DNA、RNA和蛋白质的生物合成
核酸和蛋白质的生物合成

(一)DNA聚合酶(DNA polymerases) 作用:以单链DNA为模板,以dNTP为原料, 合成完整DNA分子 催化合成DNA的四个条件 模板(template):解开的DNA单链 引物(primer):RNA片段 合成方向:新链5’ →3’方向 底物:dNTP(Mg2+为辅助因子)
细胞的生长、发育、遗传、变异等生命现象有了更深刻的认识,而且以这方面的理论和技
术为基础发展了基因工程,给人类的生产和生活带来了深刻的革命。
• DNA是自身复制的模
板
• DNA通过转录作用将
遗传信息传递给中间 物质RNA • RNA通过翻译作用将 遗传信息表达成蛋白 质
第二节 DNA的生物合成
以DNA聚合酶I为代表说明三个酶的特性
• DNA聚合酶I是一个模板指导酶
– 需要打开的DNA单链作为模板才能合成子链 – 底物必须是dNTP,并且只有当所有4种脱氧 核苷三磷酸以及DNA模板存在时,才能实现 DNA的合成
• DNA聚合酶Ⅰ 需要引物
– DNA聚合酶Ⅰ只能将脱氧核苷酸加于已存在的 DNA或RNA链的3’-羟基上,缺少则不能合成。即 需要一个有游离的3’-羟基作为“引物”才能合成 DNA子链 – 在有3‘-羟基引物存在时,脱氧核苷5’-三磷酸中α 磷原子与3’-羟基结合,形成磷酸二酯键,放出一 个焦磷酸(PPi)。焦磷酸水解驱动了聚合反应。 可见这是一个耗能反应,每合成一个核苷酸消耗2 分子ATP – 聚合反应是延着5’→3’方向进行
第十章 核酸和蛋白质的生物合成
第一节 中心法则 第二节 DNA的生物合成 第三节 RNA的生物合成 第四节 蛋白质的生物合成
第一节 中心法则
中心法则(central dogma)概念
RNA的生物合成和功能在蛋白质合成中的作用

RNA的生物合成和功能在蛋白质合成中的作用RNA(核糖核酸)是生物体内一类重要的核酸分子,它在细胞中起着多种功能。
其中,RNA的生物合成和功能在蛋白质合成中起到至关重要的作用。
本文将深入探讨RNA的生物合成和功能以及它们在蛋白质合成中的具体作用。
一、RNA的生物合成RNA的生物合成是指RNA的合成过程,也称为转录过程。
在细胞质内,RNA通过与DNA模板链发生碱基互补配对形成的碱基序列,由酶类通过一系列步骤逆转录合成。
RNA的合成过程主要包括三步:启动、延伸和终止。
首先是启动阶段,即RNA的合成初始阶段。
在这个阶段,RNA聚合酶从基因启动子处结合到DNA的双链上,形成一个闭合的结构。
这个过程需要多种转录因子的参与,转录因子能够识别和结合到基因启动子上。
接下来是延伸阶段,即RNA链的延伸过程。
在这个阶段,RNA聚合酶通过对DNA模板链的读取,沿着模板链逆向合成RNA链。
这个过程中,RNA聚合酶读取DNA模板上的碱基序列,并根据碱基互补规则选择正确的核苷酸,将其加入到RNA链中。
这样,RNA链会与DNA模板链互补,并最终形成完整的RNA分子。
最后是终止阶段,即RNA合成的结束阶段。
在这个阶段,RNA聚合酶读取到终止信号,停止合成RNA链,并与DNA分离。
随后,RNA链会经过一系列的后修饰过程,包括剪切、加帽和加尾,最终形成成熟的RNA分子。
二、RNA的功能RNA的功能主要包括信息传递、催化反应和调控基因表达等多个方面。
在这些功能中,RNA在蛋白质合成中起到了关键的作用。
1. 信息传递RNA在生物体内起着重要的信息传递功能。
在蛋白质合成中,RNA通过将DNA上的基因信息转录成RNA,然后再将RNA信息翻译成蛋白质。
