悖论
悖论简单解释

悖论简单解释
悖论(佯谬,Paradox)是同一命题或推理中隐含着两
个对立的结论,而这两个结论都能自圆其说,其抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性,其都是因形式逻辑思维方式产生,形式逻辑思维方式发现、解释或解决不了的逻辑错误。
悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。
悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。
悖论
是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。
产生悖论的根本原因是把传统逻辑形式化、把形式逻辑普适性绝对化,即把形式逻辑当做思维方式。
所有悖论都是因形式逻辑思维方式产生,形式逻辑思维方式发现不了、解释不了、解决不了的逻辑错误。
所谓解悖,就是运用对称逻辑思维方式发现、纠正悖论中的逻辑错误。
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实
和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
悖论的通俗理解

悖论的通俗理解悖论是指一种逻辑上的矛盾或自相矛盾的陈述,其中逻辑结论会与前提或假设相矛盾。
悖论出现的原因是某些固有的逻辑矛盾或概念上的混淆。
它有时能够揭示人们在思维和语言上的偏见和隐含假设,因此在哲学、数学、物理等领域中有着重要的应用和意义。
在本文中,我将从多个方面对悖论进行通俗的解释和阐述。
1. 悖论的定义悖论是指那些声称自己正确的命题或陈述,但是当我们仔细分析它们的时候,却发现它们出现了矛盾或自相矛盾的情况。
这种矛盾通常是由于特定的逻辑结构或假设所导致的。
悖论在数学、逻辑、哲学、计算机科学等领域具有重要的地位。
2. 悖论的分类悖论可以分为形式上的和实质上的两类。
形式上的悖论是一种由陈述形式本身引起的矛盾,例如“这个陈述是假的”。
实质上的悖论是一种由陈述所涉及的实际事实或概念本身引起的矛盾,例如“所有的带有“不可描述”这一属性的事情必须被描述”。
3. 悖论的例子(1)拉塞尔悖论假设有一个集合,这个集合包括所有不包括自身的集合,那么这个集合是否包含自身?如果它包含自身,那么它不符合定义,因为它不包括自身。
如果不包含自身,那么它又符合定义,因为它不包括自身。
这就是拉塞尔悖论。
(2)无头骑士悖论有一个骑着马的骑士,他穿着铠甲,手持一把剑,头却没有。
我们问他:“你的名字是什么?”他回答:“我的名字是没有头的骑士。
”那么问题来了,没有头的骑士是谁?这将导致无头骑士的身份产生矛盾。
(3)巴贝尔塔悖论这个悖论涉及一个具有无限多个层数的建筑物。
第一层是由两个完整的建筑物组成,第二层是由四个完整的建筑物组成,以此类推。
每一层楼的建筑物数量是前一层楼的两倍。
问题是:如果这座建筑物有无限多层,那么它的总建筑物数量是多少?(4)艾伦悖论如果你尝试念出“我正在说谎”这句话,你会发现它是悖论的。
如果这句话是真的,那么你正在说谎,所以这句话是假的。
但如果这句话是假的,那么你正在说谎,所以这句话是真的。
这样循环往复的推理,最终产生了悖论。
悖论的定义

2023/4/3
5
悖论蕴涵真理,但常被人们描绘 为倒置的真理;
悖论富有魅力,既让您乐在其中, 又使您焦躁不安,欲罢不能;
数学历史中出现的悖论,为数学 的发展提供了契机。
2023/4/3
6
数学欣赏Biblioteka 定义:如果某种理论的公理及其
推理规则看上去是合理的,但在这个理论 中却推出了两个互相矛盾的命题,或者证 明了这样一个复合命题,它表现为两个矛 盾命题的等价式,我们称这个理论包含了 一个悖论。
悖论≠诡辩或谬论
诡辩、谬论可以通过已有的理论、逻 辑论述其错误的原因,是与现有理论相悖 的;而悖论虽感其不妥,但从它所在的理 论体系中,不能阐明其错误的原因,是与 现有理论相容的。
数学欣赏
“悖论”(英语:Paradox)的
字面意思是荒谬的理论,它是在一定理论 系统前提下看起来没有问题的矛盾。
