七年级数学上册典型例题复习

合集下载

(人教版)七年级上册数学期末复习:第4章《几何图形初步》解答题专练(含答案)

(人教版)七年级上册数学期末复习:第4章《几何图形初步》解答题专练(含答案)

第4章《几何图形初步》解答题专题训练1.(2019秋•越秀区期末)如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=2MC,BN=2NC.(1)若AC=9,BC=6,求线段MN的长;(2)若MN=5,求线段AB的长.2.(2019秋•龙岗区校级期末)如图所示,已知OB,OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠BOC=25°,∠MOB=15°,∠NOD=10°,求∠AOD的大小;(2)若∠AOD=75°,∠MON=55°,求∠BOC的大小;(3)若∠AOD=α,∠MON=β,求∠BOC的大小(用含α,β的式子表示).3.(2019秋•东莞市期末)直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=;(2)在图1中,若∠BCE=α,∠ACF=(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF与∠ACE的度数.4.(2019秋•肇庆期末)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图∠,若∠AOC=30°,求∠DOE的度数.(2)在图∠中,若∠AOC=a,求∠DOE的度数(用含a的代数式表示).(3)将图∠中的∠DOC绕顶点O顺时针旋转至图∠的位置,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.5.(2019秋•封开县期末)如图,∠AOB=90°,OE、OF分别平分∠BOC、∠AOB,如果∠EOF=60°.(1)求∠BOE的度数;(2)求∠AOC的度数.6.(2019秋•黄埔区期末)如图,OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD,∠MON=80°.(1)若∠BOC=40°,求∠AOD的度数;(2)若∠AOD=x°,求∠BOC的度数(用含x的代数式表示).7.(2019秋•斗门区期末)如图,O为直线AB上的一点,∠AOC=48°24′,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)OE是∠BOC的平分线吗?为什么?8.(2019秋•白云区期末)如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD =∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.9.(2019秋•光明区期末)填空,完成下列说理过程.如图,点A、O、B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,∠AOC所以∠COD=12因为OE是∠BOC的平分线,所以∠COE=12所以∠DOE=∠COD+=12(∠AOC+∠BOC)=12∠AOB=°(2)由(1)可知∠DOE=90°因为∠COD=65°所以=∠COD=65°则:∠AOE=∠AOD+=°10.(2019秋•潮阳区期末)如图所示是长方体的平面展开图,设AB=x,若AD=4x,AN=3x.(1)求长方形DEFG的周长与长方形ABMN的周长(用字母x进行表示);(2)若长方形DEFG的周长比长方形ABMN的周长少8,求原长方体的体积.11.(2019秋•海珠区期末)如图,有一个长方形纸条ABCD,点P,Q是线段CD上的两个动点,且点P始终在点Q左侧,在AB上有一点O,连结PO、QO,以PO,QO为折痕翻折纸条,使点A、点B、点C、点D分别落在点A′、点B′、点C′、点D′上.(1)当∠POA=20°时,∠A'OA=°.(2)当A′O与B′O重合时,∠POQ=°.(3)当∠B′OA′=30°时,求∠POQ的度数.12.(2019秋•番禺区期末)如图,点D是线段AB上的任意一点(不与点A和B重合),C是线段AD的中点,AB=4cm.(1)若D是线段AB的中点,求线段CD的长度.(2)在图中作线段DB的中点E,当点D在线段AB上从左向右移动时,试探究线段CE长度的变化情况.13.(2019秋•潮阳区期末)已知:如图,OB、OC分别为定角(大小不会发生改变)∠AOD内部的两条动射线,(1)当OB、OC运动到如图1的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,求∠AOD的度数.(2)在(1)的条件下(图2),射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)在(1)的条件下(图3),OE、OF是∠AOD外部的两条射线,∠EOB=∠COF=90°,OP平分∠EOD,OQ 平分∠AOF,求∠POQ的度数.14.(2019秋•云浮期末)如图,以点O为端点按顺时针方向依次作射线OA、OB、OC、OD.(1)若∠AOC、∠BOD都是直角,∠BOC=60°,求∠AOB和∠DOC的度数.(2)若∠BOD=100°,∠AOC=110°,且∠AOD=∠BOC+70°,求∠COD的度数.(3)若∠AOC=∠BOD=α,当α为多少度时,∠AOD和∠BOC互余?并说明理由.15.(2019秋•顺德区期末)已知线段m、n.(1)尺规作图:作线段AB,满足AB=m+n(保留作图痕迹,不用写作法);(2)在(1)的条件下,点O是AB的中点,点C在线段AB上,且满足AC=m,当m=5,n=3时,求线段OC的长.16.(2019秋•顺德区期末)如图,Rt∠ABC中,∠C=90°,AC=15,面积为150.(1)尺规作图:作∠C的平分线交AB于点D;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点D到两条直角边的距离.17.(2019秋•惠城区期末)如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°.(1)填空:与∠COD互余的角有;(2)若∠COE=30°,求∠AOE的度数;(3)求证:OD是∠AOC的平分线.18.(2019秋•东莞市期末)如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)若∠AOC=50°,求∠COE和∠BOE的度数;(2)猜想:OE是否平分∠BOC?请直接写出你猜想的结论;(3)与∠COD互余的角有:.19.(2019秋•南海区期末)两个圆柱体容器如图所示,容器1的半径是4cm,高是20cm;容器2的半径是6cm,高是8cm,我们先在容器2中倒满水,然后将里面的水全部倒入容器1中,问:倒完以后,容器1中的水面离容器口有多少厘米?20.(2019秋•揭西县期末)如图,OC是∠AOB的平分线,∠COD=3∠BOD,∠BOD=20°,求∠COD、∠BOC、∠AOD 的度数.21.(2019秋•南海区期末)已知:∠AOB=90°,∠COD=20°,OM平分∠AOC,ON平分∠BOD (1)如图1,∠COD在∠AOB内部,且∠AOC=30°.则∠MON的大小为.(2)如图1,∠COD在∠AOB内部,若∠AOC的度数未知,是否能求出∠MON的大小,若能,写出你的解答过程;若不能,说明理由.(3)如图2,∠COD在∠AOB外部(OM在OD上方,∠BOC<180°),试求出∠MON的大小.22.(2019秋•罗湖区期末)如图,一渔船在海上点E开始绕点O航行,开始时E点在O点的北偏东43°40′,然后∠COB.绕O点航行到C,测得∠COE=2∠AOE继续绕行,最后到达D点且OD=3海里,∠COD=12(1)求∠BOC的度数;(2)说明渔船最后到达的D点在什么位置.23.(2019秋•怀集县期末)如图,已知AOB是一条直线,∠1=∠2,∠3=∠4,∠AOF=∠BOF=90°.则(1)∠AOC的补角是;(2)∠AOC的余角是;(3)∠COF的补角是;(4)∠EOF的余角是.24.(2019秋•香洲区期末)如图是一个长方体纸盒的表面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=;(2)先化简,再求值:(2a2﹣5b)﹣3(a2﹣b).25.(2019秋•中山市期末)直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边OE,OF,分别位于OC的两侧.若OC平分∠BOF,OE平分∠COB.(1)求∠BOE的度数;(2)写出图中∠BOE的补角,并说明理由.26.(2019秋•香洲区期末)已知点O为直线AB上一点,将一个直角三角板COD的直角顶点放在点O处,并使OC边始终在直线AB的上方,OE平分∠BOC.(1)如图1,若∠DOE=70°,则∠AOC=°;(2)如图1,若∠DOE=α,求∠AOC的度数;(用含α的式子表示)(3)如图2,在(2)的条件下,若在∠AOC的内部有一条射线OF,(∠AOF﹣∠DOE),试确定∠AOF与∠DOE之间的数量关系,并说明理由.满足∠BOE=1227.(2019秋•福田区期末)如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)若∠AOE=160°,∠AOB=50°,那么∠COD是多少度?28.(2019秋•惠城区校级期末)如图,将一副直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=35°,∠ACB=;若∠ACB=140°,则∠DCE=;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)若保持三角尺BCE不动,三角尺ACD的CD边与CB边重合,然后将三角尺ACD绕点C按逆时针方向任意转动一个角度∠BCD.设∠BCD=α(0°<α<90°)∠∠ACB能否是∠DCE的4倍?若能求出α的值;若不能说明理由.∠三角尺ACD转动中,∠BCD每秒转动3°,当∠DCE=21°时,转动了多少秒?29.(2019秋•南山区期末)如图所示,已知线段AB,点P是线段AB外一点.(1)按要求画图,保留作图痕迹;∠作射线P A,作直线PB;∠延长线段AB至点C,使得AC=2AB,再反向延长AC至点D,使得AD=AC.(2)若(1)中的线段AB=2cm,求出线段BD的长度.30.(2019秋•盘龙区期末)如图,线段AB=8,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;BC,求AE的长.(2)若在线段AB上有一点E,CE=1431.(2019秋•普宁市期末)如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.32.(2019秋•福田区校级期末)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=54°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠CBE的度数.参考答案与试题解析一.解答题(共32小题)1.【解答】解:(1)如图,AC =9,BC =6,则AB =AC =BC =9+6=15, ∠AM =2MC ,BN =2NC .∠MC =13AC =3,NC =13BC =2, ∠MN =MC +NC =3+2=5,答:MN 的长为5;(2)由(1)得,MN ═MC +NC =13AC +13BC =13AB , 若MN =5时,AB =3MN =15,答:AB 的长为15.2.【解答】解:(1)∠OM 平分∠AOB ,ON 平分∠COD∠∠AOB =2∠MOB =30°,∠COD =2∠NOD =20°∠∠AOD =∠AOB +∠BOC +∠COD =30°+25°+20°=75°(2)∠∠AOD =75°,∠MON =55°,∠∠AOM +∠DON =∠AOD ﹣∠MON =20°,∠∠BOM +∠CON =∠AOM +∠DON =20°,∠∠BOC =∠MON ﹣(∠BOM +∠CON )=55°﹣20°=35°,(3)∠OM 平分∠AOB ,ON 平分∠COD ,∠∠AOM =∠BOM =12∠AOB ,∠CON =∠DON =12∠COD , ∠∠BOC =∠MON ﹣∠BOM ﹣∠CON=∠MON −12∠AOB −12∠COD =∠MON −12(∠AOB +∠COD ) =∠MON −12(∠AOD ﹣∠BOC )=β−12(α﹣∠BOC ) =β−12α+12∠BOC , ∠∠BOC =2β﹣α.3.【解答】解:(1)如图1,∠∠ACB =90°,∠BCE =40°, ∠∠ACD =180°﹣90°﹣40°=50°,∠BCD =180°﹣40°=140°, 又CF 平分∠BCD ,∠∠DCF =∠BCF =12∠BCD =70°,∠∠ACF =∠DCF ﹣∠ACD =70°﹣50°=20°;故答案为:20°;(2)如图1,∠∠ACB =90°,∠BCE =α°,∠∠ACD =180°﹣90°﹣α°=90°﹣α,∠BCD =180°﹣α,又CF 平分∠BCD ,∠∠DCF =∠BCF =12∠BCD =90°−12α,∠∠ACF =90°−12α﹣90°+α=12α; 故答案为:12α;(3)如图2,∠∠BCE =150°,∠∠BCD =30°,∠CF 平分∠BCD ,∠∠BCF =12∠BCD =15°, ∠∠ACF =90°﹣∠BCF =75°,∠ACD =90°﹣∠BCD =60°,∠∠ACE =180°﹣∠ACD =120°.4.【解答】解:(1)由已知得∠BOC =180°﹣∠AOC =150°,又∠∠COD 是直角,OE 平分∠BOC ,∠∠DOE =∠COD −12∠BOC =90°−12×150°=15°; (2)由(1)知∠DOE =∠COD −12∠BOC , ∠∠DOE =90°−12(180°﹣∠AOC )=12∠AOC =12α;(3)设∠AOC =α,则∠BOC =180°﹣α,∠OE 平分∠BOC ,∠∠COE =12×(180°﹣α)=90°−12α, ∠BOD =90°﹣(180°﹣α)=α﹣90°,∠∠COE =2∠DOB ,∠90°−1α=2(α﹣90°),2解得α=108°.综上所述,当∠AOC的度数是108°时,∠COE=2∠DOB.5.【解答】解:(1)∠∠AOB=90°,OF平分∠AOB,∠AOB=45°∠∠BOF=12又∠∠EOF=60°,∠∠BOE=60°﹣45°=15°;(2)∠OE平分∠BOC,∠∠BOC=2∠BOE=30°.∠∠AOC=∠AOB+∠BOC=120°.6.【解答】解:(1)∠∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∠∠BOM+∠CON=80°﹣40°=40°,∠OM平分∠AOB,ON平分∠COD,∠∠AOM=∠BOM,∠DON=∠CON,∠∠AOM+∠DON=40°,∠∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;(2)∠∠AOD=x°,∠MON=80°,∠∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∠∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∠∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°.7.