这个过程中,RNA作为DNA和蛋白质之间的桥梁,发挥着信息传递的重要作用。
2. 催化反应某些RNA分子具有催化反应的能力,这类RNA被称为催化RNA或酶RNA(ribozyme)。
催化RNA可以在特定的条件下催化某些生物体内化学反应的进行。
DNARNA和蛋白质解释这些分子之间的关系

DNARNA和蛋白质解释这些分子之间的关系DNA(脱氧核糖核酸)和RNA(核糖核酸)以及蛋白质是生命活动中非常重要的分子。
它们在遗传信息的传递、蛋白质合成以及基因调控等方面扮演着不可或缺的角色。
在本文中,我们将探讨DNARNA 和蛋白质之间的关系。
一、DNA的作用DNA是一种巨大的分子,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)的排列组合而成。
DNA主要存在于细胞核中,它承载着遗传信息,决定了细胞的特征和功能。
DNA具有双螺旋结构,其中两条单链通过碱基间的氢键连接在一起。
DNA的重要作用之一是作为模板参与蛋白质的合成。
二、RNA的作用RNA和DNA在结构上有一些相似之处,都由核苷酸组成。
然而,RNA具有单链结构,而不像DNA那样具有双链结构。
RNA有多种类型,包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA (rRNA)等。
RNA在细胞中具有多种功能,其中最重要的是参与蛋白质的合成过程。
三、蛋白质的合成蛋白质是由氨基酸组成的。
氨基酸通过形成肽键而连接在一起,形成多肽链,最终折叠成特定的三维结构。
蛋白质合成是一个复杂的过程,涉及到DNA、RNA和各种酶的参与。
具体而言,DNA中的基因在转录过程中生成mRNA,mRNA携带着从DNA中复制的遗传信息,通过核糖体上的rRNA指导tRNA将特定的氨基酸带入多肽链的生长中。
四、DNARNA与蛋白质的关系DNARNA和蛋白质之间存在着密切的联系。
DNA是生物体内最重要的遗传物质,它保存着生物体的全部遗传信息。
而RNA作为DNA的复制品,在蛋白质合成过程中发挥着关键的作用。
DNA通过转录过程生成的mRNA携带着从DNA中获得的信息,它通过核糖体上的rRNA与tRNA相互配对,控制了氨基酸的选择和氨基酸的带入,进而实现蛋白质的合成。
此外,DNARNA还参与到基因调控的过程中。
一些特定的RNA分子,如微小RNA(miRNA)和小干扰RNA(siRNA),可以与mRNA 配对,从而影响mRNA的稳定性和翻译过程,进而影响蛋白质的表达水平。
简述蛋白质在核酸生物合成中的作用。

简述蛋白质在核酸生物合成中的作用。
蛋白质在核酸生物合成中发挥着至关重要的作用。
首先,许多蛋白质是核酸合成的直接参与者。
例如,DNA聚合酶是DNA复制过程中的关键酶,它负责将单个脱氧核苷酸添加到正在生长的DNA链上。
此外,RNA聚合酶是RNA转录过程中的关键酶,它负责催化RNA链的合成。
这些酶不仅加速了反应速度,还确保了核酸合成的准确性和保真度。
其次,蛋白质还参与核酸结构的形成和稳定性。
例如,组蛋白是染色质的重要组成部分,它与DNA紧密结合,维持其结构并影响基因的表达。
此外,蛋白质可以与核酸结合形成复合物,如核糖体和剪接体,这些复合物对于RNA的合成和加工是必不可少的。
此外,一些蛋白质可以调节核酸的合成。
它们作为转录因子或翻译因子,可以与核酸结合并改变其结构或功能。
例如,一些转录因子可以与特定的DNA序列结合,调控特定基因的表达。
最后,蛋白质还参与核酸的降解和修复。
例如,核酸外切酶可以识别并切除错误的核酸碱基,而DNA修复酶则可以修复DNA损伤。