什么是悖论?笼统地说,是指这样的推 理过程:它看上去是合理的,但结果却得 出了矛盾。
悖论在很多情况下表现为能得出不符合 排中律的矛盾命题:由它的真,可以推出 它为假;由它的假,则可以推出它为真。
悖论是什么意思

悖论是什么意思
悖论是一个汉语词语,拼音是bèi lùn,逻辑学和数学中的“矛盾命题”,表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。
即自相矛盾的命题。
如果认为它是真的,则它是假的;如果认为它是假的,则它是真的。
如说我现在说的是一句谎话。
”如果认为它是真的,那么它就是一句谎话,是假的;如果认为它是假的,那么它就不是一句谎话,是真的。
悖论长期被认为是一种无聊的诡辩,后来在严谨的数学理论中发现了悖论,才对悖论作了科学的研究,得出了有益的结果。
悖论名词解释

悖论名词解释
悖论是一种逻辑或语义上的矛盾,它在思维和推理中产生困惑或违背常理。
悖论常常涉及自指,即引用自身的情况。
悖论既有理论上的重要性,也有哲学和数学上的应用。
一个经典的悖论是“巴贝尔塔悖论”,它的名字来源于古代巴比伦的一座塔。
这个悖论表明,如果有一个能说出所有真实陈述的人,他会说一句谎话:“我现在所说的是一句谎话。
”这个陈述既不能是真的,也不能是假的,因为它会自相矛盾。
巴贝尔塔悖论揭示了自指陈述的复杂性和困扰性。
另一个著名的悖论是“罗素悖论”,由哲学家伯特兰·罗素提出。
这个悖论的核心是一个集合,它包含所有不包含自身的集合。
当我们询问这个集合是否包含自己时,就会陷入困境。
如果它包含自己,那么它不能包含自己;如果它不包含自己,那么它应该包含自己。
这个悖论挑战了集合论的基本原则,并引发了对数学基础的深入思考。
除了这些经典悖论,还有许多其他类型的悖论存在。
例如,“不可能悖论”表明在某些情况下,明显合理的目标是无法实现的。
而“无处可逃悖论”则暗示了在某些情况下,逃避困境的努力只会让事情变得更糟。
尽管悖论在逻辑和推理中引起了困惑,但它们对于理解语义和认知的限制非常重要。
悖论的存在提醒我们,理性思考常常面临局限和矛盾,需要不断反思和调整我们的观念。
解决悖论可能需要更高级的逻辑系统或哲学思考,帮助我们超越固有的局限。
总之,悖论是理性思考中的困境和矛盾。
它们挑战了我们的推理能力和思维方式。
通过研究悖论,我们可以更好地理解认知的局限性,并寻找超越悖论的解决方法。
悖论—搜狗百科

悖论—搜狗百科悖论与解悖悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。
悖论的抽象公式就是:如果事件A 发生,则推导出非A,非A发生则推导出A。
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。
产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。
所有悖论都是因形式逻辑思维方式产生,形式逻辑思维方式发现不了、解释不了、解决不了的逻辑错误。
所谓解悖,就是运用对称逻辑思维方式发现、纠正悖论中的逻辑错误。
[1][2][3][4][5][6][7]用对称逻辑解“说谎者悖论”用对称逻辑解“说谎者悖论”“说谎者悖论”即“我在说谎”这句话中所蕴含的悖论。
这个悖论表面上由“我在说谎”和“我说实话”这两个对立的“命题”组成,实际上这两个“命题”并不等价——前一个命题包含思维内容,后一个“命题”只是前一个命题的语言表达式,因此后一个“命题”不是严格意义上的命题。
长期以来人们之所以把其看成悖论,是由于把两个“命题”看成等价,即都是思维内容和语言表达式统一的命题。
只要把思维的两大层次:命题的思维内容和命题的语言表达式区别开来,“我在说谎”这个悖论即可化解。
[7]西元前6世纪,克利特哲学家埃庇米尼得斯(Epimenides)说了一句很有名的话:“所有克利特人都说谎。
”这句话有名是因为它是一个经典悖论,即“说谎者悖论”。
因为如果艾皮米尼地斯所言为真,那么克利特人就全都是说谎者,身为克利特人之一的埃庇米尼得斯自然也不例外,于是他所说的这句话应为谎言,但这跟先前假设此言为真相矛盾;又假设此言为假,那么也就是说所有克利特人都不说谎,自己也是克利特人的艾皮米尼地斯就不是在说谎,就是说这句话是真的,但如果这句话是真的,又会产生矛盾。