【解答】解:(1)∠∠AOC=48°24′,OD平分AOC,∠AOC=24°12′,∠∠1=∠2=12∠∠BOD=180°﹣∠1=180°﹣24°12′=155°48′;(2)OE是∠BOC的平分线.理由如下:∠∠DOE=∠2+∠3=90°,∠2=24°12′,∠∠3=90°﹣24°12′=65°48′,∠∠BOD=∠DOE+∠4=155°48′,∠∠4=155°48′﹣90°=65°48′,∠∠3=∠4=65°48′,∠OE是∠BOC的平分线.8.【解答】解:(1)∠∠COD=∠AOB.即∠AOC+∠BOC=∠BOC+∠BOD,∠∠AOC=∠BOD,∠∠AOD=120°,∠AOB=75°,∠∠AOC=∠BOD=120°﹣75°=45°,∠∠BOC=∠AOB﹣∠AOC=75°﹣45°=30°,故答案为:30,(2)设∠BOD=x°,由(1)得∠AOC=∠BOD=x°,则∠BOC=75°﹣x°由∠AOD=5∠BOC得,75+x=5(75﹣x),解得,x=50,即:∠BOD=50°,故答案为:50;(3)不变;∠∠COD=∠AOB=75°,∠AOC=∠BOD,∠∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=75°×2=150°,答:当∠COD绕着点O旋转时,∠AOD+∠BOC=150°,其值不变.9.【解答】解:故答案为:∠BOC,∠COE,90,∠AOD,∠DOE,155.10.【解答】解:(1)∠AB=x,若AD=4x,AN=3x,∠长方形DEFG的周长为2(x+2x)=6x,长方形ABMN的周长为2(x+3x)=8x;(2)依题意得8x﹣6x=8,解得:x=4,原长方体的容积为x•2x•3x=6x3,将x=4代入,可得体积6x3=384.故原长方体的体积是384.11.【解答】解:(1)根据折叠可知:OP平分∠A′OA∠∠A′OA=2∠POA=40°;故答案为40°;(2)当A′O与B′O重合时,∠AOA′+∠BOB′=180°∠OP、OQ分别平分∠AOA′、∠BOB′∠∠POQ=∠POA′+∠QOB′=1(∠AOA′+∠BOB′)2=90°,故答案为90°;(3)当∠B′OA′=30°时,∠AOA′+∠BOB′=180°﹣∠B′OA′=150°∠OP、OQ分别平分∠AOA′、∠BOB′∠∠POQ=∠POA′+∠QOB′+∠B′OA′=1(∠AOA′+∠BOB′)+∠B′OA′2=75°+30°=105°.当B'在A'左侧时,∠AOP+∠A′OP+∠BOQ+∠B′OQ﹣∠B′OA′=180°,即2∠A ′OP +2∠B ′OQ ﹣30°=180°,解得∠A ′OP +∠B ′OQ =105°,∠∠POQ =∠POA ′+∠QOB ′﹣∠B ′OA ′=105°﹣30°=75°.答:∠POQ 的度数为105°或75°.12.【解答】解:(1)∠AB =4,点D 在线段AB 上,点D 是线段AB 的中点, ∠AD =12AB =12×4=2, ∠点C 是线段AD 的中点, ∠CD =12AD =12×2=1;(2)因为点D 在线段AB 上,点C 是线段AD 的中点,点E 是线段BD 的中点, ∠CD =12AD ,DE =12BD ,∠CE =CD +DE =12AD +12BD =12(AD +BD )=12AB ,∠AB =4,∠CE =2,∠线段CE 长度不变.13.【解答】解:(1)当OB 、OC 运动到如图1的位置时,∠∠AOC +∠BOD =100°,∠∠AOC +∠COD +∠BOC =100°∠AOD +∠BOC =100°∠∠∠AOB +∠COD =40°,∠∠AOD ﹣∠BOC =40°∠∠+∠得2∠AOD =140°∠∠AOD =70°.∠∠BOC =30°答:∠AOD 的度数为70°.(2)在(1)的条件下(图2),∠射线OM 、ON 分别为∠AOB 、∠COD 的平分线,∠∠CON =12∠COD ,∠BOM =12∠AOB ∠∠MON =∠CON +∠BOM +∠BOC=12(∠AOB +∠COD )+∠BOC=12×40°+30°=50°.答:∠MON 的度数为50°.(3)在(1)的条件下(图3),OE 、OF 是∠AOD 外部的两条射线,∠EOB=∠COF=90°,∠OP平分∠EOD,OQ平分∠AOF,∠EOD∠∠POD=12∠AOF∠AOQ=12∠∠POQ=∠AOD+∠POD+∠AOQ(∠EOD+∠AOF)=70°+12=70°+1(∠EOB﹣∠BOD+∠COF﹣∠AOC)2[(90°+90°﹣(∠BOD+∠AOC)]=70°+12×100°=70°+90°−12=110°.答:∠POQ的度数为110°.14.【解答】解:(1)∠∠AOC=90°,∠BOD=90°,∠BOC=60°,∠∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∠DOC=∠BOD﹣∠BOC=90°﹣60°=30°;(2)设∠COD=x°,则∠BOC=100°﹣x°,∠∠AOC=110°,∠∠AOB=110°﹣(100°﹣x°)=x°+10°,∠∠AOD=∠BOC+70°,∠100°+10°+x°=100°﹣x°+70°,解得:x=30即,∠COD=30°;(3)当α=45°时,∠AOD与∠BOC互余;理由是:要使∠AOD与∠BOC互余,即∠AOD+∠BOC=90°,∠∠AOB+∠BOC+∠COD+∠BOC=90°,即∠AOC+∠BOD=90°,∠∠AOC=∠BOD=α,∠∠AOC=∠BOD=45°,即α=45°,∠当α=45°时,∠AOD与∠BOC互余.15.【解答】解:(1)如图所示,线段AB即为所求;(2)如图,∠点O 是AB 的中点,∠AO =12AB =12(m +n ), 又∠AC =m ,∠OC =AC ﹣AO =m −12(m +n )=12m −12n , ∠当m =5,n =3时,OC =52−32=1.16.【解答】解:如图所示,(1)CD 即为所求作的∠C 的平分线交AB 于点D ;(2)在(1)的条件下,作DE ∠BC ,DF ∠AC 于点E 和F ,∠DE =DF ,∠∠C =90°,AC =15,面积为150,∠BC =20,∠S ∠ADC +S ∠BDC =S ∠ABC12AC •DF +12BC •DE =150 15DF +20DE =300DE =DF∠DE =607点D 到两条直角边的距离为607.17.【解答】解:(1)∠OE 平分∠BOC ,∠∠COE =∠BOE ,∠∠COD +∠COE =∠DOE =90°,∠∠COD +∠BOE =90°,与∠COD 互余的角有∠BOE 、∠COE ;故答案为:∠BOE 、∠COE ;(2)∠OE 平分∠BOC ,∠∠COE=∠BOE=30°,∠∠AOE=180°﹣30°=150°;(3)证明:∠OE是∠BOC的平分线,∠∠COE=∠BOE,∠∠DOE=90°,∠∠COD+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°,∠∠DOC+∠COE=∠DOA+∠BOE,所以∠DOC=∠DOA,所以OD是∠AOC的平分线.18.【解答】解:(1)∠OD平分∠AOC,∠AOC=50°,∠∠COD=∠AOD=12∠AOC=12×50°=25°,∠∠DOE=90°.∠∠COE=∠DOE﹣∠COD=90°﹣25°=65°,∠BOE=180°﹣∠AOD﹣∠DOE=180°﹣25°﹣90°=65°;(2)结论:OE平分∠BOC.理由:设∠AOC=2α,∠OD平分∠AOC,∠AOC=2α,∠∠AOD=∠COD=12∠AOC=α,又∠∠DOE=90°,∠∠COE=∠DOE﹣∠COD=90°﹣α,又∠∠BOE=180°﹣∠DOE﹣∠AOD=180°﹣90°﹣α=90°﹣α,∠∠COE=∠BOE,即OE平分∠BOC;(3)与∠COD互余的角有:∠COE、∠BOE.故答案为:∠COE、∠BOE.19.【解答】解:设倒完以后,第一个容器中的水面离容器口有xcm,则:π×42×(20﹣x)=π×62×8,解得:x=2,答:第一个容器中的水面离容器口有2 cm.20.【解答】解:∠∠BOD=20°,∠COD=3∠BOD,∠∠COD=60°,∠BOC=23∠COD,∠∠BOC=60°×23=40°,又∠OC是∠AOB的平分线,∠∠AOB=2∠BOC=2×40°=80°,∠∠AOD=∠AOB+∠BOD=80°+20°=100°.21.【解答】解:(1)如图1,∠∠AOB =90°,∠COD =20°,OM 平分∠AOC ,ON 平分∠BOD ∠∠DON +∠COM =12(∠BOD +∠AOC )=12(90°﹣20°)=35°, ∠∠MON =∠DON +∠COM +∠COD =35°+20°=55°,故答案为:55°.(2)能,如图1,∠OM 平分∠AOC ,ON 平分∠BOD ,∠∠MOC =12∠AOC ,∠NOD =12∠BOD ,∠∠MON =∠NOD +∠DOC +∠MOC ,=12∠BOD +12∠AOC +20°,=12(∠BOD +∠AOC )+20°, =12(90°﹣20°)+20°,=55°.故答案为:55°,(3)∠OM 平分∠AOC ,ON 平分∠BOD ,∠∠MOC =12∠AOC ,∠NOD =12∠BOD , ∠∠MON =∠NOD +∠DOC ﹣∠MOC ,=12∠BOD +20°−12∠AOC , =12(90°+∠AOD )+20°−12(∠AOD +20°), =45°+12∠AOD +20°−12∠AOD ﹣10° =55°.22.【解答】解:(1)E点在O点的北偏东43°40′,即∠BOE=43°40′,∠AOE=90°﹣43°40′=46°20′∠∠COE=2∠AOE=2×46°20′=92°40′,∠∠BOC=∠COE﹣∠BOE=92°40′﹣43°40′=49°,∠COB.(2)∠∠COD=12×49°=24°30′,∠∠COD=12∠∠BOD=∠BOC+∠COD=49°+24°30′=73°30′,∠OD=3海里,即:D点在O点的北偏西73°30′且距离O点3海里的位置.23.【解答】解:根据题意和图示可知:(1)∠AOC+∠BOC=180°,故答案为:∠COB;(2)∠3=∠4,∠AOC+∠3=90°,故答案为:∠3、∠4;(3)∠∠3=∠4,∠∠COF的补角是∠AOE,故答案为:∠AOE;(4)∠∠EOF+∠4=90°,∠∠4是∠EOF的余角,∠∠3=∠4,∠∠3也是∠EOF的余角,∠∠EOF的余角是∠3、∠4,故答案为:∠3、∠4.24.【解答】解:(1))∠纸盒中相对两个面上的数互为相反数,∠观察图形可知,a=﹣1,b=3.故答案为:a=﹣1,b=3;(2)原式=2a2﹣5b﹣3a2+3b=﹣a2﹣2b当a=﹣1,b=3时原式=﹣(﹣1)2﹣2×3=﹣7.25.【解答】解:(1)∠OC平分∠BOF,OE平分∠COB.∠∠BOE=∠EOC=1∠BOC,∠BOC=∠COF,2∠∠COF=2∠BOE,∠∠EOF=3∠BOE=90°,∠∠BOE=30°,(2)∠∠BOE+∠AOE=180°∠∠BOE的补角为∠AOE;∠∠EOC+∠DOE=180°,∠BOE=∠EOC,∠∠BOE+∠DOE=180°,因此∠∠BOE的补角为∠DOE;答:∠BOE的补角有∠AOE和∠DOE;26.【解答】解:(1)∠∠DOE=70°,∠COD=90°∠∠COE=90°﹣70°=20°,∠OE平分∠BOC.∠∠COE=∠BOE=20°∠∠AOC=180°﹣2∠COE=140°,故答案为:140.(2)解:∠DOE=α,∠COD=90°∠∠COE=90°﹣α,∠OE平分∠BOC∠∠BOC=2∠COE=180°﹣2α,∠∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(3)∠AOF+∠DOE=180°,∠∠BOE=1(∠AOF﹣∠DOE),2∠2∠BOE=∠AOF﹣∠DOE,∠∠BOC=∠AOF﹣∠DOE,∠180°﹣∠AOC=∠AOF﹣∠DOE,∠∠DOE=α,∠AOC=2α,∠∠AOC=2∠DOE,∠180°﹣2∠DOE=∠AOF﹣∠DOE,∠∠AOF+∠DOE=180°,即∠AOF与∠DOE互补.27.【解答】解:(1)OB是∠AOC的平分线,∠∠BOC=∠AOB=50°;∠OD是∠COE的平分线,∠∠COD=∠DOE=30°,∠∠BOD=∠BOC+∠COD=50°+30°=80°;(2)OB是∠AOC的平分线,∠∠AOC=2∠AOB=100°,∠∠COE=∠AOE﹣∠AOC=160°﹣100°=60°,∠OD是∠COE的平分线,∠COE=30°.∠∠COD=1228.【解答】解:(1)∠∠ACD=∠ECB=90°,∠DCE=35°,∠∠ACB=180°﹣35°=145°.∠∠ACD=∠ECB=90°,∠ACB=140°,∠∠DCE=180°﹣140°=40°.故答案为:145°,40°;(2)∠ACB+∠DCE=180°或互补,理由:∠∠ACE+∠ECD+∠DCB+∠ECD=180.∠∠ACE+∠ECD+∠DCB=∠ACB,∠∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.(3)∠当∠ACB是∠DCE的4倍,∠设∠ACB=4x,∠DCE=x,∠∠ACB+∠DCE=180°,∠4x+x=180°解得:x=36°,∠α=90°﹣36°=54°;∠设当∠DCE=21°时,转动了t秒,∠∠BCD+∠DCE=90°,∠3t+21=90,t=23°,答:当∠DCE=21°时,转动了23秒.29.【解答】解:(1)射线P A,直线PB、线段AC、AD为所作;(2)∠AC=2AB=2×2=4cm,∠AD=AC=4cm,∠BD=AD+AB=4+2=6(cm).30.【解答】解:(1)∠AB=8,C是AB的中点,∠AC=BC=4,∠D是BC的中点,∠CD=12BC=2,∠AD=AC+CD=6;(2)∠BC=4,CE=14BC,∠CE=14×4=1,当E在C的左边时,AE=AC﹣CE=4﹣1=3;当E在C的右边时,AE=AC+CE=4+1=5.∠AE的长为3或5.31.【解答】解:(1)若∠COE=40°,∠∠COD=90°,∠∠EOD=90°﹣40°=50°,∠OE平分∠AOD,∠∠AOD=2∠EOD=100°,∠∠BOD=180°﹣100°=80°;(2)∠∠COE=α,∠∠EOD=90﹣α,∠OE平分∠AOD,∠∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∠∠BOD=180°﹣(180﹣2α)=2α;(3)如图2,∠BOD+2∠COE=360°,理由是:设∠BOD=β,则∠AOD=180°﹣β,∠OE平分∠AOD,∠∠EOD=12∠AOD=180°−β2=90°−12β,∠∠COD=90°,∠∠COE =90°+(90°−12β)=180°−12β, 即∠BOD +2∠COE =360°.故答案为:80°.32.【解答】解:(1)∠∠ABC =54°, ∠∠A ′BC =∠ABC =54°,∠∠A ′BD =180°﹣∠ABC ﹣∠A ′BC =180°﹣54°﹣54°=72°;(2)由(1)的结论可得∠DBD ′=72°, ∠∠2=12∠DBD ′=12×72°=36°,∠ABD ′=108°, ∠∠1=12∠ABD ′=12×108°=54°, ∠∠CBE =∠1+∠2=90°.。