综上所述,蛋白质在核酸生物合成中发挥着至关重要的作用,从合成、结构、调节到降解和修复,蛋白质都扮演着不可或缺的角色。
蛋白质合成过程四个步骤

蛋白质合成是生物体内一项非常重要的生物化学过程,也被称为蛋白质生物合成。
该过程包括转录和翻译两个主要阶段,涉及到DNA、RNA和蛋白质等多种生物分子的参与。
下面我将详细介绍蛋白质合成的四个步骤,以便更好地理解这一复杂而精密的生物学过程。
步骤一:转录(Transcription)转录是蛋白质合成的第一步,它发生在细胞核内。
在这一过程中,DNA的信息将被复制到一种名为mRNA(信使RNA)的分子上。
具体来说,转录的步骤包括:1. 启动子结合:转录过程开始于启动子,启动子是DNA上的一个特定区域,其特殊序列能够与RNA聚合酶结合,从而启动转录。
2. RNA聚合酶合成mRNA:一旦启动子与RNA聚合酶结合,RNA 聚合酶将会沿着DNA模板链合成mRNA,这一过程包括RNA的合成和剪切修饰等步骤。
3. 终止:当RNA聚合酶到达终止子时,转录过程将结束,mRNA 分子从DNA模板上分离出来。
步骤二:前期mRNA处理(Pre-mRNA Processing)在转录完成后,产生的mRNA并不是立即可以被翻译成蛋白质的成熟mRNA,还需要经过一系列的前期处理。
这些处理包括:1. 剪接(Splicing):mRNA中会存在一些被称为内含子的非编码序列,而真正编码蛋白质的序列被称为外显子。
剪接过程将内含子从mRNA中切除,将外显子连接起来,形成成熟的mRNA。
2. 5'端盖(5' Cap)的添加:在mRNA的5'端,会添加一种名为7-甲基鸟苷酸(m7G)的化合物,用于保护mRNA不受降解,同时有助于mRNA与核糖体的结合。
3. 3'端聚腺苷酸(Polyadenylation)的添加:在mRNA的3'端,会添加一系列腺苷酸,形成所谓的聚腺苷酸尾巴,同样用于保护mRNA不受降解。
步骤三:翻译(Translation)翻译是蛋白质合成的第二个主要步骤,它发生在细胞质中的核糖体内。
在翻译过程中,mRNA上携带的遗传密码将被翻译成氨基酸序列,从而合成特定的蛋白质。
蛋白生物合成途径

蛋白生物合成途径蛋白质是生命体内最重要的大分子,它们在细胞的结构和功能中起着关键作用。
蛋白质的合成是一个复杂的过程,涉及到多个生物化学途径和分子机制。
本文将介绍蛋白质生物合成的主要途径。
蛋白质生物合成的过程可以分为三个主要步骤:转录、转译和后转录修饰。
转录是指在细胞核中将DNA转录成RNA的过程。
在这个过程中,DNA的双链解开,其中的一个链作为模板合成mRNA,mRNA是一种将基因信息转移到细胞质中的分子。
转录的过程是由RNA聚合酶酶催化的,它能够将RNA的核苷酸单元与DNA的模板链上的互补碱基配对。
转录过程完成后,mRNA进入细胞质中的核糖体,开始转译过程。
转译是指将mRNA上的遗传信息转化为氨基酸序列的过程,从而合成蛋白质。
转译是由tRNA和核糖体共同参与的。
tRNA是一种能够与mRNA上的三个碱基序列互补配对的RNA分子,它携带着特定的氨基酸,通过与mRNA上的密码子配对,将氨基酸顺序添加到正在合成的蛋白质链上。
转译过程中,核糖体会识别mRNA上的起始密码子,并将第一个氨基酸添加到蛋白质链上。
然后,核糖体会依次识别mRNA上的密码子,通过与tRNA配对,将相应的氨基酸添加到蛋白质链上。
这个过程持续进行,直到遇到终止密码子,核糖体停止合成蛋白质,新合成的蛋白质被释放出来。
