人教版初一数学培优竞赛讲炼教程:经验归纳法
人教七年级上学期竞赛入门辅导讲义,共十讲,很实用

又如7007700-14=686,68-12=56(能被7整除)
能被11整除的数的特征:
①抹去个位数②减去原个位数③其差能被11整除
如1001100-1=99(能11整除)
又如102851028-5=1023102-3=99(能11整除)
二、例题
例1已知两个三位数328和2x9的和仍是三位数5y7且能被9整除.求x,y
第一讲数的整除
一、内容提要:
如果整数A除以整数(B≠0)所得的商A/B是整数,那么叫做A被B整除.
0能被所有非零的整数整除.
一些数的整除特征
除数
2或5
4或25
8或125
3或9
11
能被整除的数的特征
末位数能被2或5整除
末两位数能被4或25整除
末三位数能被8或125整除
各位上的数字和被3或9整除(如771,54324)
数和最犬的公约数.
6.公约数只有1的两个正整数叫做互质数(例如15与28互质).
7.在有余数的除法中,
被除数=除数×商数+余数若用字母表示可记作:
A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除
例如23=3×7+2则23-2能被3整除.
二、例题
例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:
9从1到100这100个自然数中,能同时被2和3整除的共_____个,
能被3整除但不是5的倍数的共______个.
10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不
能被3整除的数共有几个?为什么?
11己知五位数1234A能被15整除,试求A的值.
数学竞赛教案:第32讲_数学归纳法2

第13讲数学归纳法本节主要内容有数学归纳法的原理,第二数学归纳法;数学归纳法的应用.通常那些直接或间接与自然数n有关的命题,可考虑运用数学归纳法来证明.一.数学归纳法的基本形式第一数学归纳法:设P(n)是关于正整数n的命题,若1°P(1)成立(奠基);2°假设P(k)成立,可以推出P(k+1)成立(归纳),则P(n)对一切正整数n都成立.如果P(n)定义在集合N-{ 0,1,2,…,r-1},则1°中“P(1)成立”应由“P(r)成立”取代.第一数学归纳法有如下“变着”;跳跃数学归纳法:设P(n)是关于正整数n的命题,若1°P(1),P(2),…,P(l)成立;2°假设P(k)成立,可以推出P(k+l)成立,则P(n)对一切正整数n都成立.第二数学归纳法:设P(n)是关于正整数一的命题,若l°P(1)成立;2°假设n≤k(k为任意正整数)时P(n)(1≤n≤k)成立,可以推出P(k+1))成立,则P(n)对一切自然数n都成立.以上每种形式的数学归纳法都由两步组成:“奠基”和“归纳”,两步缺一不可.在“归纳”的过程中必须用到“归纳假设”这一不可缺少的前提.二.数学归纳法证明技巧1.“起点前移”或“起点后移”:有些关于自然数n的命题P(n),验证P(1)比较困难,或者P(1),P(2),…,P(p-1)不能统一到“归纳”的过程中去,这时可考虑到将起点前移至P(0)(如果有意义),或将起点后移至P(r)(这时P(1),P(2),…,P(r-1)应另行证明).2.加大“跨度”:对于定义在M={n0,n0+r,n0+2r,…,n0+m r,…}( n0,r,m∈N*)上的命题P(n),在采用数学归纳法时应考虑加大“跨度”的方法,即第一步验证P(n0),第二步假设P(k)(k∈M)成立,推出P(k+r)成立.3.加强命题:有些不易直接用数学归纳法证明的命题,通过加强命题后反而可能用数学归纳法证明比较方便.加强命题通常有两种方法:一是将命题一般化,二是加强结论.一个命题的结论“加强”到何种程度为宜,只有抓住命题的特点,细心探索,大胆猜测,才可能找到适宜的解决方案.本节主要内容有数学归纳法的原理,第二数学归纳法;数学归纳法的应用A类例题例1n个半圆的圆心在同一直线上,这n个半圆每两个都相交,且都在l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?解设这些半圆最多互相分成f(n)=段圆弧,则f(1)=1,f(2)=4=22, f(3)=9=33,猜想:f(n)=n2, 用数学归纳法证明如下:1°当n=1时,猜想显然成立2°假设n=k时,猜想正确,即f(k)=k2,则当n=k+1时,我们作出第k+l圆,它与前k个半圆均相交,最多新增k个交点,第k+1个半圆自身被分成了k+1段弧,同时前k个半圆又各多分出l段弧,故有f(k+1)= f(k)+k+k+1=k2+2k+1=(k+1)2, 即n=k+1时,猜想也正确.所以对一切正整数n,f(n)=n2.例2已知数列:,}{且满足的各项都是正数n a 0111,(4),.2n n n a a a a n N +==-∈ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n . (2005年全国高考江西卷)分析 本题考查数列的基础知识,考查运算能力和推理能力.第(1)问是证明递推关系,联想到用数学归纳法,第(2)问是计算题,也必须通过递推关系进行分析求解. 解 (1)方法一 用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a ∴210<<a a ,命题正确. 2°假设n =k 时有.21<<-k k a a 则)4(21)4(21,1111k k k k k k a a a a a a k n ---=-+=--+时 而.0,04.0111<-∴>--<----k k k k k k a a a a a a又.2])2(4[21)4(2121<--=-=+k k k k a a a a ∴1+=k n 时命题正确.由1°、2°知,对一切n ∈N 时有.21<<+n n a a 方法二:用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a ∴2010<<<a a ; 2°假设n =k 时有21<<-k k a a 成立,令)4(21)(x x x f -=,)(x f 在[0,2]上单调递增,所以由假设 有:),2()()(1f a f a f k k <<-即),24(221)4(21)4(2111-⨯⨯<-<---k k k k a a a a也即当n=k+1时 21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有 (2)下面来求数列的通项:],4)2([21)4(2121+--=-=+n n n n a a a a 所以 nn n n n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令, 又b n =-1,所以1212)21(22,)21(---=+=-=n n n n n b a b 即.