柱锥台球的表面积PPT课件

合集下载

柱体、锥体、台体的表面积与体积 课件

柱体、锥体、台体的表面积与体积 课件

故B1F= 82-22=2 15, 所以S梯形BB1C1C=12×(8+4)×2 15=12 15, 故四棱台的侧面积S侧=4×12 15=48 15, 所以S表=48 15+4×4+8×8=80+48 15.]
[规律方法] 空间几何体表面积的求法技巧 (1)多面体的表面积是各个面的面积之和. (2)组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展 开为平面图形计算,而表面积是侧面积与底面圆的面积之和.
柱体、棱体、台体的表面积与侧面积
(1)已知圆柱的上、下底面的中心分别为 O1,O2,过直线 O1O2 的
平面截该圆柱所得的截面是面积为 8 的正方形,则该圆柱的表面积为( )
A.12 2π
B.12π
C.8 2π
D.10π
(2)已知某圆锥的底面半径为 8,高为 6,则该圆锥的表面积为________.
S 圆柱侧=2πrl
r′=r ←――――
S
圆台侧=π(r′+r)l
r′=0 ――――→
S 圆锥侧=πrl.
(2)柱体、锥体、台体的体积公式之间有什么关系? [提示] 柱体、锥体、台体的体积公式之间的关系: V=Sh←S′――=――S V=13(S′+ S′S+S)h―S′――=―→0 V=13Sh.
(3)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8 的等腰梯形,则该四棱台的表面积为________cm2.
(1)B (2)144π (3)80+48 15 [(1)因为过直线O1O2的平面截该圆柱所得 的截面是面积为8的正方形,所以圆柱的高为2 2 ,底面圆的直径为2 2 ,所 以该圆柱的表面积为2×π×( 2)2+2π× 2×2 2=12π.

《圆柱、圆锥、圆台的表面积》课件

《圆柱、圆锥、圆台的表面积》课件
1.看图回答问题
h2
l2
r' 1
l2
r 1
r 1
r2
S圆柱侧 __ S圆锥侧 __S圆台侧 __
S圆柱表 __S圆 锥表 __ S圆台表 __
20
2.一个圆柱形锅炉的底面半径为 1m ,侧面展开
图为正方形,则它的表面积
为_________ .
3.以直角边长为1的等腰直角 三角形的一直角边为轴旋转, 所得旋转体的表面积为
S柱侧 2 rl
S锥侧 rl S台侧 (rl rl)
三者之间关系
圆柱、圆锥、圆台三者的表面积公式之间有 什么关系?
r O
r’=r
l 上底扩大
O
r 'O ’ l r’=0
rO
上底缩小
l rO
S柱 2r(r l) S台 (r2 r 2 rl rl ) S锥 r(r l)
做一做
圆台侧面积公式
S侧 (r ' r) l
小结:柱体、锥体、台体的表面积
圆柱S 2r(r l)
圆柱、圆锥、 圆台
r r 圆台S (r2 r2 rl rl)
r 0
圆锥 S r(r l)
棱柱、棱锥、 棱台
展开图
各面面积之和
所用的数学思想: 空间问题“平面”化
1 .课本习题1.3 A组1,2;
2 .探究性作业:斜四棱柱的侧面展 开图及表面积
北京奥运会场馆图
相信自己:一定行!!
复习回顾
矩形面积公式:S ab
三角形面积公式:S 1 ah
圆面积公式: S r2 2
圆周长公式: C 2 r
扇形面积公式:S 1 rl 2
梯形面积公式:S 1 (a b)h 2