转译过程完成后,新合成的蛋白质还需要经过后转录修饰。
后转录修饰是指对蛋白质进行化学修饰或结构调整的过程,以使其获得特定的功能。
后转录修饰的方式多种多样,包括磷酸化、甲基化、酰化等。
这些修饰可以改变蛋白质的电荷性质,或者与其他分子相互作用,从而调节蛋白质的活性、稳定性或定位。
总结起来,蛋白质生物合成的途径包括转录、转译和后转录修饰。
转录是将DNA转录成mRNA的过程,转译是将mRNA上的遗传信息转化为氨基酸序列的过程,后转录修饰是对新合成的蛋白质进行化学修饰或结构调整的过程。
这些步骤在细胞中密切协调,共同完成蛋白质的合成。
蛋白质的合成过程是生命体的基础,对于理解细胞的结构和功能,以及研究疾病的发生机制具有重要的意义。
DNA、RNA和蛋白质合成

DNA复制(DNA生物合成)√2.什么叫DNA的半保留复制?有何证据?答:在复制过程中首先碱基间氢键需破裂并使双链解旋和愤慨,然后每条链可作为模板在其上合成新的互补链,结果由一条链可以形成互补的两条链。
这样新形成的两个DNA分子与原来的DNA分子的碱基顺序完全一样。
在此过程中,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种方式称为半保留复制。
证据:氮的同位素15N标记大肠杆菌DNA的实验以及Cairns用反射自显影的方法第一次观察到正在复制的大肠杆菌染色体DNA都证明DNA的半保留复制。
√9.原核生物DNA复制如何进行的,请阐述复制过程答:原核生物DNA复制可分为三个阶段:起始、延伸和终止。
复制的起始:复制的起点上四个9bp重复序列为DnaA蛋白的结合位点,大约20~40个DnaA蛋白各带一个ATP结合在此位点上,并聚集在一起,DNA缠绕其上,形成起始复合物。
HU蛋白可与DNA结合,促使双链DNA弯曲。
受其影响,邻近三个成串富含AT的13bp序列被变性,称为开链复合物,所需能量由ATP 供给。
Dna B六聚体随即在Dna C的帮助下结合于解链区。
Dna B借助水解ATP产生的能量,眼DNA链5’3’方向移动,解开DNA的双链,此时称为前引发复合物。
DNA双链的解开还需要DNA旋转酶和单链结合蛋白,前者可消除解旋酶产生的拓扑张力,后者保护单链并防止恢复双链。
至此即可由引物合成酶合成RNA 引物,并开始DNA复制。
复制的延伸:复制的延伸阶段同时进行前导链和滞后链的合成。
这两条链合成的基本反应相同,并且都由DNA聚合酶III所催化;但两条链的合成已有显著差别,前者持续合成,后者分段合成,因此参与的蛋白质因子也有不同。
亲代DNA首先必须由DNA解螺旋酶将双链解开,其产生的拓扑张力由拓扑异构酶释放。
分开的链被单链结合蛋白所稳定。
自此之后前导链与滞后链的合成便有所不同。
复制起点解开后形成两个复制叉,即可进行双向复制。
DNA复制及蛋白质合成过程

DNA复制及蛋白质合成过程DNA复制和蛋白质合成是生物体内两个重要的生物化学过程。
DNA复制是指DNA分子通过复制过程产生两个完全相同的复制体,而蛋白质合成则是指RNA分子通过翻译过程合成蛋白质。
这两个过程对于生物体维持遗传信息的稳定性和正常的生命活动都至关重要。
首先,我们来探讨DNA复制的过程。
DNA复制发生在细胞分裂的前期,确保每个新生细胞都具有与母细胞完全相同的遗传信息。
DNA复制是一个精确且有序的过程,它发生在细胞核内。
DNA复制的过程通常分为三个主要步骤:解旋、复制和连接。
首先,双链DNA中的两条链被酶分子解旋,并暴露出复制起点。
然后,在DNA链的起始位点上,RNA引物被合成并与DNA模板配对形成初级转录复合物。