说明 数列是高考考纲中明文规定必考内容之一,考纲规定学生必须理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.当然数列与不等式的给合往往得高考数学的热点之一,也成为诸多省份的最后压轴大题,解决此类问题,必须有过硬的数学基础知识与过人的数学技巧,同时运用数学归纳法也是比较好的选择,不过在使用数学归纳法的过程中,一定要遵循数学归纳法的步骤.情景再现1.求证对任何正整数n,方程x 2+y 2=z n 都有整数解.2. 已知{ a n }是由非负整数组成的数列,满足a 1=0,a 2=3,a n+1· a n =(a n +2)(a n -2 +2) (1)求a 3;(2)证明a n =a n -2+2,n=3,4,5,…;(3)求{ a n }的通项公式及其前n 项和S n .B 类例题例3.试证用面值为3分和5分的邮票可支付任何n(n >7,n ∈N)分的邮资. 证明 1°当n=8时,结论显然成立.2°假设当n=k(k >7,k ∈N)时命题成立.若这k 分邮资全用3分票支付,则至少有3张,将3张3分票换成2张5分票就可支付k+1分邮资;若这k 分邮资中至少有一张5分票,只要将一张5分票换成2张3分票就仍可支付k+1分邮资.故当n=k+1时命题也成立.综上,对n >7的任何自然数命题都成立.说明 上述证明的关键是如何从归纳假设过渡到P(k+1),这里采用了分类讨论的方法.本例也可以运用跳跃数学归纳法来证明.另证1 °当n=8,9,10时,由8=3+5,9=3+3+3,10=5+5知命题成立.2° 假设当n=k(k >7,k ∈N)时命题成立.则当n=k+3时,由1。
人教版初一数学培优竞赛讲炼教程:乘法公式

人教版初一数学培优和竞赛二合一讲炼教程(14)乘法公式【知识精读】1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2 ab+b2)=a3±b33.公式的推广:①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)…………注意观察右边展开式的项数、指数、系数、符号的规律③由平方差、立方和(差)公式引伸的公式(a+b)(a3-a2b+ab2-b3)=a4-b4(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6…………注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n 4.公式的变形及其逆运算由(a+b)2=a2+2ab+b2得 a2+b2=(a+b)2-2ab由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
2019-初中数学竞赛专题培训第十八讲归纳与发现

的方法是事物内在系和律性的一种重要思虑方法,也是数学中命与解思路的一种重要手段.里的指的是常用的,也就是在求解数学,第一从的特别状况的察下手,获得一些局部的果,而后以些作基,剖析归纳些的共同特点,进而解的一般门路或新的命的思虑方法.下边几个例,以一般.例 1 如 2-99 ,有一个六形点,它的中心是一个点,算作第一;第二每有两个点 ( 相两公用一个点) ;第三每有三个点,⋯个六形点共有n ,第n有多少个点?个点共有多少个点?剖析与解我来察点中各点数的律,而后出点共有的点数.2019-2020 年初中数学培第十八与所以,个点的第n 有点 (n-1) × 6 个. n 共有点数例 2 在平面上有同一点 P,而且半径相等的 n 个,此中任何两个都有两个交点,任何三个除P 点外无其余公共点,那么:(1)n 个把平面区分红多少个平面地区?(2)n 个共有多少个交点?剖析与解 (1)在2-100中,以P 点公共点的有1, 2, 3, 4, 5 个 ( 取 n 个特定的 ) ,察平面被它所切割成的平面地区有多少个?此,我列出表18. 1.由表 18. 1 易知S2-S 1=2,S3-S 2= 3,S4-S 3= 4,S5-S 4= 5,⋯⋯由此,不推S n-S n-1= n.把上边 (n-1) 个等式左、右两分相加,就获得S n-S 1= 2+3+ 4+⋯+ n,因 S1=2,所以下边 S n -S n-1 =n,即 S n=S n-1+ n 的正确性略作明.因 S n-1n-1 个把平面区分的地区数,当再加上一个,即当n 个定点P ,个加上去的必与前n-1 个订交,所以个就被前n-1 个分红n 部分,加在 S n-1上,所以有 S n=S n-1+ n.(2) 与(1) 一,同用察、、的方法来解决.此,可列出表18. 2.由表 18. 2 简单a1= 1,a2-a 1= 1,a3-a 2= 2,a4-a 3= 3,a5-a 4= 4,⋯⋯a n-1 -a n-2=n-2 ,a n-a n-1= n-1 .n个式子相加注意者明a n=a n-1+ (n-1) 的正确性.例 3a, b,c 表示三角形三的,它都是自然数,此中a≤ b≤ c,假如 b=n(n 是自然数 ) ,的三角形有多少个?剖析与解我先来研究一些特别状况:(1)b=n=1, b=1,因 a≤ b≤ c,所以 a=1,c 可取 1, 2,3,⋯.若 c=1,得到一个三都 1 的等三角形;若c≥ 2,因为 a+ b=2,那么 a+ b 不大于第三c,不行能由a, b, c 组成三角形,可,当b=n=1 ,足条件的三角形只有一个.(2)b=n=2,似地能够列各样状况如表18. 3.足条件的三角形数:1+2=3.(3)b=n=3,似地可得表 18. 4.足条件的三角形数:1+ 2+ 3=6.通上边些特例不,当b=n ,足条件的三角形数:个猜想是正确的.因当 b=n , a 可取 n 个 (1 , 2,3,⋯, n) ,于 a 的每个,不如 a=k(1 ≤k≤n) .因为 b≤ c< a+ b,即 n≤ c< n+ k,所以 c 可能取的恰巧有 k 个(n , n+ 1, n+ 2,⋯, n+k-1) .