七年级数学上册复习题

七年级数学上册复习题

七年级数学上册复习题 七年级数学上册复习题 数学是一门既有逻辑性又有创造性的学科,它的学习需要我们掌握一定的基础知识和解题方法。为了巩固和复习七年级数学上册的内容,我们可以进行一些练习题的训练。下面,我将从不同的知识点出发,为大家整理一些复习题。 一、整数的加减法 整数的加减法是七年级数学的基础内容之一。在进行加减法运算时,我们需要注意正数和负数的运算规则。例如,同号相加,异号相减。下面是一道练习题: 题目:计算:(-8)+ 5 -(-3)- 7 +(-4)。 解答:按照运算规则,我们可以将这道题转化为:-8 + 5 + 3 - 7 - 4。然后,我们可以按照顺序进行计算,得到答案为-11。 二、分数的加减法 分数的加减法是七年级数学的另一个重要内容。在进行分数的加减法运算时,我们需要找到分母的最小公倍数,并将分子进行相应的计算。下面是一道练习题: 题目:计算:2/3 + 1/4 - 1/6。 解答:首先,我们需要找到3、4和6的最小公倍数,即12。然后,将分子进行相应的计算:8/12 + 3/12 - 2/12。最后,将分子相加得到9/12,即3/4。 三、平方根的计算 平方根是七年级数学中的一个重要概念。在计算平方根时,我们需要找到一个数的平方等于给定的数。下面是一道练习题: 题目:求下列数的平方根:9、16、25。 解答:我们可以通过试探法来求解这道题。首先,我们可以尝试一些整数,找出平方等于给定数的整数。对于9来说,3的平方等于9;对于16来说,4的平方等于16;对于25来说,5的平方等于25。因此,这三个数的平方根分别为3、4和5。 四、代数式的化简 代数式的化简是七年级数学中的一个重要内容。在进行代数式的化简时,我们需要运用代数运算的法则和性质。下面是一道练习题: 题目:化简代数式:3x + 2y - (2x - y)。 解答:首先,我们需要将括号内的代数式按照运算规则进行计算,得到:3x + 2y - 2x + y。然后,我们可以将同类项合并,得到:x + 3y。 五、图形的面积和周长 图形的面积和周长是七年级数学中的一个重要知识点。在计算图形的面积和周长时,我们需要根据不同的图形选择相应的公式和计算方法。下面是一道练习题: 题目:计算矩形的面积和周长,已知矩形的长为5cm,宽为3cm。 解答:矩形的面积可以通过长乘以宽来计算,即5cm × 3cm = 15cm²。矩形的周长可以通过将长和宽相加再乘以2来计算,即(5cm + 3cm)× 2 = 16cm。 通过以上的练习题,我们可以巩固和复习七年级数学上册的内容。希望大家能够通过不断的练习和思考,提高自己的数学能力,取得更好的成绩。数学的学习需要坚持和耐心,相信只要我们努力,就一定能够取得进步!

