹣nx=(m﹣2)x3+3x2+(3﹣n)x,∵关于x的多项式mx3﹣2x2+3x﹣2x3+5x2﹣nx不含三次项和一次项,∴m﹣2=0,3﹣n=0,∴m=2,n=3,∴m n=23=8.26.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m,n的值.【解答】解:∵关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,∴m+5=0,n﹣1=0,∴m=﹣5,n=1.。

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。

人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

七年级上册第二章整式知识点例题(含答案)第一部分:知识点与例题一.整式1.单项式:都是数字或者字母的积(单独一个数字或字母也是单项式)①单项式中的数字因数叫做这个单项式的系数②一个单项式中,所有字母的指数的和叫做这个单项式的指数。

如:10x2y3z4的指数为9,叫做九次单项式2.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的叫做常数项;多项式里最高项的次数叫做这个多项式的项。

(这个要与单项式区分开)如:x2+x+3这个多项式有三个项,分别为x2,x和常数项3,最高次是2,所以它是一个二次三项式。

3.单项式与多项式统称整数、二.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项,如2xy2与3 xy2是同类项练习:2xy n-2与4x m+3y2是同类项,则n=,m=2.把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

3.去括号后要注意的点:①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同②如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反4.一般地,几个整式相加减,如果有括号的要先去括号,然后再合并同类项例:(1)合并下面各式的同类项① x+y-4(x-y)② 5ab+3a2-4b2-(6b2+a2-3ab)(2)①求多项式(-x2+5+4x)-(5x-4+2x2)的值,其中x=3②求多项式13x-4(x2-12y2)+(-23x+y2)的值,其中x=-1,y=125. 设方程解决问题:(重点,难点)(1)一条河流的水流速度是2.5km/h,如果已知船在静水中的速度,则船在这条河流中顺水行驶和逆水行驶的速度分别要怎么表示?如果甲,乙两船在静水中的速度分别为20 km/h和35 km/h时,则它们在这条河流中顺水的速度和逆水的速度分别是多少km/h?练习:一种商品每件成本a元,按成本增加20%定出价格,每件售价多少元?后来因库存积压减价,按原价的85%出售,现售价多少钱?每件还能盈利多少元?(2)某村小麦种植的面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻,玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?(3)一架飞机无风时的航速为a km/h,风速为20 km/h,从甲地飞到乙地用了3小时,从乙地飞往甲地用了4小时,求飞机的航速a?(4)礼堂第一排有a个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第三排呢?用m表示n排的座位数,m是多少?当a=20,n=19时,m是多少?第二部分:练习题教师用卷:一、精心选一选1、如果与823x y 是同类项,则代数式的值为(C )A 、0B 、-1C 、+1D 、±12、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于(D )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N3、如果22x x -+的值为7,则的值为(A )A 、52B 、32C 、152D 、答案不惟一4、如果2a b -=,3c a -=,则()()234b c b c ---+的值为(C )A 、14B 、2C 、44D 、不能确定5、的值是(C )A 、±3B 、±1C 、±1或±3D 、不能确定6、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,则八月份该款书包的营业额比七月份增加(B )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元7、一件工作,甲单独做x 天完成,乙单独做y 天完成。

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

人教版七年级数学上册第二章整式作业练习题六(含答案) (73)

人教版七年级数学上册第二章整式作业练习题六(含答案) (73)