所以,当 b=n ,足条件的三角形数:例 4 1× 2×3×⋯× n 写 n!( 称作 n 的乘 ) ,化: 1!× 1+ 2!× 2+3!× 3+⋯+ n!× n.剖析与解先察特别状况:(1)当 n=1 ,原式 =1=(1 + 1) ! -1 ;(2)当 n=2 ,原式 =5=(2 + 1) ! -1 ;(3)当 n=3 ,原式 =23=(3 + 1) !-1 ;(4)当 n=4 ,原式 =119=(4 + 1) ! -1 .由此做出一般猜想:原式 =(n+1) ! -1.下边我明个猜想的正确性.1+原式 =1+(1 !× 1+ 2!× 2+ 3!× 3+⋯ +n!× n)=1!× 2+ 2!× 2+ 3!× 3+⋯ +n!× n=2! +2!× 2+3!× 3+⋯ +n!× n=2!× 3+3!× 3+⋯+ n!× n=3! +3!× 3+⋯ +n!× n=⋯=n! +n!× n=(n + 1) !,所以原式=(n+1)! -1.例5x> 0,比代数式x3和x2+x+2 的的大小.剖析与解本直接察,不好做出猜想,所以可中做比,或能启我解思路.此,x 等于某些特别,代入两式x=0,然有x3<x2+x+2.①x=10,有32x =1000,x +x+ 2=112,所以x3>x2+x+2.②x=100,有x3> x2+x+2.察、比①,②两式的条件和,能够:当x 小,x3< x2+x+2;当x 大,x3>x2+x+2.那么自然会想到:当x=?,x3=x2+x+2 呢?假如个方程得解,它很可能就是本得解的“ 界点”.此,x3=x 2+ x+ 2,x3-x 2 -x-2 = 0,(x 3-x 2-2x) + (x-2)=0 ,(x-2)(x2+x+1)=0.因 x> 0,所以 x2+x+1>0,所以 x-2=0 ,所以 x=2.(1)当 x=2 , x3=x2+x+2 ;(2)当 0< x< 2 ,因x-2 < 0, x2+x+2> 0,所以 (x-2)(x2+ x+2) < 0,即 x3-(x 2+ x+2) <0,所以 x 3< x2+ x+ 2.(3) 当 x> 2 ,因 x-2 > 0, x2+x+2> 0,所以 (x-2)(x2+x+2) > 0,即 x3-(x 2+ x+ 2) >0,所以 x 3> x2+ x+ 2.合 (1) ,(2) , (3) ,就获得本的解答.剖析先由特例下手,注意到例 7 已知 E, F, G, H 各点分在四形 ABCD的 AB, BC, CD, DA上 ( 如 2—101) .(2)当上述条件中比 3,4,⋯, n (n 自然数 ) ,那 S 么 S 四边形EFGH与 S 四边形ABCD之比是多少?G引 GM∥ AC交 DA于 M点.由平行截割定理易知(2)设当 k=3, 4 时,用近似于 (1) 的推理方法将所得结论与(1) 的结论列成表18. 5.察看表 18. 5 中 p, q 的值与对应k 值的变化关系,不难发现:当k=n( 自然数 ) 时有以上推断是完整正确的,证明留给读者.。
初一数学竞赛培优讲义 含答案 全册 共15讲 改好98页

装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
竞赛培训讲义:数学归纳法(如皋中学:童云飞)

1第五讲:数学归纳法数学归纳法是初等数论的基础,它刻画了整数的基本性质.虽然数学界仍然有一些数学家不认可数学归纳法,但是它在初等数论,组合数学,图论,离散数学的研究中被广泛运用,它在中学数学竞赛中的地位更是不言而喻,凡是遇到和自然数有关的命题都要考虑数学归纳法. 本讲我们主要介绍第一数学归纳法,第二数学归纳法,最小自然数原理,最大自然数原理以及它们的一些简单应用.这一部分内容大家可以参看《奥数教程》,《漫话数学归纳法》(苏淳著,中国科技大学出版社),《数列与数学归纳法》(单墫著,上海科技教育出版社). 一.数学归纳法的基本形式1. 第一数学归纳法:设 ()P n 是关于正整数 n 的命题,如果 ① (1)P 成立(奠基步);② 假设 ()P k (k 为任意正整数) 成立,可以推出 (1)P k +成立(归纳递推步), 那么,()P n 对一切正整数 n 都成立.注1:如果 ()P n 定义在 N 上,则 ① 中 “(1)P 成立”应由 “(0)P 成立”取代.注2: 第一数学归纳法有如下变化形式:跳跃数学归纳法:设 ()P n 是关于正整数 n 的命题,如果 ① (1)P ,(2)P ,…, ()P l 成立(奠基步);② 假设 ()P k 成立,可以推出 ()P k l +成立(归纳递推步), 那么,()P n 对一切正整数 n 都成立.2. 第二数学归纳法:设 ()P n 是关于正整数 n 的命题,如果 ① (1)P 成立(奠基步);② 假设 n k ≤(k 为任意正整数)时()P n (1n k ≤≤)成立,可以推出 (1)P k +成立 (归纳递推步),那么,()P n 对一切正整数 n 都成立.二:例题选讲1. 求证:23211(1)4nk n k n ==+∑2. 设1112,()2n n na n a a N a ++==+∈1n a n <<.3. 设 5n > ,证明:每一个正方形可以分为 n 个正方形.4. 已知数列{}n a 满足 01212,10,6n n n a a a a a ++===-, 求证:n a 可以写成两个整数的平方和.25. 设 正数123,,,...,2np p p p满足 123 (12)np p p p++++=,证明:1212223232...log log log log 22n nn p p p p p p p p++++≥-.22((1)(1)1)log log x x x x +--≥-6. 求证:对任何正整数 n ,方程 22n y x z += 都有正整数解.7. 设()f n 定义在正整数集上,且满足2(1)2,(1)()1().(())f f n f n n f n N +=+=-+∈求证:对所有正整数1n >,1111111...1(1)(2)()2222n nf f f n --<+++<-.8. 实数列 {}n a 满足 i j i j a a a +≤+,,i j N ∈.证明:对任意 n N ∈,都有231...23n n a a aa a n++++≥.39. 证明:(1) 对一切正整数 n ,2221111 (23)2n++++<.( 用数学归纳法证明 ) (2 ) 证明:对一切正整数 n ,22211111 (23)2n n ++++≤-.10.