世界10个著名悖论

世界10个著名悖论1. 贝利森悖论(Bertrand's paradox):在概率论中,贝利森悖论指出,当从一个完美无缺的随机分布中选择一个数时,该数却不是随机的。
2. 博克斯悖论(Box paradox):在概率论和统计学中,博克斯悖论指出,对于一个随机抽样样本,大多数情况下,样本均值将会接近总体均值;然而,对于一个随机选择的样本,样本均值却未必接近总体均值。
3. 赫拉克利特悖论(Heraclitus paradox):赫拉克利特悖论指出,尽管我们在同一个河流中无法踏进两次,但我们却可以认为它是同一个河流。
4. 旅行者悖论(The Paradox of the Traveler):旅行者悖论指出,在一个时间旅行的场景中,如果一个人回到过去并阻止了某个事件的发生,那么他将无法回到未来,因此也就无法阻止该事件的发生。
5. 孟德尔悖论(Mendel's paradox):孟德尔悖论指出,在遗传学中,某些基因特征在自然选择中并未得到保留,尽管这些特征为个体带来了优势。
6. 斯巴达克斯悖论(Spartacus paradox):斯巴达克斯悖论指出,当一个群体中的每个成员都想要自由时,整个群体可能会陷入更大的束缚。
7. 罗素悖论(Russell's paradox):罗素悖论是一个关于集合论的悖论,指出一个集合不能包含自身,但同时也不能排除自身。
8. 艾舍尔悖论(Escher's paradox):艾舍尔悖论指出,一些艾舍尔的作品中出现的视觉效果在逻辑上是不可能的,例如无限迭代和不可能的构造。
9. 脑力劳动悖论(The Paradox of Work and Leisure):脑力劳动悖论指出,人们在追求更多的休闲和娱乐时间时,却发现自己更加忙碌和压力更大。
10. 尤金悖论(Eugene's Paradox):尤金悖论指出,当人们追求幸福时,往往反而会感到更加不满和不幸福。
十大经典悖论

十大经典悖论1. 赫拉克利特的悖论:你永远无法踏进同一条河流。
这个悖论源自古希腊哲学家赫拉克利特的一句名言:“你不能踏进同一条河流,因为它的水已经不是那条水,而你自己也不是那个人。
”这句话意味着一切事物都在不断变化,一切都是瞬息万变的,不存在恒定不变的东西。
因此,即使你站在同一个地点,望着同一条河流流过,也永远无法再次踏进同一条河流。
2. 色盲悖论:我们无法知道别人的颜色感知和我们自己的感知是否相同。
这个悖论源自于我们的视觉系统确是极其复杂和奇妙的,但人的眼睛只能看见有限的颜色,而有人可能看不见某些颜色或者已存在的颜色看得更加清晰。
因此,我们无法知道别人感知到的颜色和我们自己的感知是否相同,因为不同的颜色触发不同的神经反应。
3. 辛普森悖论:相反的结果,改变了数据的组合。
这个悖论源自数据分析的一个概念,它指的是当我们观察两组数据时,看似相反的趋势却可以被数据的不同组合方式所掩盖。
例如,拥有高学历的男性相对于拥有同样学历的女性而言获得更高的薪水,但是当我们将这两组数据组合时,我们发现女性比男性还要能够获得更高的薪水。
4. 俄狄浦斯悖论:我们的预测或努力可能会导致我们所想要避免的事情的发生。
这个悖论源自神话故事俄狄浦斯王的遭遇。
俄狄浦斯王通过占卜知道自己即将杀死自己的父亲并与母亲结婚,因此为了避免这样的命运,他离开了他的家乡。
然而,在他的旅途中,他无意中杀死了一个人,并不知道该人是他父亲。
最终,他成功地解决了由此引起的谋杀案并娶了继妻。
5. 费马最后定理的悖论:一个数学悖论,宣传广泛,引起了许多人的兴趣和探索。
费马最后定理的悖论是一个数学困惑,该定理声称:$x^n+y^n=z^n$在$n$为整数,$x$、$y$、$z$之间没有公因数的情况下不可能成立,其中$n$的值应该大于2。
在300多年的时间里,许多数学家都试图证明它,但是直到1994年,一位英国数学家安德鲁·怀尔斯终于找到了一个解。
6. 伯努利悖论:即使它不太可能发生,某些事件仍然有可能发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“悖论”(paradox)
