简易逻辑练习题(包含详细答案)
(完整版)简易逻辑练习题及答案

、选择题:1若命题p : 2n — 1是奇数,q : 2n + 1是偶数,则下列说法中正确的是()A . p 或q 为真B . p 且q 为真C .非p 为真D .非p 为假2.“至多三个”的否定为()A .至少有三个B .至少有四个C .有三个D . 有四个3.△ ABC 中,若/ C=90°则/ A 、/ B 都是锐角”的否命题为 A . △ ABC 中,若/ C M 90° 则/ A 、/ B 都不是锐角 B . △ ABC 中,若/ C M 90° 则/ A 、/ B 不都是锐角 C . △ ABC 中,若/ C M 90°则/ A 、/ B 都不一定是锐角 D .以上都不对4. 给出 4 个命题:① 若 x 2 3x 2,则 x=1 或 x=2;② 若 2 x 3,则 (x 2)(x 3) 0; ③ 若 x=y=0 ,则 x 2 y 2 0 ;④ 若x, y N , x + y 是奇数,则x , y 中一个是奇数,一个是偶数. 那么:A . p 且q 为假 D .非p 为假6 .命题 若厶ABC 不是等腰三角形,则它的任何两个内角不相等• ”的逆否命题是()A .若厶ABC 是等腰三角形,则它的任何两个内角相等 .”B .若厶ABC 任何两个内角不相等,则它不是等腰三角形 .”C .若厶ABC 有两个内角相等,则它是等腰三角形 .”D .若厶ABC 任何两个角相等,则它是等腰三角形•”简易逻辑A .①的逆命题为真B .②的否命题为真C .③的逆否命题为假D .④的逆命题为假5 .对命题p : A n,命题q : A U = A ,下列说法正确的是B . p 或q 为假C . 非 p 为真7.设集合 M={x| x >2} , P={x|x v 3},那么 X € M ,或 x € P”是“ € M n P”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件&有下列四个命题:① 若x + y=0,则x , y 互为相反数”的逆命题; ② 全等三角形的面积相等”的否命题;③ 若q < 1贝U x 2 + 2x + q=0有实根”的逆否命题; ④ 不等边三角形的三个内角相等 ”逆命题; 其中的真命题为 ()A .①②B .②③C .①③D .③④9•设集合A={ xlx 2 + x -6=0} , B={x|mx +仁0},贝V B 是A 的真子集的一个充分不必要的条件是()13 .由命题p:6是12的约数,q:6是24的约数,构成的“ p 或q ”形式的命题是: _________ _ ,“p 且q ”形式的命题是 ___________________ , “非p ”形式的命题是 _____________________ 14.设集合A={ x|x 2 + x - 6=0} , B={ x|mx +仁0},则B 是A 的真子集的一个充分不必要的条件是 __________________________________________ .15. _____________________________________________________________________________ 设1 1 1 A . mB . m=—2 32io . a 2 b 2 o ”的含义是A . a,b 不全为0 C . a,b 至少有一个为0 C . 1 1 m 0,,D .2 3m 0E( )B . a,b 全不为0D . a 不为0且b 为0, 或b 不为0且a 为011.如果命题非p ”与命题“戯q”都是真命题,那么A .命题p 与命题q 的真值相同B .命题q —定是真命题C .命题q 不一定是真命题D .命题p 不一定是真命题12.命题P :若A n B=B ,则A B ;命题q :若AB ,贝y A n B 工B .那么命题p 与命题q 的关系是 A .互逆、填空题:B .互否( )C .互为逆否命题D .不能确定集合M={x|x>2}, P={x|x v 3},那么x€ M,或x €P”是“X M n P”的___________________________三、解答题:16•命题:已知a、b为实数,若x2+ ax+ b< 0有非空解集,则a2—4b>0•写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.17. 已知关于x的一元二次方程(m € Z)① mx2—4x+ 4 = 0 ② x2—4mx+ 4m2—4m—5= 0求方程①和②都有整数解的充要条件•18 •分别指出由下列各组命题构成的逻辑关联词或”、且”、非”的真假.(1)p:梯形有一组对边平行;q:梯形有一组对边相等.2 2(2)p: 1是方程x 4x 3 0的解;q: 3是方程x 4x 3 0的解.(3)p:不等式X2 2x 1 0解集为R;q:不等式X2 2x 2 1解集为用1P:{0}; q:0X 1 2 219.已知命题p: 1 ----- 2 ;q: x 2x 1 m 0(m 0)若p是q的充分非必要3条件,试求实数m的取值范围.20.