人教版七年级上册数学 期末复习试题:数轴类运动类问题综合

人教版七年级上册数学   期末复习试题:数轴类运动类问题综合

人教版七年级上册数学期末复习试题:数轴类运动类问题综合1.【定义新知】在数轴上,点M和点N分别表示数x1和x2,可以用绝对值表示点M、N两点间的距离d(M,N),即d(M,N)=|x1﹣x2|.【初步应用】(1)在数轴上,点A、B、C分别表示数﹣1、2、x,解答下列问题:①d(A,B)=;②若d(A,C)=2,则x的值为;③若d(A,C)+d(B,C)=d(A,B),且x为整数,则x的取值有个.【综合应用】(2)在数轴上,点D、E、F分别表示数﹣2、4、6.动点P沿数轴从点D开始运动,到达F点后立刻返回,再回到D点时停止运动.在此过程中,点P的运动速度始终保持每秒2个单位长度.设点P的运动时间为t秒.①当t=时,d(D,P)=3;②在整个运动过程中,请用含t的代数式表示d(E,P).2.如图,A,B两点在数轴上表示的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相遇?相遇的点表示的数是多少?3.在数轴上点A表示﹣3,点B表示4.(1)点A与点B之间的距离是;(2)我们知道,在数轴上|a|表示数a所对应的点到原点的距离,你能说明|﹣3+5|在数轴上表示的意义吗?(3)在数轴上点P表示的数为x,是否存在这样的点P,使2PA+PB=12?若存在,请求出相应的x;若不存在,请说明理由.4.【背景知识】数轴上A、B两点表示的数分别为a,b,则A、B两点之间的距离AB=|a﹣b|,线段AB 的中点M表示的数为.【问题情境】已知数轴上有A、B两点,点A、B表示的数分别为﹣20和40,点A以每秒2个单位长度的速度沿数轴向右匀速运动,点B以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒(t >0).(1)运动开始前,A、B两点之间的距离为,线段AB的中点M所表示的数为;(2)它们按上述方式运动,A、B两点经过多少秒会相遇?相遇点所表示的数是多少?(3)当t为多少秒时,线段AB的中点M表示的数为8?【情境拓展】已知数轴上有A、B两点,点A、B表示的数分别为﹣20和40,若在点A,B之间有一点C,点C所表示的数为5,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左匀速运动,同时,点B和点C分别以每秒5个单位长度和2个单位长度的速度向右运动.(4)请问:BC﹣AC的值是否随着运动时间t的变化而改变?若变化,请说明理由;若不变,请求其值.5.甲、乙、丙三个小球分别位于数轴上三个点A、B、C处,点A、B、C对应的数分别是a、b、c,且满足a是绝对值最小的正整数,点B在原点的左侧且到原点的距离是5,点C在点A的右侧,且到点B的距离是到点A距离的4倍.三个球在数轴上同时开始运动,甲球向左运动,运动速度为每秒2个单位长度,乙、丙两球向右运动,运动速度分别为每秒4个单位长度和1个单位长度.(1)a=,b=,c=.(2)小球甲碰到乙后按原来的速度立刻返回,乙球仍按原速原方向继续前行.①小球甲在何时何地遇到小球乙?②当小球乙追上丙时停止运动,此时甲球的位置在哪里?(3)在(2)的条件下,整个运动过程中何时三个球中的一个球到另外两个球的距离相等?(直接写出结果)6.(直接填答案,不写推演过程)观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB=|a﹣b|.根据以上信息回答下列问题:已知多项式2x4y2﹣3x2y﹣x﹣4的次数是b,3a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B表示数b.设点M在数轴上对应的数为m.(1)A,B两点之间的距离是.(2)若满足AM=BM,则m=.(3)若A,M两点之间的距离为3,则B,M两点之间的距离是.(4)若满足AM+BM=12,则m=.(5)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了2019次时,则点M所对应的数m=.7.如图,琪琪把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.8.已知a是最大的负整数,b=﹣|﹣5|,c是﹣4的相反数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C;(2)在数轴上,若D到A的距离刚好是3,则D点叫做A的“幸福点”.则A的幸福点D所表示的数应该是;(3)若动点P从点B出发沿数轴向正方向运动,动点Q同时从点A出发也沿数轴向正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(4)在数轴上,若M到A、C的距离之和为6,则M叫做A、C的“幸福中心”.请直接写出所有点M在数轴上对应的数.9.在数轴上,点M、N表示的数分别为a、b,我们把a、b之差的绝对值叫做点M、N之间的距离,即MN =|a﹣b|.已知数轴上三点A、O、B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A、点B的距离相等,那么x=;(2)当x是多少时,点P到点A、点B的距离之和是6;(3)若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动,点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动几秒时,点P到点E、点F的距离相等.10.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律.例如:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.请利用以上结论解决下列问题.(1)如图1,数轴上点A表示的数为﹣2,点B表示的数为10,则A、B两点间的距离AB=,线段AB的中点表示的数为;(2)数轴上另有一动点P从点A出发,以每秒4个单位长度的速度沿数轴向右匀速运动,点Q是线段BP 的中点.设运动时间为t秒:①当t=2时,求此时点Q表示的数;②如图2,点P运动至B点右侧,M是线段AQ的中点,若B恰好是QM的中点,求t的值.。

人教版七年级上册数学期末复习:角的计算综合 练习题汇编(含答案)

人教版七年级上册数学期末复习:角的计算综合 练习题汇编(含答案)

人教版七年级上册数学期末复习:角的计算综合练习题汇编1.如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.(1)当∠BOC=140°时,求∠AOM的度数;(2)当∠AOC=30°,∠BOD=60°时,求∠MON的度数;(3)当∠COD=x度时,则∠MON=度.(请直接写出答案)2.如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线,∠EOC=65°,∠DOC=25°,求∠AOB的度数.3.如图,已知射线OC在∠AOB内,OM和ON分别平分∠AOC和∠BOC.(1)若∠AOC=50°,∠BOC=30°,求∠MON的度数.(2)探究∠MON与∠AOB的数量关系.4.如图,已知A、O、B三点在一条直线上,OC平分∠AOD,∠AOC+∠EOB=90°.(1)求∠COE的度数;(2)判断∠DOE和∠EOB之间有怎样的关系,并说明理由.5.填空,完成下列说理过程.如图,点A、O、B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC因为OE是∠BOC的平分线,所以∠COE=所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°(2)由(1)可知∠DOE=90°因为∠COD=65°所以=∠COD=65°则:∠AOE=∠AOD+ =°6.如图,O为直线AB上一点,∠BOE=80°,直线CD经过点O.。

苏科版七年级上册数学期末复习:一元一次方程实际应用 专项练习题 2套(含答案)

苏科版七年级上册数学期末复习:一元一次方程实际应用 专项练习题 2套(含答案)