高中数学 1.1.6棱柱、棱锥、棱台和球的表面积课件 新人教B版必修2

高中数学 1.1.6棱柱、棱锥、棱台和球的表面积课件 新人教B版必修2

那么这个圆锥筒的高是多少?
2
6.一个正三棱台的两个底面的边长分别等于8cm和
18cm,侧棱长等于13cm,求它的侧面积. 468cm2
精选ppt
17
小结:
1、弄清楚柱、锥、台的侧面展开图的形状是关键; 2、对应的侧面积公式
S三棱锥 =12 ch'
S圆锥=πrl
C’=0
S正 棱 = 台 1 2(c+c')h'
1.侧面都是直角三角形的正三棱锥,底
面边长为a,该三棱锥的全面积是( A )
(A) 3 3 a 2
4
(C) 3 3 a 2
2
(B) 3 a 2
4
(D) ( 3 3 ) a 2
24
精选ppt
12
2. 已知正六棱台的上、下底面边长分别 是2 和4,高是2,则这个棱台的侧面积等
于 18 7 。
精选ppt
C’=C
S直棱= 柱ch'ch
精选ppt S圆柱=2πrl
18
C A
B1
棱柱两底面的距离叫做棱柱 的高.
B
精选ppt
3
把直(正)三棱柱侧面沿一条侧棱展开,得到 什么图形?侧面积怎么求?
h
cb
a
h
a
h
bc
S直棱 = 柱 a ( 侧 bc)hch
精选ppt
4
棱锥、棱台
正棱锥:底面是正多边形,顶点在底面的射
影是底面中心的棱锥.
正棱台:正棱锥被平行于底面的平面所截,截
A
因此,四面体S-ABC的表面积为
B
DC
S4 3a2 3a2 4
精选ppt
14
练:一个正三棱台的上、下底面边长分

圆柱、圆锥、圆台、球的表面积和体积 课件-高一数学人教A版(2019)必修第二册

圆柱、圆锥、圆台、球的表面积和体积 课件-高一数学人教A版(2019)必修第二册

二、圆柱、圆锥、圆台的体积
例2 (1)(多选)圆柱的侧面展开图是长12 cm,宽8 cm的矩形,则这个
圆柱的体积可能是
√288 A. π
cm3
√192 B. π
cm3
C.288π cm3
D.192π cm3
解析 当圆柱的高为 8 cm 时,V=π×122π2×8=2π88(cm3), 当圆柱的高为 12 cm 时,V=π×28π2×12=1π92(cm3).
V柱 Sh
V柱
1 3
Sh
1 V台 3 (S
SS' S' )h
复习 棱柱、棱锥、棱台的表面积:
围成它们的各个面的面积的和,即侧面积+底面积
我们知道了多面体的表面积,那你认为旋转体——圆柱、圆锥、圆 台、球的表面积又是怎样的呢?
圆柱、圆锥、圆台的表面积是围成它们的各个面的面积和,即 侧面积+底面积
变式2 (1)设圆台的高为3,如图,在轴截面中母线AA1与底面直径AB的夹角为60°, 轴截面中的一条对角线垂直于腰,则圆台的体积为________.
解析 设上、下底面半径,母线长分别为r,R,l.
作A1D⊥AB于点D, 则A1D=3,∠A1AB=60°, 又∠BA1A=90°, ∴∠BA1D=60°,
1 3
Sn
R
1 3
R(Si
S2
S3
...
Sn
)
1 3
RS
因为 S 4πR2 所以球的体积为 V 4 R3
3
Si
hi
Vi
Si
R
O
Vi
2
PART TWO
题型探究
题型一 求圆柱、圆锥、圆台的表面积 【例1】 圆锥的高和底面半径相等,它的一个内接圆柱的高和圆柱底面半径也相等.

柱体椎体台体的表面积与体积优秀ppt课件

柱体椎体台体的表面积与体积优秀ppt课件

精品课件
11
圆锥的表面积
2r
l
rO
圆锥的侧面展开图是扇形
S 圆锥 表 r2 面 r l积 r(r l)
精品课件
12
圆台的表面积
参照圆柱和圆锥的侧面展开图,试想 象圆台的侧面展开图是什么?
精品课件
13
圆台的表面积
参照圆柱和圆锥的侧面展开图,试想 象圆台的侧面展开图是什么?
2r'
r' O'
2r
S球4 R2
S精球 品课件 3 2S圆柱全
34
理论迁移
如图,圆柱的底面直径与高都等于 球的直径,求证: (1)球的体积等于圆柱体积的 2 ;
3
(2)球的表面积等于圆柱的侧面积.
精品课件
35
练习二
课堂练习
1.若球的表面积变为原来的2倍,则半径变为原来的__2_倍.
2.若球半径变为原来的2倍,则表面积变为原来的__4_倍.
例2、如图,圆柱的底面直径与高都等于球的直径,求证: (1)球的表面积等于圆柱的侧面积. (2)球的表面积等于圆柱全面积的三分之二.
RO
证明: (1)设球的半径为R,
则圆柱的底面半径为R,高为2R.
得: S球4R2
S 圆 柱 2R 侧 2 R 4R 2
S球S圆柱侧
(2)
Q S圆柱全 4R 2 2R 2 6R 2
其中S为底面面积,h为棱柱的高。
精品课件
18
思考3:关于体积有如下几个原理:
(1)相同的几何体的体积相等;
(2)一个几何体的体积等于它的各部分 体积之和;
(3)等底面积等高的两个同类几何体的 体积相等;
(4)体积相等的两精个品课件几何体叫做等积1体9