已知命题p:|x2—X |> 6, q:x€ Z,且p且q”与非q”同时为假命题,求x的值.21.已知p:方程x2+ mx+仁0有两个不等的负根;q:方程4x2+ 4(m —2)x+ 1 = 0无实根.若"p 或q”为真,“ p且q”为假,求m的取值范围.参考答案一、选择题:ABBAD CACBA BC二、填空题:13•若△ ABC有两个内角相等,则它是等腰三角形.14.6是12或24的约数;6是12的约数,也是24的约数;6不是12的约数.1 115.m= (也可为m -). 16.必要不充分条件.2 3三、解答题:2 217.解析:逆命题:已知a、b为实数,若a 4b 0,则x ax b 0有非空解集否命题:已知a、b为实数,若x2ax b 0没有非空解集,则a24b 0., 2 2逆否命题:已知a、b为实数,若a 4b 0.则x ax b 0没有非空解集原命题、逆命题、否命题、逆否命题均为真命题18. 解析:方程①有实根的充要条件是16 4 4 m 0,解得m 1.m 1 •而m 乙故m= —1 或m=0 或m=1. 4当m=—1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m=1.反之,m=1①②都有整数解• ••①②都有整数解的充要条件是m=1.19 .解析:⑴I p真,q假,"戯q”为真,"诅q”为假,非p”为假.⑵•••p真,q真,“P或q”为真,“P且q”为真,非p”为假.⑶•••p 假, q假,“p q”为假, “p且q”为假,非p”为真⑷•p真,q假,“1或q”为真,“p且q”为假,非p”为假x 120.解析:由1 ---------- 2,得2x10. p: A x| x 2或x 103由x22x 1 m20(m 0),得1 m x 1 m.q : B={ x | x 1 m或x 1 m, m 0}.p是q的充分非必要条件,且m 0, A B.方程②有实根的充要条件是16m24(4m24m 5) 0,解得mm 0 1 m 10 即 0 m31 m 2即 p : m >2若方程4x 2 + 4(m — 2)x + 1 = 0无实根,则△= 16(m — 2)2— 16= 16(m 2— 4m + 3)v 0 解得:1 v m v 3•即 q : 1 v m v 3.因此,p 、q 两命题应一真一假,即 p 为真,q 为假或p 为假,q 为真.m 2 亠 m 2 *^或m 1或 m3 1 m 3解得:m 》3或1 v m W 2.由p 为假且 q 为真,可得: |xx| 6x Zx 2 x 6 2x x 6 0 2x3 即x 2 x6 •2 xx 6 0x R x Zx Zx Z故x 的取值为:一1、0、1、2.21、解析:•/ p 且q 为假p 、q 至少有一命题为假,又 非q”为假••• q 为真,从而可知p 为假• 22.解析: 若方程X + mx +仁0有两不等的负根,则因p 或q”为真,所以p 、q 至少有一为真,又 p 且q”为假,所以p 、q 至少有一为假, m 2 4 m 0解得m >2,。
逻辑练习题及答案

逻辑练习题及答案1. 如果所有的猫都怕水,而小明养的宠物是一只猫,那么小明的宠物怕水吗?- 答案:是的,如果小明的宠物是猫,根据题目条件,它应该怕水。
2. 假设在一个岛上,所有的居民要么喜欢足球,要么喜欢篮球。
如果张三不喜欢足球,那么他喜欢篮球吗?- 答案:是的,根据题目条件,张三必须喜欢篮球,因为他不喜欢足球。
3. 一个逻辑问题:如果今天是星期三,那么明天是星期四吗?- 答案:是的,如果今天是星期三,那么按照一周七天的顺序,明天确实是星期四。
4. 一个推理问题:如果所有的苹果都是水果,而你手中有一个苹果,那么你手中的东西是水果吗?- 答案:是的,根据题目条件,你手中的苹果是一种水果。
5. 一个条件问题:如果下雨,那么地面会湿。
如果地面湿了,那么一定是因为下雨吗?- 答案:不一定,地面湿可能是因为其他原因,比如洒水或者有人倒水。
练习题答案解析1. 这个问题是一个典型的三段论,通过两个前提得出结论。
第一个前提是“所有的猫都怕水”,第二个前提是“小明的宠物是一只猫”,根据这两个前提,我们可以得出结论:小明的宠物怕水。
2. 这个问题也是一个三段论,通过条件“所有的居民要么喜欢足球,要么喜欢篮球”和“张三不喜欢足球”,我们可以推断出张三喜欢篮球。
3. 这个问题是一个简单的逻辑推理,基于一周的天数顺序,可以很容易地得出结论。
4. 这个问题涉及到类别的包含关系,苹果是水果的一个子集,所以如果你手中有一个苹果,那么你手中的东西自然是水果。
5. 这个问题涉及到因果关系的判断,虽然下雨会导致地面湿,但地面湿并不一定是由下雨引起的,可能还有其他原因。
逻辑练习题可以帮助学生提高他们的分析、推理和判断能力。
通过解决这些问题,学生可以更好地理解和应用逻辑规则,提高解决问题的能力。
逻辑测试题目及答案

逻辑测试题目及答案
1. 如果所有的猫都怕水,而有些动物不是猫,那么以下哪项陈述是正
确的?