苏科版七年级上册数学期末复习:一元一次方程实际应用专项练习题11.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5 B.2或10 C.2.5或3 D.32.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.3.超市正在热销某种商品,其标价为每件100元,若这种商品打7折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.100×0.7﹣x=15 B.100﹣x×0.7=15C.(100﹣x)×0.7=15 D.100﹣x=15×0.74.某电商销售某款羽绒服,标价为300元,若按标价的八折销售,仍可获利60元.设这款羽绒服的进价为x元,根据题意可列方程为()A.300×0.8﹣x=60 B.300﹣0.8x=60C.300×0.2﹣x=60 D.300﹣0.2x=605.我国古代有一问题:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果设快马x天可追上慢马,下面所列方程中正确的是()A.240x=150(x+12)B.150x=240(x+12)C.240x=150(x﹣12)D.150x=240(x﹣12)6.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②7.一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作.但是中途乙因事离开几天,从开工后40天把这件工程做完.则乙中途离开了多少天.()A.10 B.25 C.30 D.358.某人驾驶一小船航行在甲,乙码头之间,顺水航行需6h,逆水航行比顺水航行多用2h,若水流的速度是每小时2km,那么船在静水中的平均速度为每小时多少千米()A.14 B.15 C.16 D.179.学校把一些图书分给某班学生阅读,如果每人分4本,则剩余30本;如果每人分5本,则还缺15本.设这个班有学生x人,依据题意可列方程为()A.4x﹣30=5x+15 B.4x+30=5x﹣15C.4x﹣30=5x﹣15 D.4x+30=5x+1510.为进一步深化课堂教学改革,武侯区初中数学开展了分享学习课堂之“生讲生学”活动,某中学决定购买甲、乙两种礼品共30件,用于表彰在活动中表现优秀的学生.已知某商店甲乙两种礼品的标价分别为25元和15元,购买时恰逢该商店全场9折优惠活动,买完礼品共花费495元,问购买甲、乙礼品各多少件?设购买甲礼品x件,根据题意,可列方程为()A.25x+15(30﹣x)=495 B.[25x+15(30﹣x)]×0.9=495 C.[25x+15(30﹣x)]×9=495 D.[25x+15(30﹣x)]÷0.9=495 11.甲、乙两地相距180km,一列慢车以40km/h的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h的速度也从甲地匀速驶往乙地,两车相继到达终点乙地,在此过程中,两车恰好相距10km的次数是()A.1 B.2 C.3 D.412.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x13.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A.200s B.205s C.210s D.215s14.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母正好配套,设有x名工人生产螺钉,其他工人生产螺母,则根据题意可列方程为()A.2000x=1200(22﹣x)B.2×1200x=2000(22﹣x)C.2×2000x=1200(22﹣x)D.1200x=2000(22﹣x)15.一项工程,甲队单独做需10天完成,乙队单独做需8天完成,甲乙两队的工作效率的最简整数比是()A.5:4 B.10:8 C.4:5 D.8:1016.随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.15017.中国总理李克强2020年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%18.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x元,则可列方程为()A.x+x+1964=x B.x+x+1964=xC.x+x+1964=x D.x+x+1964=3x19.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250 元C.270元D.300 元20.某球队参加了10场足球赛,共积17分,已知胜一场得3分,平一场得1分,负一场得0分,其中该队输了3场,则该队胜的场次为()A.4 B.5 C.6 D.7参考答案1.解:依题意,得:110t+90t=550﹣50或110t+90t=550+50,解得:t=2.5或t=3.故选:C.2.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.3.解:设该商品每件的进价为x元,依题意,得:100×0.7﹣x=15.故选:A.4.解:设这款羽绒服的进价为x元,依题意,得:300×0.8﹣x=60.故选:A.5.解:设快马x天可追上慢马,则慢马跑了(x+12)天,依题意,得:240x=150(x+12).故选:A.6.解:①设两人开始工作x小时后还有20个零件没有加工,依题意,得:4x+6x+20=60,∴①可以用方程4x+6x+20=60来表述;②设经过x小时后两人相遇后又相距20km,依题意,得:4x+6x﹣20=60,∴②不可以用方程4x+6x+20=60来表述;③设乙出发后x小时两人相遇,依题意,得:4x+20+6x=80,∴③方程4x+6x+20=60来表述;④设经过x小时后两人相距60km,依题意,得:4x+6x+20=60,∴④可以用方程4x+6x+20=60来表述.故选:B.7.解:设乙中途离开了x天,×40+(40﹣x)=1,解得,x=25即乙中途离开了25天,故选:B.8.解:设船在静水中的速度为x千米每小时,根据题意得:6(x+2)=(6+2)(x﹣2),解得:x=14,故选:A.9.解:设这个班有学生x人,由题意得:4x+30=5x﹣15,故选:B.10.解:设购买甲礼品x件,则购买乙种礼品(30﹣x)件,由题意,得[25x+15(30﹣x)]×0.9=495.故选:B.11.解:∵10÷40=(h),∴快车未出发,慢车出发小时时,两车相距10km;设快车出发x小时时,两车相距10km.快车未超过慢车时,40(x+)﹣10=60x,解得:x=;快车超过慢车10km时,40(x+)+10=60x,解得:x=;快车到达乙地后,40(x+)=180﹣10,解得:x=.∴两车恰好相距10km的次数是4.故选:D.12.解:设x人生产镜片,由题意得,90x=2×60(28﹣x).故选:C.13.解:设从排尾到排头需要t1秒,从排头到排尾需要t2秒,根据题意,得(4﹣2)t1=300,(4+2)t2=300,解得t1=150,t2=50,t1+t2=150+50=200(秒).答:此人往返一趟共需200秒,故选:A.14.解:∵有x名工人生产螺钉,∴有(22﹣x)名工人生产螺母.∵每天生产螺母的总数是生产螺钉总数的2倍,∴2×1200x=2000(22﹣x).故选:B.15.解:根据工作量=工作效率×工作时间,可得工作量一定时,工作效率和工作时间成反比,所以甲队和乙队的工作效率的比是甲乙的工时间的反比;因此甲队和乙队的工作效率的最简整数比是8:10=4:5.答:甲乙两队的工作效率的最简整数比是4:5.故选:C.16.解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.17.解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.18.解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.19.解:设该商品的原售价为x元,根据题意得:75%x+25=90%x﹣20,解得:x=300,则该商品的原售价为300元.故选:D.20.解:设该队胜了x场,由题意得:3x+(10﹣3﹣x)=17解得:x=5;故选:B.苏科版七年级上册数学期末复习:一元一次方程实际应用专项练习题2 1.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×3402.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.53.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款()A.288元B.332元C.288元或316元D.332元或363元4.一列匀速前进的火车,从它进入600米的隧道到离开,共需30秒,又知在隧道顶部的一固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是()A.100米B.120米C.150米D.200米5.在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是()A.1.6秒B.4.32秒C.5.76秒D.345.6秒6.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元7.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里8.某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.89.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm211.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套.设用x张铝片制瓶身,则下面所列方程正确的是()A.2×16x=45(100﹣x)B.16x=45(100﹣x)C.16x=2×45(100﹣x)D.16x=45(50﹣x)12.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是()A.8 B.7 C.6 D.513.小明买书需用34元钱,付款时恰好用了1元和5元的纸币共10张,设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+10(x﹣50)=34 B.x+5(10﹣x)=34C.x+5(x﹣10)=34 D.5x+(10﹣x)=3414.如图,在长为a厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于()A.厘米B.厘米C.厘米D.厘米15.某种商品因换季准备打折出售,若按定价的七五折出售将赔25元,若按定价的九折出售将赚20元,则这种商品的定价为()A.280元B.300元C.320元D.200元16.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.17.某个体户在一次买卖中同时卖出两件上衣,售价都是225元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他()A.赚30元B.赚15元C.亏30元D.不赚不亏18.小明在新亚百货大楼以8折(即标价的80%)的优惠价买了一双沃特牌运动鞋,节省了45元,那么小明买鞋子时应付给营业员()A.150元B.180元C.200元D.225元19.一船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm,则下列方程正确的是()A.(20+4)x+(20﹣4)x=15 B.20x+4x=5C.D.20.在矩形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若AE=x(cm),依题意可得方程()A.6+2x=14﹣3x B.6+2x=x+(14﹣3x)C.14﹣3x=6 D.6+2x=14﹣x参考答案1.解:设汽车离山谷x米,则汽车离山谷距离的2倍即2x,因为汽车的速度是72千米/时即20米/秒,则汽车前进的距离为:4×20米/秒,声音传播的距离为:4×340米/秒,根据等量关系列方程得:2x+4×20=4×340,故选:A.2.解:(1)当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50,解得t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.故选:A.3.解:(1)若第二次购物超过100元,但不超过300元,设此时所购物品价值为x元,则90%x=252,解得x=280两次所购物价值为80+280=360>300所以享受8折优惠,因此王波应付360×80%=288(元).(2)若第二次购物超过300元,设此时购物价值为y元,则80%y=252,解得y=315 两次所购物价值为80+315=395,因此王波应付395×80%=316(元)故选:C.4.解:设这火车的长为x米,则=,x=120.因此选择B.5.解:设需要的时间为x秒,110千米/小时=米/秒,100千米/小时=米/秒,根据轿车走的路程等于超越卡车的路程加上两车的车身长,得出:解得:x=5.76故选:C.6.解:设小慧同学不买卡直接购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.7.解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.8.解:根据题意得:200×﹣80=80×50%,解得:x=6.故选:B.9.解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.10.解:设围成的长方形的宽为x,则长为2x,根据题意得:2(x+2x)=12,解得:x=2,∴2x=4,∴围成长方形的面积为2×4=8(cm2).故选:C.11.解:设用x张制瓶身,则用(100﹣x)张制瓶底才能正好制成整套的饮料瓶,根据题意列方程得,2×16x=45(100﹣x),故选:A.12.解:(方法一)设甲计划完成此项工作的天数为x,根据题意得:x﹣(1+)=3,解得:x=7.(方法二)设甲计划完成此项工作的天数为x,依题意,得:+=1,解得:x=7,经检验,x=7是所列分式方程的解,且符合题意.故选:B.13.解:设所用的1元纸币为x张,根据题意得:x+5(10﹣x)=34,故选:B.14.解:由题意可得,5x+2×4=a,解得,x=,故选:A.15.解:设这种商品的定价为x元,由题意,得0.75x+25=0.9x﹣20,解得:x=300.故选:B.16.解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有+1只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴+1+1=x﹣1,即x+1=2(x﹣3)故选:C.17.解:设两件上衣的进价分别为a元,b元,根据题意得:(1+25%)a=225,(1﹣25%)b=225,解得:a=180,b=300,∴这次买卖中盈利的钱为225﹣180+225﹣300=﹣30(元),则这次买卖中他亏了30元.18.解:设运动鞋原价x元,由题意得:x﹣80%x=45,解得:x=225,225﹣45=180(元),故选:B.19.解:若设甲、乙两码头的距离为xkm,由题意得:+=5,故选:D.20.解:设AE为xcm,则AM为(14﹣3x)cm,根据题意得出:∵AN=MW,∴AN+6=x+MR,即6+2x=x+(14﹣3x)故选:B.。

人教版七年级上册数学复习练习卷:整式的加减之去括号(附答案)

人教版七年级上册数学复习练习卷:整式的加减之去括号(附答案)

七年级上册数学人教版整式的加减之去括号一、选择题1.李老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A. 6a+bB. 6aC. 3aD. 10a-b2.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S),则S1-S2的值为()2A. 5B. 4C. 3D. 23.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+2xy)-(2x2+4xy)=-x2□,此空格的地方被钢笔水弄污了,那么空格中的一项是()A. -2xyB. 6xyC. -6xyD. 2xy4.一种商品每件进价为a元,按进价增加40%定出售价,后因库存积压降价,按售价的八折出售,每件还盈利()A. 0.15a元B. 0.12a元C. 1.25a元D. 0.32a元,n=−1时,代数式3mn-2m2+(2m2-2mn)-(3mn-n2)的值是()5.当m=32A. 3B. 4C. 5D. 66.已知A=2a2-3a,B=2a2-a-1,当a=-4时,A-B等于()A. 8B. 9C. -9D. -77.已知a+b=5,ab=4,则代数式(3ab+5a+8b)+(3a-4ab)的值为()A. 36B. 40C. 44D. 468.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A. 3x2yB. -3x2y+xy2C. -3x2y+3xy2D. 3x2y-xy29.已知多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,试求2a3-[a2-2(a+1)+a]-2的值()A. 2B. 0C. -2D. -410.多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -411.有理数a、b在数轴上的位置如图所示,则化简|a-b|+|a+b|的结果为()A. -2aB. 2aC. 2bD. -2b二、填空题12.三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树___________棵.13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米.问小明家楼梯的竖直高度(即:BC的长度)为___________米.14.某便民超市原有蒙牛牛奶(5a2+8a)箱,上午卖出(7a-5)箱,中午休息时又购进同样的牛奶(a2-a)箱,中午过后卖出牛奶(6a2-a).则超市下午满仓时有该种牛奶___________箱(用含有a的式子表示).15.如果代数式(3x2+mx-2y+4)-(3nx2-2x+6y-3)的值与字母x的取值无关,代数式m+n的值为___________.16.a 、b 在数轴上的位置如图所示,化简:|a +b |-2|b -a |=___________.17、当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--18、已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.三、解答题19、已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.20、计算下式的值:其中114x ,y ,==-甲同学把14x =错抄成14x =-,但他计算的结果也是正确的,你能说明其中的原因吗?)4()2()242(33432242234y y x x y y x x y x y x x -+-++----答案解析1.【答案】B【解析】根据题意,长方形周长=2[(2a+b)+(a-b)]=2(2a+b+a-b)=2×3a=6a.2.【答案】A【解析】设空白部分的面积是S,因为两个正方形的面积分别为9,4,所以S1=9-S,S2=4-S,所以S1-S2=(9-S)-(4-S)=9-S-4+S=5.3.【答案】A【解析】左边=x2+2xy-2x2-4xy=-x2-2xy.4.【答案】B【解析】因为每件进价为a元,按进价增加40%定出售价,所以每件的售价为(1+40%)a元,所以按售价的八折出售时的价格是(1+40%)a×80%,所以每件盈利=(1+40%)a×80%-a=1.12a-a=0.12a(元).5.【答案】B【解析】3mn-2m2+(2m2-2mn)-(3mn-n2)=3mn-2m2+2m2-2mn-3mn+n2=-2mn+n2=-2×3×(-1)+(-1)22=4.6.【答案】B【解析】A-B=2a2-3a-(2a2-a-1)=2a2-3a-2a2+a+1=-2a+1,把a=-4代入原式,得-2a+1=-2×(-4)+1=9.7.【答案】A【解析】因为a+b=5,ab=4,所以原式=3ab+5a+8b+3a-4ab=8(a+b)-ab=40-4=36.8.【答案】B【解析】因为(a+1)2+|b-2|=0,所以a+1=0,b-2=0,即a=-1,b=2,则原式=-(x2y+xy2)-2(x2y-xy2)=-x2y-xy2-2x2y+2xy2=-3x2y+xy2.9.【答案】D【解析】(2ax2+3x-1)-(3x-2x2-3)=2ax2+3x-1-3x+2x2+3=2ax2+2x2+2=(2a+2)x2+2,多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,得2a+2=0.解得a=-1,2a3-[a2-2(a+1)+a]-2=2a3-(a2-2a-2+a)-2=2a3-a2+a,当a=-1时,原式=-2-1-1=-4.10.【答案】C【解析】因为多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3相加后不含x的二次项,所以-8x2+2mx2=(2m-8)x2,所以2m-8=0,解得m=4.11.【答案】A【解析】根据数轴上点的位置得a<-1<0<b<1,所以a-b<0,a+b<0,则原式=b-a-a-b=-2a.12.【答案】4x+6【解析】依题意得:第二队种的树的棵数为2x+8,(2x+8)-6=x-2,第三队种的树的棵数为12所以三队共种树x+(2x+8)+(x-2)=(4x+6)棵.13.【答案】a-2b【解析】(3a-b)-(2a+b)=3a-b-2a-b=(a-2b)米.故小明家楼梯的竖直高度(即:BC的长度)为(a-2b)米.14.【答案】a+5【解析】由题意得(5a2+8a)-(7a-5)+(a2-a)-(6a2-a)=5a2+8a-7a+5+a2-a-6a2+a=a+5.15.【答案】-1【解析】原式=3x 2+mx -2y +4-3nx 2+2x -6y +3=(3-3n )x 2+(m +2)x -8y +7,由结果与x 取值无关,得到3-3n =0,m +2=0, 解得m =-2,n =1,则m +n =-2+1=-1.16.【答案】-3a +b【解析】通过数轴可以得出结论:a >0,b <0,且|a |<|b |,则原式=-(a +b )-2(a -b )=-a -b -2a +2b=-3a +b .17、【答案与解析】(1)把()p q -当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q -+-----=--+--=---- 又 211p q -=-=所以,原式=22222()()111333p q p q ----=-⨯-=- (2)先合并同类项,再代入求值.解:2283569p q q p -+-- 2(86)(35)9p q =-+-+-2229p q =+-当p =2,q =1时,原式=22229222191p q +-=⨯+⨯-=.18、【解析】解: 222222111338(3)38(3)38333x kxy y xy x kxy xy y x k xy y ----=+----=+---- 因为不含xy 项,所以此项的系数应为0,即有:1303k --=,解得:19k =-. ∴19k =-.19.【解析】解:∵222263,31,45 1.A x x B x x C x x ⎧=+-⎪=--+⎨⎪=--⎩ ∴ 222263,3393,2810 2.A x x B x x C x x ⎧=+-⎪⎪-=+-⎨⎪=--⎪⎩∴2321358A B C x x -+=+- 当32x =-时,32A B C -+33915117303213()5()81388132242444=⨯-+⨯--=⨯--=--=. 20. 【解析】解:∵化简结果与x 无关∴将x 抄错不影响最终结果.43224223433432242234333(242)(2)(4)242242y x x y x y x x y y x x y y x x y x y x x y y x x y y ----++-+-----+-- =+- = 。