求证:1...3()n N ++<∈.11. 证明:存在正整数的无穷数列 {}n a : 123...,a a a <<<使得对所有自然数 n ,22212...n a a a +++ 都是完全平方数.12. 证明:任何多项式都可以表示成两个单调递增的多项式之差.413. 设 123,,,...x x x 是互不相同的正实数,证明:123,,,...x x x 是一个等比数列的充要条件是:对所有整数 (2)n n ≥,都有 2221112212121.n nnk k k x x x x x x x x x -=+-=∑-14. 正整数数列 123,,,...c c c 满足下述条件:对任意正整数 ,m n ,若 11ni i m c =≤≤∑,则存在整数12,,...,,n a a a 使得 1.nii ic m a ==∑ 问:对每个给定的 *i N ∈,i c 的最大值为多少?15. 设 12,,...,n a a a 为正数,且 11nj j a ==∑,又 1230....n λλλλ<≤≤≤证明:21111()()()4nnjn j j j j jn a a λλλλλλ==+∙≤∑∑.16. 设 0a >1<.5三:课后研讨题1. 证明:对于一切自然数 3n ≥,都有 1(1)nn n n +≥+.2. 已知对一切 *n N ∈,0n a >,且 2311()nnj jj j a a ===∑∑.证明:n n a =.3. 设 0,0,a b >> 且 111a b+=.证明:对一切自然数 n ,都有 21()22nn n n n a b a b +--≥-+4. 设 {}n a 中的每一项都是正整数,并有 122;7;a a ==21211,322n n n a n a a ---≤-≤≥.证明:自从第二项开始,数列的各项都是奇数.5. 设k是给定的正整数,12r k =+.记(1)()()f r f r r r==⎡⎤⎢⎥,()()l f r =(1)(()),2l f f r l -≥.(x ⎡⎤⎢⎥表示不小于实数x 的最小整数.)证明:存在正整数m ,使得()()m f r 为一个整数.6. 设实数 12,,...,n a a a 中任意两个的和非负,证明:对任意满足 12...1n x x x +++= 的非负实数12,,...,,n x x x 有 22211221122......n n n n a x a x a x a x a x a x +++≥+++ 成立.67. 设 1222...2s nn n M =+++,12,,...,s n n n 是互不相同的正整数,求证:(1222222...21s n n n +++<+8. 证明:(1)对任何给定的自然数 n 和实数 x ,都有121[][][]....[][]n x x x x nx n n n-+++++++=. ( []x 表示不超过 x 的最大整数. )(2) 对任何给定的自然数 n 和正实数 x ,都有[2][][]....[].2x nx x nx n+++≤. ( []x 表示不超过 x 的最大整数. )9. 设 {}n a 都是正实数列,且存在正的常数 c ,使得对所有 n ,2222121....n n c a a a a ++++≤证明:存在常数 b ,使得对所有 n ,121....n n b a a a a ++++<10. (Euler 问题)证明:对任何自然数 3n ≥ ,数字 2n 都可以表示成 2272n y x =+的形式,其中 ,x y 都是奇数.。
人教版数学七年级培优和竞赛二合一讲练教程用交集解题

(11)用交集解题【知识精读】1. 某种对象的全体组成一个集合。
组成集合的各个对象叫这个集合的元素。
例如6的正约数集合记作{6的正约数}={1,2,3,6},它有4个元素1,2,3,6;除以3余1的正整数集合是个无限集,记作{除以3余1的正整数}={1,4,7,10……},它的个元素有无数多个。
2. 由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集例如6的正约数集合A ={1,2,3,6},10的正约数集合B ={1,2,5,10},6与10的公约数集合C ={1,2},集合C 是集合A 和集合B 的交集。
3. 几个集合的交集可用图形形象地表示, 右图中左边的椭圆表示正数集合, 右边的椭圆表示整数集合,中间两个椭圆 的公共部分,是它们的交集――正整数集。
例如不等式组⎩⎨⎧<->)2(2)1(62 x x 解的集合就是不等式(1)的解集x>3和不等式(2)的解集x >2的交集,x>3. 4.一类问题,它的答案要同时符合几个条件,一般可用交集来解答。
把符合每个条件的所有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案。
有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,求得答案。
(如例2)分类解析】例1.一个自然数除以3余2,除以5余3,除以7余2,求这个自然数的最小值。
解:除以3余2的自然数集合A ={2,5,8,11,14,17,20,23,26,……}除以5余3的自然数集B ={3,8,13,18,23,28,……}除以7余2自然数集合C ={2,9,16,23,30,……}集合A 、B 、C 的公共元素的最小值23就是所求的自然数。
例2. 有两个二位的质数,它们的差等于6,并且平方数的个位数字相同,求这两个数。
解: 二位的质数共21个,它们的个位数字只有1,3,7,9,即符合条件的质数它们的个位数的集合是{1,3,7,9};其中差等于6的有:1和7;3和9;13和7,三组;平方数的个位数字相同的只有3和7;1和9二组。
七年级数学下册培优辅导讲义(人教版)