柱锥台球表面积和体积获奖解析PPT课件

柱锥台球表面积和体积获奖解析PPT课件

S侧面积
=
1 2
c2(l+x)-
1 2
Cc1’Xx
=
1 2
c2 l +
1 2
c2x
-
1 2
c1x
=
1 2
+ 12(c2 - c1)X
S
又∵
c1 c2
=
X X+l

x
=
c1 l c2- c1
c1 c2
=
1 2
+
12(c2
-
c1)cc21-
l
c1
l
O 1 rr1 M
l
=
1 2
+
1 2
c1l
r R2
O2
N
例3.已知正四棱台上底面边长为4 cm,侧棱和下底面边
长都是8 cm,求它的侧面积.
[解] 法一:在 Rt△B1FB 中, B1F=h′, BF=12(8-4)=2,B1B=8, ∴B1F= 82-22=2 15, ∴h′=B1F=2 15. ∴S 正棱台侧=4×12×(4+8)×2 15 =48 15(cm2).
三.台体的表面积(一)
1
S侧正棱台= 2 (c+c’)·h’
a' h h'
a
台体的表面积(二)
如图,上底周长是 c’=2πr1、c=πr2,侧面母线长 是l
S侧面积 = (12 c 1+c2)l=∏(r 1+r2)l
S
c1 c2
O 1 rr1 M
l
l
r R2
O2
N
证明: 将圆台补成圆锥.作其侧面展开图,设SM=x
人教版高中数学必修二(B版)第一章 P25-32

柱、锥、台的表面积和体积ppt课件

柱、锥、台的表面积和体积ppt课件

手抄报:./shouchaobao/
P P T课件:./ke j ia n/
语文课件:./kejian/y uwen/ 数学课件:./kejian/shuxue/
英语课件:./kejian/y ingy u/ 美术课件:./kejian/meishu/
科学课件:./kejian/kexue/ 物理课件:./kejian/wuli/
栏目 导引
第八章 立体几何初步
棱长都是 1 的三棱锥的表面积为(
A.
P P T模板:./m oba n/
PPT素材:./sucai/
P P T背景:./be ij ing/
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/
资料下载:./ziliao/
8.3 简单几何体的表面积与体积 第1课时 柱、锥、台的表面积和体积
PPT教学课件
第八章 立体几何初步
考点
学习目标
了解柱体、锥体、台体的侧面展 柱、锥、台的
开图,掌握柱体、柱、锥、台的 表面积
体积
锥体、台体的 能利用柱体、锥体、台体的体积
表面积的求 公式求体积,理解柱体、锥体、

台体的体积之间的关系
则 V=13S′+ SS′+Sh.
栏目 导引
第八章 立体几何初步
2.圆柱、圆锥、圆台的侧面积公式之间的关系
P P T模板:./m oba n/
PPT素材:./sucai/
P P T背景:./be ij ing/
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/
P P T背景:./be ij ing/

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

例析
例2 如右图,圆柱的底面直径和高都等于球的直径, 求球与圆
柱的体积之比.
解:(1)设球的半径为R,则圆柱的底面半径
为R,高为2R.
4 3
因为 V球
R ,V 圆柱
R2 2R 2 R3
3
所以 V球 : V圆柱
2
3
问题:球的表面积与圆柱的侧面积之比呢?
R O
练习
题型一:圆柱、圆锥、圆台的表面积
例1.(1)已知圆柱的上、下底面的中心分别为1 ,2 ,过直线1 2 的平面截该圆

2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形. (
答案:√,×.
辨析2:若圆柱的底面半径为1,母线长为2,则它的侧面积为(
A.2
答案:D.
B.3
C.
D.4
).