A. 所有怕水的动物都是猫
B. 所有不怕水的动物都是猫
C. 有些怕水的动物不是猫
D. 有些不怕水的动物是猫
答案:C
2. 假设在一个房间里,如果灯是开着的,那么门就是关着的。
如果门
是开着的,那么灯就是关着的。
现在灯是开着的,那么门是什么状态?
A. 门是开着的
B. 门是关着的
C. 门的状态无法确定
D. 门是半开半关的
答案:B
3. 有三扇门,一扇门后面有一辆车,另外两扇门后面是山羊。
如果你
选择了一扇门,主持人会打开另外两扇门中的一扇,露出一只山羊,
然后问你要不要换门。
以下哪项策略会增加你赢得汽车的概率?
A. 坚持最初的选择
B. 换门
C. 随机换门
D. 换门与否无关紧要
答案:B
4. 如果所有的苹果都是水果,所有的水果都含有维生素C,那么以下哪项陈述是正确的?
A. 所有的苹果都含有维生素C
B. 所有的维生素C都在水果中
C. 有些水果不是苹果
D. 所有的维生素C都在苹果中
答案:A
5. 假设在一个逻辑游戏中,如果玩家A赢了,那么玩家B就会输。
如果玩家B赢了,那么玩家A就会输。
现在玩家A赢了,那么玩家B的状态是什么?
A. 玩家B赢了
B. 玩家B输了
C. 玩家B的状态无法确定
D. 玩家B既没有赢也没有输
答案:B
结束语:以上是逻辑测试题目及答案,希望这些题目能够帮助你提高逻辑思维能力。
简易逻辑精选练习题和答案

简易逻辑精选练习题和答案1.“m=”是“直线(m+2)x+3my+1=与直线(m-2)x+(m+2)y-3=相互垂直”的充要条件。
2.设集合A={x| |x-1|<}。
B={x| |x-1|<1}。
若a=1,则A∩B≠。
3.命题p:“有些三角形是等腰三角形”,则┐p是“所有三角形不是等腰三角形”。
4.命题“¬p”、“¬q”、“p∧q”、“p∨q”中假命题的个数为2.5.“a>b>0”是“a2+b2<”的必要而不充分条件。
6.实数a的取值范围是a≥1.7.“∀x∈R,x²-22x + 2≥0”的非命题为“∃x∈R,x²-22x + 2<0”。
8.a<是方程ax+2x+1=至少有一个负数根的充分不必要条件。
9.(1)“∀x∈R,x2+x+1≥0” (2)“∃x∈R,x2-x+3≤0” (3)“存在x∈{x|-2<x<4},|x-2|≥3” (4)“∃x,y∈R,x²+y²<” (5)“x≥-3且x≤2时,x+x-6≤0” (6)“∃a,b∈R,ab>且a≤” (7)“△ABC中,若∠A或∠B是钝角,则∠C是锐角”。
10.选项不完整,无法填空。
11.(1)充分条件 (2)必要条件 (3)充分条件 (4)必要条件12.(1)假(2)m≤3 (3)x≤-2或x≥4 (4)真13.a≤-1或a≥214.解得A={1,2},B={1-m,2/m},则A是B的必要不充分条件,即1-m∈A但2/m∉A,解得m∈(-∞,1)U(2,∞)15.解得p的判别式D<0且m<0,q的判别式D<0且m∈(0,2),则m∈(0,2)16.解得p的解集为[-1,1],q无实根且判别式D<0,解得a∈(-∞,-1)U(1/2,∞)17.(1)不存在 (2)存在,m>0。
逻辑测试题及答案

逻辑测试题及答案1. 线索推理题:某个小偷在一间房子里犯罪。
警方到达现场后,发现了以下线索:在门口发现了一个烟蒂,屋内的电视机处发现了指纹,窗户玻璃上发现了工具的划痕。
根据以上线索,请问小偷是如何入侵该房子的?答案:小偷是从窗户进入的。
因为只有窗户上发现了工具的划痕,表示小偷使用工具撬开了窗户进入。