1第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线. ⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】 01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cmABC D EF AB C DEF PQ RABCEF E A ACD O (第1题图)1 4 32 (第2题图)l 2202 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄; ⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置. ⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数; ⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6: ∠2和∠4: ∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.F B A O CD E C D B A EO B ACDO A BA E DC F E BAD 1 4 2 3 6 53【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由•⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( ) 02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知) ∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD . ABDCHG EF7 1 5 6 8 4 1 2 乙丙 3 2 3 4 56 1 2 3 4甲 1 A B C 2 3 4 56 7 A B C DOA B D E FCA BCDE A B CD EF 1 204.如图,已知∠ABC=∠ACB,BE平分∠ABC,CD平分∠ACB,∠EBF=∠EFB,求证:CD∥EF.【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 .03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn= .演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD >BDA.0 B. 2 C.4 D.6ABCD El1l2l3l4l5l6图⑴l1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图4505.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( ) A .4cm B .5cm C .小于4cm D .不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC= .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a 1∥a 2,a 2⊥a 3,a 3∥a4,…则a 1 a 10.(a 1与a 10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,那么直线AB 与CD 的位置关系如何?13.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( ) ⑵∵∠2= (已知) ∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 使AD ∥BC .ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A CDEB AB C DEF12AB CD EF第14题图6培优升级·奥赛检测 01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( ) A .60° B . 75° C .90°D .135° 10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点;⑵总共有29个交点.第13讲 平行线的性质及其应用 考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析 【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD 求∠C 的度数. 【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等;两条直线平行,同旁内角互补. 平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38°a b AB C7【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC的度数为( ) A .155° B .50° C .45° D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60° D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC=180°即要证明DB ∥EC . 要证明DB ∥EC 即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) ABC DOE FAEBC (第1题图)(第2题图)E AF GDC B BAMCDN P (第3题图)CDABE F 1 328DA2 E1 B C B F E AC D 【变式题组】01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行 于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的: ∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行) ∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义) 【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF .AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:的度数.A D M C N EB GB 3C A 1D 2E F (第1题图) A2 C F3 E D1B(第2题图)3 1 AB G DC E9 α βP B C D A ∠P =α+β3 2 1 γ 4ψDα β E B CAFH F γ Dα β E B C AF D EBC A B C AA ′ lB ′C ′【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角. 