新知探索
割 圆 术
早在公元三世纪,我国数学家刘徽为推
导圆的面积公式而发明了“倍边法割圆术”.
他用加倍的方式不断增加圆内接正多边形的
∴ = 5,∴ = × (2 + 6) × 5 + × 22 + × 62 = 40 + 4 + 36 = 80.
练习
题型二:圆柱、圆锥、圆台的体积
例2.(1)若一个圆柱与圆锥的高相等,且轴截面面积也相等,则圆柱与圆锥的体积
之比是(
).
A.1
B.1:2
C. 3:2
D.3:4
的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体
积为_____.
解:设上、下底面半径,母线长分别为,,.
作1 ⊥ 于点,则1 = 3,∠1 = 60°.
又∠1 = 90°,∴∠1 = 60°,∴ =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

展示题目
预习导学1 预习导学2 预习导学34
预检14 例1 例2 拓展
周末11 周末12
展示地点 展示人 点评人
前黑板
1组
前黑板
2组
6组
前黑板
3组
前黑板
4组
7组
后黑板 后黑板 后黑板
5组
6组 3组
7组
后黑板 后黑板
8组 自由 9组 点评
(1)点评方面:对错 、规范(布局、书写)、 思路分析(步骤、易错 点),总结规律方法( 用彩笔)。
• 3.激情投入,全力以赴,体会空间与平面 问题相互转化的思想。
合作探究
讨论重点:
• 1、直棱柱、棱锥、棱台、圆锥、圆台、圆柱侧面展开图形状 • 2、斜高与高的区别、如何求?
要求: (1)小组长控制好讨论节奏,先一对一分层讨论,再小组内集中讨论,解 决不了的问题组长记录好,写在疑问区。 (2)A层多拓展延伸,B层总结规律与方法,C层解决100%导学案疑难,力 争分层达标。 (3)针对各层讨论的结果,及时评价。
c’=0
上底缩小
S柱侧 ch '
S台侧

1 2
ห้องสมุดไป่ตู้
c
'
c
h
'
S锥侧

1 2
ch '
小结:
1、弄清楚柱、锥、台的侧面展开图的形状是关键; 2、对应的侧面积公式
S正棱锥=
1 2
ch'
S圆锥=πrl
C’=0
S正

台=
1(c+c' 2
)h'
C’=C S直 棱 柱=ch' ch
S圆柱=2πrl
已知棱长为a,各面均为等边三角形的四面体SABC,求它的表面积 .
S 4R2 3a 2
D A
D A11
D A
D A11
C B O
C1
B1
C B O
C1
B1
课堂小结
通过本堂课的学习 我学会了… …
我体会到… …
1 n(a a' )h' 1 (c c' )h'
2
2
a’
h’
a
h'
h'
棱柱、棱锥、棱台都是由多个平面图形围成的 几何体,它们的侧面展开图还是平面图形,计 算它们的表面积就是计算它的各个侧面面积和
底面面积之和. S表=S底+S侧
思考:
正棱柱、正棱锥和正棱台的侧面积的关系:
c’=c
上底扩大

拓展
如图,正方体ABCD-A1B1C1D1的棱长为a,它的各 个顶点都在球O的球面上,球O的表面积如何求?
分析:正方体内接于球,则由球和正方 体都是中心对称图形可知,它们中心重 合,则正方体对角线与球的直径相等。
略 解 :RtB1D1D中 :
(2R)2 a 2 ( 2a)2 , 得
R 3a 2
(2)其它同学认真倾 听、积极思考,重点内容 记好笔记。有不明白或 有补充的要大胆提出。
(3)力争全部达成目 标,A层(120%)多 拓展、质疑,B层( 100%)注重总结,C 层(95%)。
S直棱柱侧=ch.
直棱柱的侧面积等于它的底面周长和高的乘积。
h
h
c
r O
l
2 r
O
圆柱的侧面展开图是矩形
分析:四面体的展开图是由四个全等的正三角形
组成,因此只要求…...
S 解:先求SBC的面积,过点S作 SD BC
a
A
交BC于点D.
因为SB=a,SD SB sin 60 3 a 2
BD
C
所以:SABC

1 2
BC
SD

1 2
a
3a 2
3 a2 4
因此,四面体S-ABC 的表面积
S圆 柱 侧 S长 方 形=2rl
S 2 r2 2 rl 2 r(r l)
S正棱锥侧=
1 nah' 2

1 ch' 2
• 正棱锥的侧面积等于它的底面周长和斜高乘积的一半。
斜高
h’
a
a
圆锥的侧面展开图是扇形
2R
l
S圆锥侧 Rl
RO
S Rl R2
S正棱台侧=
柱锥台球的表面积
问题:能否计算出水立方外墙所用显示屏的面积? 提示:可以,即计算水立方的外表面面积(除去底面).
柱、锥、台、球的表面积
积极参与、快乐学习
学习目标
• 1. 理解柱、锥、台和球的表面积计算公 式 ,能够求简单几何体的表面积。
• 2.自主学习、合作交流,探究柱、锥、台 和球的表面积公式的推导方法。
相关文档
最新文档