人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。

人教版七年级数学上册复习训练题(含答案)

人教版七年级数学上册复习训练题(复习范围:七上全部内容)一.选择题1.若|x|=3,则()A.x=3B.x=﹣3C.x=±3D.x=92.下列代数式中,不是整式的是()A.﹣3x2B.C.D.﹣2005 3.用四舍五入法把4.7973精确到百分位得到的近似数是()A.4.79B.4.70C.4.8D.4.804.已知某物体的质量约为24400000万亿吨,用科学记数法表示为()千克.A.0.244×108B.2.44×107C.0.244×1020D.2.44×1019 5.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为()A.120°B.60°C.30°D.150°6.下列说法正确的个数是()①一个数的绝对值的相反数一定是负数②正数和零的绝对值都等于它本身③只有负数的绝对值是它的相反数④互为相反数的两个数的绝对值一定相等⑤任何一个有理数一定不大于它的绝对值⑥任何数的偶数次幂都是正数A.5个B.4个C.3个D.2个7.下列说法中,正确的是()A.单项式3πxy的系数是3B.单项式5×103x2的次数为5C.多项式3x﹣2x2y+8xy是三次三项式D.多项式x2+y2﹣1的常数项是1 8.下列计算正确的是()A.3a+a=3a2 B.2a+3b=5ab C.3a﹣a=3 D.﹣3ab+2ab=﹣ab 9.方程2x+a=4的解是x=﹣2,则a=()A.﹣8B.0C.2D.810.下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.x﹣1=x+3变形得4x﹣6=3x+3 C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.3x=2变形得x=11.钟表上12时15分时,时针和分针的夹角是()A.120°B.90°C.82.5°D.60°12.延长线段AB到C,使BC=AB,若AC=15,点D为线段AC的中点,则BD的长为()A.4.5B.3.5C.2.5D.1.513.已知a、b互为相反数,c、d互为倒数,则代数式2020(a+b)﹣cd的值为()A.2020B.2019C.﹣1D.014.若a﹣3b﹣2=0,则代数式2a﹣6b+1的值为()A.5B.﹣3C.4D.﹣415.方程去分母得()A.2﹣2(2x﹣4)=﹣(x﹣7)B.12﹣2(2x﹣4)=﹣x﹣7C.12﹣2(2x﹣4)=x﹣7D.12﹣4x﹣8=﹣(x﹣7)16.若x=﹣1,则x+x2+x3+x4+…+x2020的值为()A.0B.1C.﹣1D.202017.如图所示的是一个正方体的平面展开图,若将平面展开图折叠成正方体后,相对面上的两个数字之和均为7,期x+y+z的值为()A.7B.8C.9D.1018.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,可列方程为()A.8x﹣3=7x+4B.8x+3=7x+4C.8x﹣3=7x﹣4D.8x+3=7x﹣419.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角.若∠1=25°,那么∠AOB的度数是()A.65°B.25°C.90°D.115°20.在数轴上,表示数x的点的位置如图所示,则化简|x+1|﹣|x﹣2|结果为()A.3B.﹣3C.2x﹣1D.1﹣2x二.填空题21.如果一个棱柱共有15条棱,那么它一定是棱柱.22.如果电梯上升3层记作+3层,那么﹣6层表示.23.﹣的相反数是,倒数是.24.有理数5.692精确到百分位的近似数为.25.多项式3x2y﹣7x4y2﹣xy3+26是次项式,最高次项的系数是.26.48°39′的余角是.27.已知5x m+2+3=1是关于x的一元一次方程,则m=.28.已知5x2y|m|﹣(m﹣2)y+3是四次三项式,则m=.29.已知C是线段AB中点,若AB=5cm,则BC=cm.30.如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有对.31.如果数轴上点A表示3,将点A向左移动6个单位长度;再向右移动4个单位长度,那么终点表示的数是.32.若单项式2x2y m与﹣x n y3是同类项,则m+n=.33.若a、b为整数,且|a﹣2|+(b+3)2020=1,则b a=.34.代数式与互为相反数,则x的值为.35.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.36.班长给本班同学分笔记本,如果每人分3本还差3本,如果每人分2本又多2本.若设本班同学共有x个,则可建立方程为.37.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.38.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,AD=AC,DE=AB,若AB=24cm,则线段CE的长为.39.已知|x|=4,|y|=6,且xy<0,x+y>0,则x﹣y=.40.对于任意有理数a,b,c,d,我们规定=ad﹣bc,如=1×4﹣2×3.若=﹣2,则可列方程为.三.解答题41.计算:(1)(﹣4)﹣(+3)+(﹣5);(2)﹣81÷(﹣2)×÷(﹣16);(3)6﹣3.3﹣(﹣6)﹣(﹣3)+3.3;(4)(﹣24)×(+﹣0.75).42.先化简,再求值:(1)2(2x﹣3y)﹣(3x+2y+3),其中x=2,y=﹣;(2)4x﹣2(x﹣3)﹣3[x﹣3(4﹣2x)+8],其中x=2.43.解下列方程:(1)﹣2=x+1;(2)5(x﹣5)﹣2(x﹣12)=2;(3)﹣=1;(4)(3x+7)=2﹣x.44.如图,O为直线DA上一点,∠AOB=130°,OE为∠AOB的平分线,∠COB=90°,求∠AOC和∠EOC的度数.45.北大登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,﹣35,﹣40,+210,﹣32,+20,﹣18,﹣5,+20,+85,﹣25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.05升,则他们共耗氧多少升?46.如图所示,已知线段AB=4cm,BC=3cm,M,N分别是AB和BC上两点.(1)求线段AC的长.(2)若M为AC中点,BN=BC,求线段MN的长.47.已知∠α=76°42',∠β=41°41'.求:(1)∠β的余角;(2)∠α与∠β的2倍的和.48.为庆祝元旦,学校准备举行七年级合唱比赛,现由各班班长统一购买服装,服装每套60元,服装制造商给出的优惠方案是:30套以上的团购有两种优惠方案可选择,方案一:全部服装可打8折;方案二:若打9折,有5套可免费.(1)七年(1)班有46人,该选择哪个方案更划算?(2)七年(2)班班长思考一会儿,说:“我们班无论选择哪种方案,要付的钱是一样的.”你知道七年(2)班有多少人吗?49.已知,如图1,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若MOC=28°,求∠BON的度数;(2)若将三角形MON绕点O旋转到如图2所示的位置,若∠BON=100°,则∠MOC的度数为;(3)若将三角形MON绕点O旋转到如图3所示的位置,试写出∠BON和∠MOC之间的数量关系,并说明理由.50.如图,数轴上有三个点A、B、C表示的数分别是﹣4,﹣2,3.(1)①点B和点C之间的距离是个单位长度;②若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位长度.(2)点A、B、C开始在数轴上运动,若点A以每秒a个长度单位的速度向左运动,同时,点B以每秒2个单位长度的速度向左运动,点C以每秒5个单位长度的速度向右运动,设运动时间为t秒.①点A、B表示的数分别是、(用含有a、t的代数式表示);②若点B、C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,2d1﹣3d2的值不会随着时间的变化而改变,并求此时2d1﹣3d2的值.参考答案一.选择题1.解:∵|x|=3,∴x=±3,故选:C.2.解:A、﹣3x2是整式,不合题意;B、是整式,不合题意;C、不是整式,符合题意;D、﹣2005是整式,不合题意;故选:C.3.解:4.7973精确到百分位得到的近似数是4.80.故选:D.4.解:24400000万亿吨=24400000000000000000千克=2.44×1019千克.故选:D.5.解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故选:D.6.解:①一个数的绝对值的相反数不一定是负数,如0,不符合题意;②正数和零的绝对值都等于它本身,符合题意;③0和负数的绝对值是它的相反数,不符合题意;④互为相反数的两个数的绝对值一定相等,符合题意;⑤任何一个有理数一定不大于它的绝对值,符合题意;⑥0的偶数次幂是0,不符合题意.故选:C.7.解:A.单项式3πxy的系数是3π,故本选项不符合题意;B.单项式5×103x2的次数是2,故本选项不符合题意;C.多项式3x﹣2x2y+8xy是三次三项式,故本选项符合题意;D.多项式x2+y2﹣1的常数项是﹣1,故本选项不符合题意;故选:C.8.解:A、3a+a=4a,故本选项不合题意;B、2a与3b不是同类项,所以不能合并,故本选项不合题意;C、3a﹣a=2a,故本选项不合题意;D、﹣3ab+2ab=﹣ab,故本选项符合题意;故选:D.9.解:把x=﹣2代入方程得:﹣4+a=4,解得:a=8,故选:D.10.解:A、4x﹣5=3x+2变形得4x﹣3x=2+5,故本选项不符合题意.B、x﹣1=x+3变形得4x﹣6=3x+18,故本选项不符合题意.C、3(x﹣1)=2(x+3)变形得3x﹣3=2x+6,故本选项不符合题意.D、3x=2变形得x=,故本选项符合题意.故选:D.11.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上12时15分钟时,时针与分针的夹角可以看成时针转过12时0.5°×15=7.5°,分针在数字3上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴12时15分钟时分针与时针的夹角90°﹣7.5°=82.5°.故选:C.12.解:设CB=x,则AB=4x,∴AC=AB+BC=x+4x=5x,∵AC=15,∴x=3,∴AB=12,∵D是AC的中点,∴AD=AC=×15=7.5,∴BD=AB﹣AD=12﹣7.5=4.5.故选:A.13.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴2020(a+b)﹣cd=2020×0﹣1=0﹣1=﹣1.故选:C.14.解:∵a﹣3b﹣2=0,∴a﹣3b=2,则2a﹣6b+1=2(a﹣3b)+1=2×2+1=5,故选:A.15.解:方程去分母得:12﹣2(2x﹣4)=x﹣7.故选:C.16.解;因为x=﹣1,所以x2=1,x3=﹣1,x4=1…,即x+x2=0,x3+x4=0…,则x+x2+x3+x4+…+x2020=0+0+…0=0.故选:A.17.解:根据正方体展开图的“相间、Z端是对面”的特征可知,“﹣2”与“y”相对,“3”与“z”相对,“x”与“10”相对,又∵相对面上的两个数字之和均为7,∴x=﹣3,y=9,z=4,∴x+y+z=﹣3+9+4=10,故选:D.18.解:由题意可得,设有x人,可列方程为:8x﹣3=7x+4.故选:A.19.