过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键. 【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】 01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________ ⑶____________________________ ⑷____________________________ 【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形 善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路. 【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°【变式题组】 01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90° 02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /. 【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点. 【解】①连接AA / ②过点B 作AA /的平行线l ③在l 截取BB /=AA /,则点B /就是的B 对应点,用同样的方法作出点C 的对应点C /.连接A /B /,B /C /,C /A /就得到平移后的三角形A /B /C /.B AP C A C C D A A P C B D PBPD B D ⑴ ⑵ ⑶ ⑷F E D 2 1 AB C10西B 30° A北东 南【变式题组】01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形.02.如图,三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC与△A /B /C /的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固 反馈提高01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个 B .2个 C .3个 D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°B B /AA /C C /150°120°DBCE 湖07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.DEAB CE DB CE D AB CED AB CEDA B C43 2 1ABE F CD 4 P 23 1A BEFC D 14.如图,一条河流两岸是平行的,当小船行驶到河中E 点时,与两岸码头B 、D 成64°角. 当小船行驶到河中F 点时,看B 点和D 点的视线FB 、FD 恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F 与码头B 、D 所形成的角∠BFD 的度数吗?15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测01.如图,等边△ABC 各边都被分成五等分,这样在△ABC 内能与△DEF 完成重合的小三角形共有25个,那么在△ABC 内由△DEF 平移得到的三角形共有( )个02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移) 03.如图,长方体的长AB =4cm ,宽BC =3cm ,高AA 1=2cm . 将AC 平移到A 1C 1的位置上时,平移的距离是___________,平移的方向是___________. 04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A 1A 2向右平移1个单位得到B 1B 2,得到封闭图形A 1A 2B 2B 1 [即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1[即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________. ⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?⑶⑷CB 1AA 1C 1D 1BD. AF E B A CG D05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线?为什么? 09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?12.如图将面积为a 2的小正方形和面积为b 2的大正方形放在一起,用添补法如何求出阴影部分面积?F EB AC GD 100° FE BAC O A BCD第06讲 实 数考点·方法·破译 1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =a 的平方根为xa 的算术平方根.若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x.2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q≠0)的形式. 3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2n a ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值. 【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m的最大整数,则m 的平方根是____. 