然后,DNA聚合酶继续从RNA引物开始合成新的DNA链,这称为连续复制。
在另一条DNA链上,DNA聚合酶需要合成片段,然后由DNA 连接酶将片段连接在一起,这称为间断复制。
DNA复制的精确性得益于许多酶和蛋白质的协同作用。
DNA聚合酶是最重要的酶之一,它能将碱基按照互补配对的规则添加到新的DNA链上。
此外,蛋白质复制因子还起到辅助DNA聚合酶的作用,确保DNA复制的顺畅进行。
细胞还借助一种称为DNA修复酶的机制来修复复制过程中可能出现的错误。
接下来,让我们了解蛋白质合成的过程。
蛋白质合成发生在细胞质的核糖体内,是一种将RNA信息转化为蛋白质的过程,这个过程称为翻译。
翻译的过程可以分为三个主要步骤:起始、延伸和终止。
首先,RNA聚合酶将DNA信息转录为RNA分子,其中的信号序列指导RNA分子到达核糖体。
在核糖体上,起始复合物会将RNA分子与特定的起始tRNA结合起来。
然后,核糖体会将氨基酸根据RNA上的密码子进行配对,合成蛋白质的氨基酸序列,这称为延伸阶段。
最后,当核糖体达到RNA的终止密码子时,蛋白质合成停止。
蛋白质合成的过程中,多个辅助蛋白质和酶也参与其中。
例如,氨基酸连接酶将tRNA上的氨基酸与mRNA上的密码子配对,将氨基酸逐渐加到蛋白质链上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)进位
氨基酰-tRNA根据遗传密码的指引, 在GTP和EF-T的协助下,进入核蛋白体 的A位。
AUG 5'?
3'
fM 2
(二)成肽
转肽酶催化肽键的形成。
55'?'?
AA UU G
33''
fOMH 2 fM
氨酰基腺苷酸
tRNA
∣ ↓↘AMP
氨酰-tRNA合成酶具有绝对专 一性,对氨基酸、tRNA两种底物 都能高度特异性地识别。
氨酰-tRNA
2. 肽链合成的起始
mRNA上的起始密码子多为:AUG 少数为:GUG
原核细胞以fMet- tRNAf为起点; 真核细胞以Met- tRNA为起点
SD序列:细菌mRNA翻译起始密码AUG的上游8~13个核苷酸之前有4~9个核 苷酸 组成的富含嘌呤的序列。这一序列以AGGA为核心,称之为SD序列。该 序列与30s小亚基上16srRNA 3’-端富含嘧啶序列结合,稳固了mRNA与小亚 基的结合。因此又称为核蛋白体结合位点(ribosomal binding site,RBS)。
1. 核蛋白体是80S (40S + 60S) 2. 起始因子种类多 3. 起始tRNA的Met不需甲酰化 4. 帽子结合蛋白(CBP)促使mRNA与核蛋
白体小亚基结合 5. 起始tRNA先与核蛋白体小亚基结合,
然后再结合mRNA
3.肽链的延长
又称核蛋白体循环 (ribosomal cycle), 每次循环包括: 进位(entrance) 成肽(peptide bond formation) 移位(translocation)
13. 连接酶
14. 单链结合蛋白
15. 拓扑异构酶
16. DNA的复制
逆转录
1970年Temin等在致癌RNA病毒中发现了一种特殊的DNA聚 合酶,该酶以RNA为模板,根据碱基配对原则,按照RNA的 核苷酸顺序(其中U与A配对)合成DNA。这一过程与一般遗传 信息流转录的方向相反,故称为反转录。
4.肽链合成的终止
1. RF与终止密码辨认结合 2. 肽链与tRNA分离 3. tRNA、mRNA及RF从核蛋白体脱落
55''??
n n-1
UU AA AA
RRFF On H n-1
33'' 5'?