解:∵点O在直线AE上,OC平分∠AOE,∴∠AOC=∠COE=90°,∵∠DOB是直角,∠1=25°,∴∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∵∠AOB+∠BOC=∠AOC=90°∴∠AOB=90°﹣∠BOC=90°﹣65°=25°.故选:B.20.解:由数轴可得:﹣1<x<0,则x+1>0,x﹣2<0,故|x+1|﹣|x﹣2|=x+1﹣[﹣(x﹣2)]=x+1+x﹣2=2x﹣1.故选:C.二.填空题21.解:15÷3=5,所以是五棱柱,故答案为:五.22.解:如果电梯上升3层记作+3层,那么﹣6层表示下降6层.故答案为:下降6层.23.解:﹣的相反数是;倒数是﹣.故答案为:,﹣.24.解:有理数5.692精确到百分位的近似数为5.69,故答案为:5.69.25.解:多项式3x2y﹣7x4y2﹣xy3+26是六次四项式,最高次项的系数是﹣7,故答案为:六,四,﹣7.26.解:48°39′的余角为:90°﹣48°39′=89°60′﹣48°39′=41°21′.故答案为:41°21′.27.解:由题意得:m+2=1,解得:m=﹣1,故答案:﹣1.28.解:∵5x2y|m|﹣(m﹣2)y+3是四次三项式,∴|m|=2且﹣(m﹣2)≠0,解得:k=﹣2,故答案为:﹣229.解:∵C是线段AB中点,AB=5cm,∴BC=AB=5=(cm),故答案为:.30.解:∵∠BOC=90°,∴∠AOC=∠BOC=90°,∴∠AOC与∠BOC互为补角;∵∠BOD+∠AOD=180°,∴∠AOD与∠BOD互为补角;∵∠COD=45°,∴∠BOD=45°,∴∠AOD与∠COD互为补角;∴图中互为补角的角共有3对,故答案为:3.31.解:根据题意得:3﹣6+4=1,则终点表示的数是2,故答案是:1.32.解:由同类项的定义可知m=3,n=2,则m+n=3+2=5.故答案为:5.33.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.∴+=0,解得x=.故答案为.35.解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.36.解:设这个班共有x名学生,根据题意,得:3x﹣3=2x+2故答案是:3x﹣3=2x+2.37.解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.38.解:∵AD=AC,而C是线段AB的中点,∴AC=AB,∴DC=AB=AB,又∵CE=DE﹣DC,∴CE=AB﹣AB=AB=×24=10.4(cm),故线段CE的长为10.4cm,故答案为:10.4cm.39.解:∵|x|=4,|y|=6,∴x=±4,y=±6,又∵xy<0,x+y>0,∴x=﹣4,y=6,∴x﹣y=﹣4﹣6=﹣10,故答案为:﹣10.40.解:∵=ad﹣bc,=﹣2,∴﹣4x﹣3×(﹣2)=﹣2.故答案为:﹣4x﹣3×(﹣2)=﹣2.三.解答题41.解:(1)(﹣4)﹣(+3)+(﹣5)=﹣4﹣3﹣5=﹣12;(2)﹣81÷(﹣2)×÷(﹣16)=﹣81×(﹣)××(﹣)=﹣1;(3)6﹣3.3﹣(﹣6)﹣(﹣3)+3.3=(6+3)+(﹣3.3+3.3)+6=10+0+6=16;(4)(﹣24)×(+﹣0.75)=(﹣24)×+(﹣24)×﹣(﹣24)×0.75=﹣33﹣56+18=﹣71.42.解:(1)原式=4x﹣6y﹣3x﹣2y﹣3=x﹣8y﹣3,当x=2,y=﹣时,原式=2+4﹣3=3;(2)原式=4x﹣2x+6﹣3x+36﹣18x﹣24=﹣19x+18,当x=2时,原式=﹣38+18=﹣20.43.解:(1)﹣2=x+1,去分母得:9x﹣24=4x+12,移项得:9x﹣4x=12+24,合并同类项得:5x=36,解得:x=7.2.(2)5(x﹣5)﹣2(x﹣12)=2,去括号得:5x﹣25﹣2x+24=2,移项得:5x﹣2x=2+25﹣24,合并同类项得:3x=3,解得:x=1.(3)﹣=1,去分母得:3(3x+5)﹣4(4x﹣2)=12去括号得:9x+15﹣16x+8=12,移项得:9x﹣16x=12﹣15﹣8,合并同类项得:﹣7x=﹣11,解得:x=.(4)(3x+7)=2﹣x,去分母得:4(3x+7)=28﹣21x,去括号得:12x+28=28﹣21x44.解:因为∠AOB=130°,OE是∠AOB的平分线,所以∠BOE=,因为∠COB=90°,所以∠COE=90°﹣65°=25°,所以∠AOC=∠AOE﹣∠COE=65°﹣25°=40°.45.解:(1)+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.05)=640×0.25=160(升).答:他们共耗氧气160升.46.解:(1)∵AB=4cm,BC=3cm,∴AC=AB+BC=7(cm);(2)∵AC=7cm,M为AC中点,∴CM=AC=7=(cm),∵BN=BC,∴BN=3=1(cm),∴CN=BC﹣BN=2(cm),∴MN=CM﹣CN=﹣2=(cm).47.解:(1)∵∠β=41°41',∴∠β的余角=90°﹣∠β=90°﹣41°41′=48°19′;(2)∵∠α=76°42',∠β=41°41',∴∠α+2∠β=76°42'+2×41°41′=76°42'+82°82′=158°124'=160°4'.方案一的花费为:60×46×0.8=2208(元),方案二的花费为:60×0.9×(46﹣5)=2214(元),∵2208<2214,∴七年(1)班有46人,该选择方案一更划算,即七年(1)班有46人,该选择方案一更划算;(2)设七年(2)班x人,60×0.8x=60×0.9×(x﹣5),解得x=45,答:七年(2)班有45人.49.解:(1)如图1,∵∠MOC=28°,∠MON=90°,∴∠NOC=90°﹣28°=62°,又∵OC平分∠AON,∴∠AOC=∠NOC=62°,∴∠BON=180°﹣2∠NOC=180°﹣62°×2=56°;(2)∵∠BON=100°,∴∠AON=80°,∴∠AOM=90°﹣∠AON=10°,∠AOC=40°,∴∠MOC=∠AOM+∠AOC=50°.故答案为:50°;(3)∠MOC和∠BON之间的数量关系不发生变化,如图2,∵OC平分∠AON,∴∠AOC=∠NOC,∵∠MON=90°,∴∠AOC=∠NOC=90°﹣∠MOC,∴∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC,即:∠BON=2∠MOC.50.解:(1)①点B和点C之间的距离是3﹣(﹣2)=5个单位长度.故答案为:5;②由数轴可知:B点、C点表示的数分别为:﹣2、3,因为AB=|﹣2﹣(﹣4)|=2,故答案是:1或9;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2﹣2t.故答案是:﹣4﹣at;﹣2﹣2t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=|(3+5t)﹣(﹣2﹣2t)|=|7t+5|,d2=|(﹣2﹣2t)﹣(﹣4﹣at)|=|at﹣2t+2|,∵t>0,∴d1=7t+5,当at﹣2t+2>0时,d2=at﹣2t+2,2d1﹣3d2=2(7t+5)﹣3(at﹣2t+2)=14t+10﹣3at+6t﹣6=(20﹣3a)t+4,∵2d1﹣3d2的值不会随着时间的变化而改变,∴20﹣3a=0,∴当a=时,2d1﹣3d2的值不会随着时间的变化而改变.当at﹣2t+2<0时,d2=﹣at+2t﹣2,2d1﹣3d2=2(7t+5)﹣3(﹣at+2t﹣2)=14t+10+3at﹣6t+6=(8+3a)t+16,∵a>0,∴8+3a≠0,∴2d1﹣3d2的值会随着时间的变化而改变.综上所述,当a=时,2d1﹣3d2的值不会随着时间的变化而改变.。

七年级上册数学专题复习

七年级上册数学专题复习――与线段有关的计算问题及用方程解决实际问题1、 如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若AC=9cm ,CB=6cm ,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC+CB=acm ,其它条件不变,你能猜想MN 的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C 在线段AB 的延长线上,且满足AC-BC=b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.2、已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AB=10cm ,当点C 、D 运动了2s ,求AC+MD 的值.(2)若点C 、D 运动时,总有MD=3AC ,直接填空:AM= AB .(3)在(2)的条件下,N 是直线AB 上一点,且AN-BN=MN ,求ABMN 的值.3、画线段AB=5厘米,延长AB 至C ,使AC=2AB ,反向延长AB 至E ,使AE=41CE ,再计算: (1)线段CE 的长;4、如图,已知数轴上A 、B 两点所表示的数分别为-2和8.(1)求线段AB 的长;(2)若P 为射线BA 上的一点(点P 不与A 、B 两点重合,M 为PA 的中点,N 为PB 的中点,当点P 在射线BA 上运动时;MN 的长度是否发生改变?若不变,请你画出图形,并求出线段MN 的长;若改变,请说明理由.(3)若有理数a 、b 、c 在数轴上的位置如图所示:且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c )2+2(d+2c )-5(d+2c )2-3(d+2c )的值.5、在直线L 上有A 、B 两点,线段AB=3厘米,点C 也在直线L 上,且线段AC :BC=1:2.求线段AC 、BC 的长.(要求解题时画出图形)6、在数轴上,点A 表示2.4,点B 表示-3.6,点C 表示-0.6.(1)求线段AB 的长;(2)点C 是不是线段AB 的中点为什么?(3)取线段BC 的中点D ,那么点D 表示什么数?7、如图1,已知数轴上有三点A 、B 、C ,AB=21AC ,点C 对应的数是200. (1)若BC=300,求点A 对应的数;(2)如图2,在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足MR=4RN (不考虑点R 与点Q 相遇之后的情形);(3)如图3,在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从是点D 运动到点A 的过程中, 23QC-AM 的值是否发生变化?若不变,求其值;若不变,请说明理由.8、如图,有一数轴原点为O ,点A 所对应的数是-121,点A 沿数轴匀速平移经过原点到达点B . (1)如果OA=OB ,那么点B 所对应的数是什么?(2)从点A 到达点B 所用时间是3秒,求该点的运动速度.(3)从点A 沿数轴匀速平移经过点K 到达点C ,所用时间是9秒,且KC=KA ,分别求点K 和点C 所对应的数.9、已知A 、B 两点在数轴上表示的数为a 和b ,M 、N 均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图所示,试化简:|a|-|b|+|a+b|+|a-b|.(2)如图,若|a|+|b|=8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且MN=2AB-15,a=-3,若点P 为数轴上一点,且PA=32AB ,试求点P 所对应的数为多少?10、已知线段AB =14cm,在线段AB 上有C 、D 、M 、N 四个点,且满足AC ;CD :DB =1:2:4,AM =21AC ,DN =41DB ,求MN 的长。