人教版七年级数学上册第二章整式作业练习题六(含答案) 将全体自然数按下面的方式进行排列:按照这样的排列规律,2018应位于()A.Ⓐ位B.Ⓑ位C.Ⓒ位D.Ⓓ位【答案】C【解析】【分析】观察图形不难发现,每4个数为一个循环组依次循环,因为2018是第2019个数,所以用2019除以4,再根据商和余数的情况确定2018所在的位置即可.【详解】解:由图可知,每4个数为一个循环组依次循环,∵2018是第2019个数,∵2019÷4=504余3,∵2018应位于第505循环组的第3个数,在∵位.故选C.【点睛】本题是对数字变化规律的考查,观察出每4个数为一个循环组依次循环是解题的关键,要注意2018是第2019个数.22.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则9a10﹣10a9的值为()A.90 B.91 C.103 D.105【答案】A【解析】【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【详解】a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∵9a10﹣10a9=9×10×(10+2)﹣10×9×(9+2)=90.故选A.【点睛】本题考查了图形的变化规律,找出图形之间的联系,找出规律解决问题.23.在代数式①2x y,②21a ab-+,③3n,④112x+,⑤257x y+中,单项式有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据单项式的定义来判断单项式的个数.【详解】由单项式定义可知,①、③为单项式,故选B. 【点睛】此题主要考查了对单项式定义的掌握与应用,区分单项式和多项式是本题的关键.24.如图,第(1)个多边形由正三角形“扩展而来边数记为a 3=12,第(2)个多边形由正方形“扩展”而来,边数记为a 4=20,第(3)个多边形由五边形“扩展”而来,边数记为a 5=30…依此类推,由正n 边形“扩展而来的多边形的边数记为a n (n ≥3),则345121111++...+a a a a + 结果是( )A .310B .730C .833D .1039【答案】D 【解析】 【分析】观察可得边数与扩展的正n 边形的关系为n ×(n+1),根据()111 11n n n n -++=求解即可.【详解】n=3时,边数为3×4=12; n=4时,边数为4×5=20;…n=8时,边数为8×9=72;当n=12时,原式=1111 +3445561213++⋯+⨯⨯⨯⨯ =111111113445561213-+-+-++-, =11313-, =1039. 故选D. 【点睛】考查图形的规律性及规律性的应用;得到边数与扩展的正n 边形的关系是解决本题的突破点;根据()111 11n n n n -++=求解是解决本题的难点.25.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n 个图形有 个小圆(用含n 的式子表示).( )A .2n n +B .24n n +-C .24n n ++D .24n n -+【答案】C 【解析】 【分析】通过对前面几个图形的圆圈的数量的变化进行归纳与总结,得到其中的规律,从而求出正确的答案.【详解】根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5……,∴第n 个图形有:4+n(n+1)=n 2+n +4.故答案选C.【点睛】此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.26.下列说法正确的是( )A .32x y 没有系数B .3不是单项式C .18-是一次一项式D .314xy -是单项式【答案】D 【解析】 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.【详解】A 项,式子32x y 的系数是1,当系数是1时,可以省去不写,A 项错误;B项,3是单独的一个数,按照定义,属于单项式,B 项错误;C 项,18-是常数,没有次数,故C 项错误;D 项,314xy -是数与字母积的形式,是单项式,D 项正确.所以答案选D.【点睛】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.27.单项式235x y-的系数和次数分别是( )A .﹣3,2B .﹣3,3C .35- ,2D .35-,3【答案】D 【解析】 【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【详解】单项式235x y -中数字因数是﹣35,所有字母的指数的和为1+2=3,所以单项式235x y-的系数是﹣35,次数是3,故选D . 【点睛】本题考查了单项式系数和次数,解题的关键是掌握单项式的相关定义. 28.下表,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .85B .72C .75D .79【答案】D【解析】 【分析】根据题意知:前三个图形的右下角的数等于右上角与左下角数的积加左上角的数,且左上,左下,右上三个数是相邻的自然数,据此解答.【详解】 由题意得, a=8,b=9, 则m=ab+7=79. 故选D . 【点睛】此题主要考查了数字变化规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.29.单项式23xy π-的系数与次数分别是( )A .13-,2B .13-,3C .3π-,2 D .3π-,3 【答案】D 【解析】 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】根据单项式系数、次数的定义,单项式23xy π-的系数和次数分别-3π,3.故选D .【点睛】本题考查的知识点是单项式,解题关键是找准单项式的系数和次数. 30.下面说法中,正确的是( ) A .S ab =是代数式B .a ,0,1x,都是单项式C .单项式和多项式都是整式D .多项式22a 3ab 2b -+由2a ,3ab ,22b 组成【答案】C 【解析】 【分析】由代数式定义判断A ,由单项式定义判断B ,由整式定义判断C ,由多项式定义判断D.【详解】解:A 是等式,故错误;B 选项中1x 项,分母中含有字母,故错误;C 选项的表述即整式的定义,故正确;D 选项中,多项式22a 3ab 2b -+由2a ,3ab -,22b 组成,故错误;故选择C. 【点睛】本题主要考察了代数式的相关基本定义.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册整式练习题(含答案)一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( ) (3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( ) 二﹨选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个 2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式 3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是6 4.下列说法正确的是( ) A .整式abc 没有系数 B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A ﹨23x -B ﹨745b a - C ﹨x a 523+D ﹨-20056.下列多项式中,是二次多项式的是( ) A ﹨132+xB ﹨23xC ﹨3xy -1D ﹨253-x7.x 减去y 的平方的差,用代数式表示正确的是( ) A ﹨2)(y x - B ﹨22y x -C ﹨y x -2D ﹨2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。