03____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】(全国竞赛)已知非零实数a 、b满足24242a b a -+++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -+++=∴24242a b a -+++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____. 02()230b -=,则ab的平方根是____. 03.(天津)若x 、y 为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-204.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b都为有理效,且满足1a b -+=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m 、n2)m +(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2 −2−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3a ,b ,则a +b 的值为____. 02a ,小数部分为ba )·b =____. 演练巩固 反馈提高 0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设a =b = -2,2c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与C .4D .304.在实数1.414,,0.1•5•,π,3.1•4•( ) A .2个 B .3个 C .4个 D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b > a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,12,13…,119,120.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b+-,如3※2=3232+-=5.那么12.※4=____. 12.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a *b =()()22a ba b aba b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____.14.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C ,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P .点P 表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P ′,那么点P ′所表示的数是____.16.已知整数x 、y 满足x +2y =50,求x 、y .17.已知2a −1的平方根是±3,3a +b −1的算术平方根是4,求a +b +1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B 点恰好落在数轴上时,(1)求此时B 点所对的数;(2)求圆心O 移动的路程.19.若b 315a - 153a - +3l ,且a +11的算术平方根为m ,4b +1的立方根为n ,求(mn −2)(3mn +4)的平方根与立方根.20.若x 、y 为实数,且(x −y +1)2533x y --22x y +值.培优升级 奥赛检测 01.(荆州市八年级数学联赛试题)一个正数x 的两个平方根分别是a +1与a −3,则a 值为( )A . 2B .-1C . 1D . 0 02.x 1x -2x -( )A .0B . 12C .1D . 2 0353x +−2的最小值为____.04.设a 、b 为有理数,且a 、b 满足等式a 2+3b +33,则a +b =____. 05.若a b -=1,且3a =4b ,则在数轴上表示a 、b 两数对应点的距离为____. 06.已知实数a 满足20092010a a a --=,则a − 20092=_______.m 满足关系式3523199199x y m x y m x y x y +--+-=-+--,试确定m 的值.08.(全国联赛)若a 、b满足5b =7,S=3b ,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y+21a =-,231x y b -=--,求22x y a b +++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a >202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初一数学培优和竞赛二合一讲炼教程
( 13)经验归纳法
【知识精读】
1.通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。
通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归纳法,也叫做经验归纳法。
例如
①由 ( - 1)2= 1 ,(- 1 )3=- 1 ,(- 1 )4= 1 ,……,
归纳出- 1 的奇次幂是- 1,而- 1 的偶次幂是 1 。
②由两位数从10 到 99共 90 个( 9 × 10 ),
三位数从 100 到 999 共900个(9×102),
四位数有9×103=9000个(9×103),
…………
归纳出n 位数共有9×10n-1 (个)
由1+3=22, 1+3+5=32, 1+3+5+7=42……
③
推断出从1开始的n个連续奇数的和等于n2等。
可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。
2. 经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明朗化,必须进
行足夠次数的试验。
由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或否定猜想的结论,都必须进行严格地证明。
(到高中,大都是用数学归纳法证明)
【分类解析】
平面内n条直线,每两条直线都相交,问最多有几个交点?