【名校习题】七年级数学上册单元复习巩固试题:第1章有理数(含答案)

人教新版七年级数学上第一章有理数单元练习卷含答案一.选择题(共8小题)1.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃2.若a+b<0,ab>0,那么这两个数()A.都是正数B.都是负数C.一正一负D.符号不能确定3.下列各对数中,互为相反数的是()A.﹣23与﹣32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.﹣与4.a表示有理数,则下列判断正确的是()A.﹣a表示负数B.a的相反数是﹣aC.a的倒数是D.﹣a的绝对值是a5.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|6.用四舍五入法按要求对1.06042取近似值,其中错误的是()A.1.1(精确到0.1)B.1.06(精确到0.01)C.1.061(精确到千分位)D.1.0604(精确到万分位)7.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10108.下列叙述中,不正确的是()A.0不是正数,也不是负数B.0是整数,也是有理数C.0不是负数,是有理数D.0不是有理数,是整数二.填空题(共8小题)9.在有理数﹣0.2,﹣3,0,3,﹣5,1中,非负整数有.10.﹣的相反数是,绝对值是,倒数是.11.在数轴上点P到原点的距离为5,点P表示的数是.12.已知:|x|=2,|y|=3,且x>y,则x+y的值是.13.﹣的倒数是.14.如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是.15.若a,b互为相反数,x,y互为倒数,p的绝对值为2,则(a+b)﹣3xy+p=.16.可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是.三.解答题(共6小题)17.12﹣(﹣18)+(﹣7)﹣15.18.计算:6÷(﹣3)×().19.计算:()×24.20.计算:6×﹣(﹣1)2+(﹣2)2+221.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.22.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值.参考答案一.选择题(共8小题)1.解:2﹣(﹣8)=2+8=10(℃).故选:A.2.解:∵ab>0,∴a、b同号,∵a+b<0,∴a、b都是负数,故选:B.3.解:A、1个﹣8,1个﹣9,不是互为相反数,故A错误;B、都等于﹣8,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、1个﹣,1个,不是互为相反数,故D错误.故选:C.4.解:A、﹣a可以表示负数,0,正数,故A选项说法错误;B、a的相反数是﹣a,故B选项说法正确;C、若a=0,则a没有倒数,故C选项说法错误;D、若a是负数时,﹣a的绝对值是﹣a,故D选项说法错误;故选:B.5.解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.6.解:1.06042≈1.1(精确到0.1);1.06042≈1.06(精确到0.01);1.06042≈1.060(精确到千分位);1.06042≈1.0604(精确到万分位).故选:C.7.解:44亿=4.4×109.故选:B.8.解:A.0不是正数,也不是负数,正确;B.0是整数,也是有理数,正确;C.0不是负数,是有理数,正确;D.0是有理数,是整数,此说法不正确;故选:D.二.填空题(共8小题)9.解:非负整数有0,1,故答案为:0,1.10.解:﹣(﹣)=,|﹣|=,﹣=﹣,故答案是:;;﹣.11.解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.12.解:∵|x|=2,|y|=3,∴x=±2,y=±3;∵x>y,∴x=±2,y=﹣3.当x=2,y=﹣3时,x+y=﹣1;当x=﹣2,y=﹣3时,x+y=﹣5.故x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.13.解:﹣的倒数是﹣2.故答案为:﹣2.14.解:由题意得:5x+3+(﹣2x+9)=0,解得:x=﹣4,∴x﹣2=﹣6.故填﹣6.15.解:根据题意得:a+b=0,xy=1,p=2或﹣2,则原式=0﹣3±2=﹣1或﹣5.故答案为:﹣1或﹣516.解:0.00092=9.2×10﹣4,故答案为:9.2×10﹣4.三.解答题(共6小题)17.解:原式=12+18﹣7﹣15=30﹣22=8.18.解:6÷(﹣3)×()=﹣2×()=3.19.解:原式=×24+×24﹣×24=3+16﹣18=19﹣18=1.20.解:6×﹣(﹣1)2+(﹣2)2+2=3﹣1+4+2=8.21.解:根据题意得:x=±3,y+1=±2,即y=1或﹣3,∵xy<0,∴x=3,y=﹣3;x=﹣3,y=1,则x+y=0或﹣2.22.解:(1)3;5;﹣5和1;(2)|a+4|+|a﹣2|表示在﹣4与2之间的数到﹣4和2的距离的和,值为6.故答案为:3;5;﹣5和1.人教版七年级数学(上)第一章有理数单元达标测试卷(有答案)一、选择题(每题3分,共30分)1.如果向东走7 km记作+7 km,那么-5 km表示()A.向北走5 km B.向南走5 km C.向西走5 km D.向东走5 km 2.在0,4,-3,-4这四个数中,最小的数是()A.0 B.4 C.-3 D.-43.在有理数|-1|,0,-122,(-1)2 019中,负数的个数为( )A .1B .2C .3D .44.某市去年共引进世界500强外资企业19家,累计引进外资410 000 000美元.410 000 000用科学记数法表示为( )A .41×107B .4.1×108C .4.1×109D .0.41×109 5.下列计算错误的是( )A .(-2)×(-3)=2×3=6B .-3-5=-3+(+5)=2C .4÷⎝ ⎛⎭⎪⎫-12=4×(-2)=-8 D .-(-32)=-(-9)=96.下列每对数中,不相等...的一对是( ) A .(-2)2 019和-22 019 B .(-2)2 020和22 020 C .(-2)2 020和-22 020 D .|-2|2 019和|2|2 0197.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或0 8.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高约为161 cm”中的数是准确数9.已知|m |=4,|n |=6,且|m +n |=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一根100 m 长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为( ) A.12 m B .1 m C .2 m D .4 m 二、填空题(每题3分,共24分)11.如果全班某次数学测试的平均成绩为90分,某位同学考了93分,记作+3分,那么得分86分应记作__________.12.-2 019的相反数是________,绝对值是________,倒数是________. 13.将数59 840精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-2,以点A 为圆心、1个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是____________.(第15题)16.如果|a +2|+(b -3)2=0,那么a b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.(第17题) (第18题)18.一个质点P 从距原点1个单位长度的点A 处向原点方向跳动,第一次跳动到OA 的中点A 1处,第二次从点A 1跳动到OA 1的中点A 2处,第三次从点A 2跳动到OA 2的中点A 3处,…如此不断跳动下去,则第五次跳动后,该质点到原点O 的距离为________;第n 次跳动后,该质点到原点O 的距离为________.三、解答题(19,24题每题12分,20题16分,21题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36;(4)-42÷(-2)3+(-1)2 020-49÷23.21.现规定一种新运算“*”:a *b =a b-2,例如:2*3=23-2=6.试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5 g,求该食品的抽样检测的合格率.23.某景区工作人员接到任务后,驾驶电瓶车从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该工作人员能否在电瓶车一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P ,Q 分别从A ,B 两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s 、4个单位长度/s ,它们运动的时间为t s.(1)如果点P ,Q 在点A ,B 之间相向运动,当它们相遇时,点P 表示的数是________; (2)如果点P ,Q 都向左运动,当点Q 追上点P 时,求点P 表示的数; (3)如果点P ,Q 在点A ,B人教版七年级数学(上)第一章有理数单元达标测试卷(有答案) 一、选择题(每题3分,共30分)1.如果向东走7 km 记作+7 km ,那么-5 km 表示( )A .向北走5 kmB .向南走5 kmC .向西走5 kmD .向东走5 km 2.在0,4,-3,-4这四个数中,最小的数是( )A .0B .4C .-3D .-43.在有理数|-1|,0,-122,(-1)2 019中,负数的个数为( )A .1B .2C .3D .44.某市去年共引进世界500强外资企业19家,累计引进外资410 000 000美元.410 000 000用科学记数法表示为( )A .41×107B .4.1×108C .4.1×109D .0.41×109 5.下列计算错误的是( )A .(-2)×(-3)=2×3=6B .-3-5=-3+(+5)=2C .4÷⎝ ⎛⎭⎪⎫-12=4×(-2)=-8 D .-(-32)=-(-9)=96.下列每对数中,不相等...的一对是( ) A .(-2)2 019和-22 019 B .(-2)2 020和22 020 C .(-2)2 020和-22 020 D .|-2|2 019和|2|2 0197.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或0 8.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高约为161 cm”中的数是准确数9.已知|m |=4,|n |=6,且|m +n |=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一根100 m 长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为( ) A.12 m B .1 m C .2 m D .4 m 二、填空题(每题3分,共24分)11.如果全班某次数学测试的平均成绩为90分,某位同学考了93分,记作+3分,那么得分86分应记作__________.12.-2 019的相反数是________,绝对值是________,倒数是________. 13.将数59 840精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-2,以点A 为圆心、1个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是____________.(第15题)16.如果|a +2|+(b -3)2=0,那么a b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.(第17题) (第18题)18.一个质点P 从距原点1个单位长度的点A 处向原点方向跳动,第一次跳动到OA 的中点A 1处,第二次从点A 1跳动到OA 1的中点A 2处,第三次从点A2跳动到OA2的中点A3处,…如此不断跳动下去,则第五次跳动后,该质点到原点O的距离为________;第n次跳动后,该质点到原点O的距离为________.三、解答题(19,24题每题12分,20题16分,21题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36;(4)-42÷(-2)3+(-1)2 020-49÷23.21.现规定一种新运算“*”:a *b =a b-2,例如:2*3=23-2=6.试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5 g,求该食品的抽样检测的合格率.23.某景区工作人员接到任务后,驾驶电瓶车从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该工作人员能否在电瓶车一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P表示的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P表示的数;(3)如果点P,Q在点A,B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档