“悖论”(paradox)一词常见诸报端,其字面意思为“荒谬的理论或自相矛盾的话”。
从逻辑上看,悖论性的语句具有这样的特征:如果假定这个语句为真,那么会推出这个语句为假;反之,如果假定这个语句为假,又会推出这个语句为真。
说它对也不是,不对也不是,真是左右为难。
语义学悖论举例
悖论古已有之。
一般认为,最早的悖论是古希腊的“说谎者悖论”。
《新约全书·提多书》是这样记述的:
克里特人中的一个本地先知说:“克里特人总是撒谎,乃是恶兽,又馋又懒。
”这个见证是真的。
这个克里特岛的“先知”是伊壁孟尼德(Epimenides)。
后来欧布里德(Eubulides)将他的话改进为:
我正在说谎。
这句话是真的,还是假的? 如果是句真话,由这句话的内容可知:说话者正在撒谎,既然是撒谎,那么说的是假话;反之,如果这句话是假的,说假话就是说谎,这句话的内容正是“我正在说谎”,因此这句话又是真的。
后来又发现了好几种“说谎者悖论”的变种,例如所谓“说谎者循环”:
A说:“下面是句谎话。
”
B说:“上面是句真话。
”
“说谎者悖论”和“说谎者循环”是与自然语言的表达方式密切相关的悖论,涉及真假、定义、名称、意义等语义方面的概念,这类悖论被称为“语义学悖论”。
语义学悖论的实例很多,“格列林
(K.Grelling)-纳尔逊(L.Nelson)悖论”就饶有趣味,它与形容词的应用有关:
将形容词分为两类,一类称为“自谓的”,即可对于它们自身成立、对自己为真的。
例如,形容词“Polysyllabic(多音节的)”本身是多音节的,“English(英文的)”本身是英文的,它们都是自谓的。
另一类称为“它谓的”,即对于它们自身不成立、对自己不真的。
例如,形容词“Monosyllabic(单音节的)”是它谓的,因为这个词不是一个单音节词;“英文的”也是它谓的,因为这个词是中文的而不是英文的。
问题来了:形容词“它谓的”是不是它谓的?
得到的结果是:如果“它谓的”是它谓的,那么会推出“它谓
的”不是它谓的,反之亦然。
导致了自相矛盾。
集合论悖论与公理化
一天,萨维尔村理发师挂出一块招牌:“村里所有不自己理发的男人都由我给他们理发,我也只给这些人理发。
”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。
因为,如果他给自己理发,那么他就属于自己给自己理发的那类人。
但是,招牌上说明他不给这类人理发,因此他不能自己理。
如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上明明说他要给所有不自己理发的男人理发,因此,他应该自己理。
由此可见,不管怎样的推论,理发师所说的话总是自相矛盾的。
另一类悖论涉及数学中的集合论,被称为“数学悖论”或“集合论悖论”。
集合论是19世纪70-80年代由德国数学家康托尔创立,它建立在一种无限观——“实无限”的基础上。
所谓“实无限”,即把“无限”作为一个已经完成了的观念实体来看待。
例如,在集合论中用N= {n:n是自然数}表示全体自然数的集合就是如此。
需要指出的是,在此之前的几千年数学发展史中,占主导地位的是另一种无限观,即古希腊哲学家亚里士多德所主张的“潜无限”观念。
所谓“潜无限”,是
把“无限”作为一个不断发展着的、又永远无法完成的过程来看待。
例如,把自然数看成一个不断延伸的无穷无尽的序列1,2,3,…,n,…就是如此。
集合论是数学观念和数学方法上的一次革命性变革,由于它在解释旧的数学理论和发展新的数学理论方面都极为方便,因而逐渐为许多数学家所接受。
然而,在康托尔创立集合论不久,他自己就发现了问题,这就是1899年的“康托尔悖论”,亦称“最大基数悖论”。
与此同时,还发现了其他集合论悖论,最著名的是1901年的“罗素悖论”:
把集合分成两类,凡是不以自身作为元素的集合称为正常集,(例如,自然数集N本身不是一个自然数,因此N是正常集。
)凡是以自身作为元素的集合称为异常集。
(例如,所有的非生物的集合F并非生物,因此F是异常集。
)每个集合或者为正常集或者为异常集。
设V为全体正常集所组成的集合,即V={x:x?埸x},那么V是不是正常集?