RR
3'
RF
OH
蛋白质合成后的靶向输运
蛋白质靶向运输( protein targeting):蛋白质合成后需定
复制的半不连续性
岗崎片段
随从链复制时必须等 待模板链解开足够长度时, 才能从5′→3′合成引物后 开始复制。延伸时,又要 等待下一段暴露出足够长 的模板,才能再次合成引 物而延长。
参与DNA复制的酶类和蛋白质
复制是酶催化下的核苷酸聚合过程,需要多种物质的共同参与:
底物: dNTP( dATP、dGTP、dCTP、dTTP) 酶:DNA聚合酶 模板:解开成单链的DNA母链 引物:RNA,提供 3’-OH末端 其它酶和蛋白质因子:解螺旋酶、单链结合蛋白、 拓扑异构酶、引物酶、DNA连接酶等
DNA、RNA和 蛋白质的生物合成
吴菲菲 2014.11.29
转录
复制 DNA 反转录
1958年Crick将生物 遗传信息的这种传递 方式称为中心法则
RNA 复制
蛋白质 翻译
复制—以原来的DNA分子为模板,合成出相同分 子的过程。
转录—在DNA分子上合成出与其核苷酸顺序相对 应的RNA的过程。
向地转运到其执行功能的目标地点。靶向输送是对分泌性蛋白 质而言。
分泌性蛋白质( secretory proteins ):穿过合成所在的
细胞到其它组织细胞去的蛋白质,可统称为分泌性蛋白质。例 如各种肽类激素、各种血浆蛋白、凝血因子、抗体等。
蛋白质生物合成的抑制剂
链霉素和卡那霉素 四环素
1.四环素能与原核
反转录酶是一种多功 能酶: RNA指导的DNA聚 合酶活力;
核糖核酸酶H的 活力:
DNA指导的DNA 聚合酶活力
RNA 模板 DNA-RNA 杂化双链 单链 DNA 双链 DNA
反转录的生物学意义
补充丰富了中心法则
解释了致癌病毒引起 癌细胞产生的机制
RNA的生物合成
转录
转录(transcription)——DNA分子中的遗传 信息转移到RNA分子中的过程。
蛋白质生物合成方向:由多肽链的氨基端开始, 向羧基端方向逐步延伸。
合成过程分为:
氨基酸的活化与转移——准备阶段 肽链合成的起始 肽链的延长 肽链的终止
1.氨基酸的活化与转移
氨酰-tRNA合成酶
tRNA携带并转运氨基酸,氨基
ቤተ መጻሕፍቲ ባይዱ
酸的结合位点是tRNA3’-末端的CCA-OH。氨基酸和tRNA在氨酰tRNA合成酶的催化下合成氨基酰tRNA。
半保留复制的实验证据
1958年M.Meselson和F.Stahl Radioisotope labelin(放 射性同位素标记)and density gradient(密度梯度 离心)centrifugation clearlydistinguishes replications of semiconservative from conservative.
以RNA为模板合成RNA ,由RNA复制酶催化,以RNA 为模板,四种核苷三磷酸为底物,也需要Mg2+或 Mn2+
蛋白质的生物合成
RNA在蛋白质生物合成中的作用
1.mRNA的功能
mRNA带有由DNA转录来的遗传信息,是蛋 白质合成的模板。
2.遗传密码(genetic codes)
遗传密码:指mRNA中碱基序列和蛋白质中 氨基酸序列之间的相互关系。
细胞核糖体上的30S
亚基结合,阻断氨
5'?