例1
解:两条直线只有一个交点, 1 2
第3条直线和前两条直线都相交,增加了2个交点,得1+2 3
第4条直线和前3条直线都相交,增加了3个交点,得1+2+3
第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4
………
第n条直线和前n-1条直线都相交,增加了n-1个交点
由此断定n 条直线两两相交,最多有交点1+2+3+……n-1(个),
这里n≥2,其和可表示为[1+(n+1)]×21
n
, 即2)1
(
n
n
个交点。
例2.符号n!表示正整数从1到n的連乘积,读作n的阶乘。
例如
5!=1×2×3×4×5。
试比较3n与(n+1)!的大小(n 是正整数)
解:当n =1时,3n=3, (n+1)!=1×2=2
当n =2时,3n=9, (n+1)!=1×2×3=6
当n =3时,3n=27, (n+1)!=1×2×3×4=24
当n =4时,3n=81, (n+1)!=1×2×3×4×5=120
当n =5时,3n=243, (n+1)!=6!=720 ……
猜想其结论是:当n=1,2,3时,3n>(n+1)!,当n>3时3n<(n+1)!。
例3 求适合等式x 1+x 2+x 3+…+x 2020=x 1x 2x 3…x 2020的正整数解。
分析:这2020个正整数的和正好与它们的积相等,要确定每一个正整数的值,我们采用经验归纳法从2个,3个,4个……直到发现规律为止。
解:x 1+x 2=x 1x 2的正整数解是x 1=x 2=2
x 1+x 2+x 3=x 1x 2x 3的正整数解是x 1=1,x 2=2,x 3=3
x 1+x 2+x 3+x 4=x 1x 2x 3x 4的正整数解是x 1=x 2=1,x 3=2,x 4=4
x 1+x 2+x 3+x 4+x 5=x 1x 2x 3x 4x 5的正整数解是x 1=x 2=x 3=1,x 4=2,x 5=5
x 1+x 2+x 3+x 4+x 5+x 6=x 1x 2x 3x 4x 5x 6的正整数解是x 1=x 2=x 3=x 4=1,x 5=2,x 6=6
…………
由此猜想结论是:适合等式x 1+x 2+x 3+…+x 2020=x 1x 2x 3…x 2020的正整数解为x 1=x 2=x 3
=……=x 2020=1, x 2020=2, x 2020=2020。
【实战模拟】
除以3余1的正整数中,一位数有__个,二位数有__个,三位数有__个,n 位数有
1.____个。
十进制的两位数21a a 可记作10a 1+a 2,三位数321a a a 记作100a 1+10a 2+a 3,
四位数2.4321a a a a 记作____,n 位数___记作______
由13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43
3.=(___)2 ,13+______=152,13+23+…+n 3=( )2。
用经验归纳法猜想下列各数的结论(是什么正整数的平方)
4.①
** 1101111 252222*=(___)2;; 121111n *- 22222n *=( __)2。
② *91111 *95655=(____)2; n *n *56551111=(___)2
把自然数1到100一个个地排下去:123......91011 (99100)
5.这是一个几位数?②这个数的各位上的各个数字和是多少
①6.计算12111 +13121 +14131 +…+20191
=
(提示把每个分数写成两个分数的差)
7.a 是正整数,试比较a a+1和(a+1)a 的大小.
8.. 如图把长方形的四条边涂上红色,然
后把宽3等分,把长8等分,分成24个
小长方形,那么这24个长方形中,
两边涂色的有__个,一边涂色的有__个,四边都不着色的有__个。
本题如果改为把宽m 等分,长n 等分(m,n 都是大于1的自然数)那么这mn 个长方形中,两边涂色的有__个,一边涂色的有__个,四边都不着色的有__个
9.把表面涂有红色的正方体的各棱都4等分,切成64个小正方体,那么这64个中,三面涂色的有__个,两面涂色的有___个,一面涂色的有___个,四面都不涂色的有____个。
本题如果改为把长m 等分,宽n 等分,高p 等分,(m,n,p 都是大于2的自然数)那么这mnp 个正方体中,三面涂色的有___个,两面涂色的有___个,一面涂色的有____个,四面都不涂色的有_____个。
10.一个西瓜按横,纵,垂直三个方向各切三刀,共分成___块,其中不带皮的有__块。
11.已知两个正整数的积等于11112222,它们分别是___,___。
练习
3,30,3×102,3×10n-1
10n-1a 1+10n-2a 2_+……+10a n-1+a n
1.4. ①333332, 个n 2333 ② 位923433,
位n 234335.①192位,②901位(50个18,加上1)
6. ∵12111 =111-121 (220)
9
7. a=1,2时,a a+1<(a+1)a ……
4,14,6; 4, 2m+2n-8, (m-2)(n-2)
8.8,24,24,8;
9.8,4×[(m -2)+(n-2)+(p-2)],2[(m-2)(n-2)+(m-2)](p-2)+(n-2)(p-2)],(m-2)(n-2)(p-2)
10. 64,8 11. 3334。