如果V是正常集,由正常集的定义知V?埸V,又因V是全体正常集的集合,所以正常集V∈V,但这说明V不是正常集,是异常集;反之,如果V 不是正常集,是异常集,那么由异常集的定义知V∈V,这说明V是全体正常集组成的集合V的元素,因而V又应该是正常集。
罗素悖论揭示了一个严酷的事实:集合论是隐含着逻辑矛盾的,如果把数学建立在集合论的基础之上,将会使数学大厦从根基上产生深深的裂痕,这种裂痕甚至有可能使整座大厦倾覆。
一石激起千层浪,一场关于数学基础问题的论战爆发了。
在这场论战中,最为激进的是以荷兰数学家布劳威尔为代表的直觉
主义学派,他们对集合论采取了全盘否定的态度,并认为“实无限”的观念是集合论悖论产生的根源。
与此相反,另一些数学家走上了改良的道路,他们试图亡羊补牢,对集合论加以适当的修正,以避免悖论。
这方面的代表性成果是公理集合论,它已成为现代数学的一个重要分支。
公理集合论采用公理化的方法来刻画集合和集合的运算,并对康托尔集合论中的“概括原则”作了修正。
概括原则可表述为:满足性质P的所有对象可以组成一个集合S,即S={x:P(x)},其中的P(x)意为“x 具有性质P”。
这就认定了任何性质可以决定一个集合,于是前述的F 和V名正言顺地成了集合,悖论也应运而生。
在公理集合论的ZF系统中,用如下的“分离原则”取代了概括原则:若C是一个集合,则C中满足性质P的那些元素构成一个集合S={x:x∈C且 P(x)},即在C是集合的前提下,任何性质可以决定它的一个子集。
公理化的结果是:只有正常集才能成为集合,异常集则不能,F 和V都不是集合,罗素悖论和其他的集合论悖论得以避免。
就公理集合论能避免已有的集合论悖论,并在此基础上可以进一步发展数学而言,它是成功的。
遗憾的是,人们并不能证明公理集合论系统的相容性,即不能证明系统中一定不会推出逻辑矛盾。
此外,现代数学中的某些结果需要使用“选择公理”,但这又将导致某些违背人们直觉的怪论(例如“分球怪论”)。
因此,公理集合论的处理方式,尤其是选择公理的使用,仍有进一步讨论的必要。
对悖论的一些深入探讨
罗素悖论的发现,也促进了对于悖论(包括语义学悖论)成因的深入思考。
1905—1906年间,庞加莱在《数学与逻辑》一文中提出了悖论的根源在于“非直谓定义”的论断。
所谓非直谓定义是指:借助于一个总体来定义一个概念(或对象),而这个概念(或对象)本身又属于这个总体。
这种定义是循环的(罗素称为“恶性循环”),或者说是“自我涉及”的。
例如,异常集“所有的非生物的集合F ”就是如此。
因为,F是借助于“所有的非生物”这一总体来定义的,而F本身又是这一总体中的一员。
考察语义学悖论,也会发现类似的“循环”或“自我涉及”的踪迹。
例如,“说谎者循环”就是A,B两个人的话彼此循环,而格列林-纳尔逊悖论中的“自谓的”和“它谓的”定义,则涉及了形容词对于自身的真假。
1931年,塔尔斯基(A.Tarski)在《形式化语言中的真概念》一文中,提出了“语言层次”的理论。
虽然这一理论主要是针对形式语言的,但对于日常语言中的语义悖论研究也有重要意义。
塔尔斯基认为,日常语言在语义上是封闭的:既包含了语言表达式,又包含了陈述这些语言表达式语义性质(例如“真”、“假”)的语句。
这是语义悖论产
生的根源。
要建立实质上适当、形式上正确的关于“真句子”的定义,就必须对语言进行分层处理:被谈论的语句属于某一层次的语言(称为“对象语言”),而陈述该语句语义性质的语句则属于高一层次的语言(称为“元语言”)。
“说谎者悖论”就是因为断言了自身的真假,混淆了语言的层次而造成的。
1975年,当代著名逻辑学家克里普克(S.A.Kripke)在《真理论纲要》一文中提出了解决悖论的新方案。
其中的一个核心概念是“有根性”:要判断一个含有真值谓词(“真”或“假”)的语句,必须寻找这个语句的“根”——相应的不含真值谓词的语句。
例如,要判
断“‘净水是无色透明的’是真的”这句话的真假,就要看“净水是无色透明的”这句话对不对,后一句话不包含真值谓词,并且它的对错是可以判断的,因此,前一句话是有根的。
只有有根的语句才可以判断其真假,无根的语句则不行。
“说谎者悖论”和“说谎者循环”都是无根的,这是悖论的基本特征。
新近的悖论研究受到了“情景语义学”的影响,语言逻辑学家注意到:许多语义悖论实际上不仅仅涉及语义,也与说话时的语境(包括语言使用者)等语用因素密切相关。
以“说谎者悖论”为例,当某人
说“我正在说谎”时,这意味着他在某种语境中表达这句话为真的断言。
但是,“‘我正在说谎’是假的”这一语句,却不能在同样的语境中陈述,陈述它的是另一种语境。
因此,悖论的根源不在于“自我涉及”,而是因为不同的语境。
只要分清每一句话的语境,许多所谓
的“悖论”就不再是真正的悖论了。