A ﹨2b a + B ﹨b a s + C ﹨b s a s + D ﹨b s a s s +29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3yD.52x10.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, 0.5 , aA.4个B.5个C.6个D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是3114.在多项式x 3-xy 2+25中,最高次项是( ) A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A ﹨x 的指数是0B ﹨x 的系数是0C ﹨-10是一次单项式D ﹨-10是单项式18.已知:32y x m-与nxy 5是同类项,则代数式n m 2-的值是( )A ﹨6-B ﹨5-C ﹨2-D ﹨519.系数为-21且只含有x ﹨y 的二次单项式,可以写出( ) A .1个B .2个C .3个D .4个20.多项式212x y -+的次数是( )A ﹨1B ﹨ 2C ﹨-1D ﹨-2三.填空题1.当a =-1时,34a = ; 2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式; 4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ;6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式.8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 .9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中单项式有 ,多项式有 10.x+2xy +y 是 次多项式. 11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ; 14.n 是整数,用含n 的代数式表示两个连续奇数 ; 15.42234263y y x y x x --+-的次数是 ; 16.当x =2,y =-1时,代数式||||x xy -的值是 ; 17.当t = 时,31tt +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次. 21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = .23.在x 2, 21 (x +y),1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________. 26.当a=____________时,整式x 2+a -1是单项式. 27.多项式xy -1是____________次____________项式. 28.当x =-3时,多项式-x 3+x 2-1的值等于____________. 29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 30.一个n 次多项式,它的任何一项的次数都____________.32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四﹨列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。

五﹨求代数式的值1.当x =-2时,求代数式132--x x 的值。

2.当21=a ,3-=b 时,求代数式||a b -的值。

3.当31=x 时,求代数式x x 122-的值。

4.当x =2,y =-3时,求2231212y xy x --的值。

5.若0)2(|4|2=-+-x y x ,求代数式222y xy x +-的值。

六﹨计算下列各多项式的值:1.x 5-y 3+4x 2y -4x +5,其中x =-1,y =-2;2.x 3-x +1-x 2,其中x =-3;3.5xy -8x 2+y 2-1,其中x =21,y =4;七﹨解答题1.若21|2x -1|+31|y -4|=0,试求多项式1-xy -x 2y 的值.2.已知ABCD 是长方形,以DC 为直径的圆弧与AB 只有一个交点,且AD=a 。

(1)用含a 的代数式表示阴影部分面积; (2)当a =10cm 时,求阴影部分面积 (π取3.14,保留两个有效数字)参考答案一.判断题: 1.(1)√ (2)× (3)× (4)× (5)√二﹨选择题: BABD C CDD AB C BCCB DDBAB 三﹨填空题:1.-4; 2﹨34- ,5 3﹨五,四 4﹨三 5﹨-3,0 6.单项式 多项式7..四 8.三 3 9.21 23x 2y a 522a π;3x -y 2 πx +21y x +1 10.二11﹨421-m 12﹨b 34- 13﹨10-2x 14﹨2n -1﹨2n +115﹨43224362x y x y x y -+--16﹨0 17﹨2 18﹨119﹨-8,2;20﹨5,4,1,-43xy,-9;21﹨4;22.x 2,π1 ,-3;21(x +y);x 2, 21(x+y),π1,-3 23.75,6 24.x 2y -xy 2 25.1 26.二 二 27.35 28.10 29.不大于n 30.1,-x 2,xy ,-y 2,-xy 3四﹨列代数式:1﹨3235+a2﹨22n m + 3﹨yx +14﹨ba y x +-2)(五﹨求代数式的值 :1﹨92﹨2133﹨37-4﹨145﹨4六﹨计算下列各多项式的值:1.8 2.-32 3.23 4.3 七﹨解答题:1.-2 (提示:由2x -1=0,y -4=0,得x =21,y =4. 所以当x =21,y =4时,1-xy -x 2y =1-21×4-(21)2×4=-2.)2﹨(1)241a s π= (2)792cmFDC。

相关文档
最新文档