3'
酰tRNA结合到A位。
2.氯霉素能与原核
P 位 A位
细胞70S核糖体结合,
抑制肽基转移酶所 起的反应。
氯霉素
嘌呤霉素
3.链霉素、卡那霉素能与原核细胞核糖体上的30S亚基结合, 导致tRNA的反密码子错读。
4.嘌呤酶素能与核糖体的A位结合,妨碍氨酰tRNA结合到A位。
(三)转位
tRNA脱落的同时,核蛋白体向mRNA的 3´-端移动一个密码子的距离。由EF-G中的 转位酶催化,此步骤需1个GTP。
5'?
5A'?U G A U G
3' 3'
2OH 2
OH
fM fM
3
进位、成肽、转位重复进行,肽链则不
断延长。
在肽链延长过程中,除第一个肽键形成
时, P位上是fMet-tRNA外,以后P位上总是肽 酰-tRNA, A位总是新进位的氨基酰-tRNA,这 就是P位和A位名称的由来。P位是转出肽酰基, 又叫“给位”,A位是接受肽酰基,叫“受 位”。
三联密码(triplet code):三个相邻的核 苷酸代表一种氨基酸,该三核苷酸序列称 为密码子(codon)。
终止密码子
UAA、UGA、UAG
起始密码子
AUG、GUG
密码子的重要性质
密码子间无间隔 密码子不重叠; 密码子的简并性; 密码子的摆动性; 密码的通用性; 防错系统
甲酰甲硫氨酰-tRNA的合成
甲酰FH4
甲酰基转移酶
甲酰甲硫 氨酰tRNAf
原核生物起始复合物的生成 mRNA-30S-IF3-IF1复合物
↓ 30S起始复合物 (30S-mRNA-fMet-tRNAf-GTP-IF1-IF2)
↓ 70S起始复合物 (70S-mRNA-fMet-tRNAf )
真核生物翻译起始的特点
DNA 的 复 制 过 程
引
解
物
螺
酶
旋
酶
聚
修
拓
单
连
合
复
扑
链
接
酶
酶
异
结
酶
构
合
酶
蛋
白
1. 引物酶识别复制起点, 引导解螺旋酶到正确位点
2. 解螺旋酶解开双螺旋
3. DNA聚合酶合成新的DNA链
5. 四种脱氧核苷三磷酸为底物
4. 按碱基互补原理合成DNA链
6. 释放焦磷酸
7-12. DNA片段的合成和链的延伸
转录过程
不对称转录:在DNA的两条多核苷酸链中只有其中一 条链作为模板,这条链叫做模板链(template strand)。 DNA双链中另一条不做为模板的链叫做编 码链。
RNA的复制
在某些不含DNA,只含RNA的病毒和噬菌体中,其 RNA既是遗传信息载体,又是信使,在感染寄主时, 本身要复制。
遗传密码
2. tRNA的功能
tRNA起运输氨基酸的作用
反密码子(anticodon): tRNA识别mRNA上 的密码子的机构,可根据碱基配对规律识别相应 的密码子。
3.rRNA与核糖体
rRNA与多种蛋白质组成核糖体, 核糖体是蛋白质合成的加工厂。
蛋白质生物合成过程
蛋白质的合成需要近300种生物大分子参与,由 ATP、GTP提供能量。
翻译—在RNA的控制下,根据核酸链上每三个核 苷酸决定一个氨基酸的三联体密码规则,合成出 具有特定氨基酸顺序的蛋白质肽链的过程。
DNA的复制
DNA的复制方式—半保留复制
1953年,Watson和Crick在DNA双螺旋 结构的基础上提出了半保留复制假说:
DNA在复制过程中,首先碱基之间的氢 键破裂,使两条链解旋并分开,然后以 碱基互补的方式,以每条单链为 模板, 按单链DNA的核苷酸顺序合成子链。在 此过程中,每个子代分子的一条链来自 亲代DNA,另一条链是新合成的,这种 复制方式称为半保留复制。