而门口的烟蒂以及屋内的电视机上的指纹,并不能证明小偷从门口进入。
2. 逻辑推理题:A、B、C、D、E五人排成一排参加比赛。
他们中的任意三人满足以下条件之一:A在B的左边,B在D的左边,C在E的左边。
请根据以上条件,判断下列陈述中哪些是正确的?i) A在D的右边。
ii) A在C的左边。
iii) E在A的左边。
答案:i) 正确;ii) 错误;iii) 正确。
推理过程如下:根据条件可知,B和D之间必然存在一人且距离相对较近,而A在B的左边和B在D的左边,可推出A在D的右边,即i)为正确答案。
因为具体位置未知,所以无法判断A在C的左边,即ii)为错误答案。
C在E的左边,且A在B的左边,可推出E在A的左边,即iii)为正确答案。
3. 逻辑判断题:根据以下信息,请判断每个人的职业。
1) 甲说:乙是医生。
2) 乙说:丙是警察。
3) 丙说:甲是农民。
4) 丁说:乙是农民。
根据以上信息,请回答以下问题:每个人的职业是什么?答案:甲是警察,乙是医生,丙是农民,丁是农民。
推理过程如下:假设甲是医生,则乙应该说丙是警察,与2)中的说法矛盾,所以甲不是医生。
假设乙是医生,则丙应该说甲是农民,与3)中的说法矛盾,所以乙不是医生。
假设丙是医生,则甲应该说乙是医生,与1)中的说法相符,所以丙是医生。
根据4)中的说法,丁是农民。
由此可得答案:甲是警察,乙是医生,丙是农民,丁是农民。
通过以上逻辑测试题,我们锻炼了逻辑思维的能力,并通过分析线索和推理判断找出答案。
这些逻辑推理题可以帮助我们提高思维灵活性和推理能力,对于解决问题和理解复杂情况都有一定帮助。
高中简易逻辑试题及答案

高中简易逻辑试题及答案一、单选题(每题2分,共20分)1. 下列命题中,哪一个是真命题?A. 所有学生都是高中生。
B. 有些学生是高中生。
B. 没有学生是高中生。
D. 所有学生都不是高中生。
2. 如果“如果下雨,地面就会湿”为真,那么下列哪个命题必然为真?A. 如果地面湿,那么一定下雨了。
B. 如果地面不湿,那么没有下雨。
C. 如果没有下雨,地面一定不湿。
D. 如果地面湿,那么可能下雨了。
3. 以下哪个命题是“所有猫都怕水”的逆命题?A. 所有怕水的都是猫。
B. 所有不怕水的都不是猫。
C. 有些猫不怕水。
D. 有些怕水的不是猫。
4. 如果“所有A都是B”为真,那么“有些A不是B”是:A. 真命题B. 假命题C. 可能命题D. 不可能命题5. 以下哪个命题是“有些A是B”的逆否命题?A. 所有B都是A。
B. 所有B都不是A。
C. 有些B不是A。
D. 没有B是A。
6. 如果“如果A,则B”为真,且A为假,那么B的真值是什么?A. 真B. 假C. 不确定D. 既非真也非假7. “所有A都是B”和“有些A不是B”这两个命题:A. 可以同时为真B. 可以同时为假C. 一个为真,另一个为假D. 一个为假,另一个为真8. 下列哪个命题是“如果A,则B”的等价命题?A. 如果B,则A。
B. 如果非B,则非A。
C. 如果A且B,则B。
D. 如果B且A,则A。
9. 如果“有些A是B”为真,那么“所有B都是A”是:A. 真命题B. 假命题C. 可能命题D. 不可能命题10. 如果“如果A,则B”为真,且B为真,那么A的真值是什么?A. 真B. 假C. 不确定D. 既非真也非假二、多选题(每题3分,共15分)11. 下列哪些命题是“如果A,则B”的逻辑等价命题?A. 如果非A,则非B。
B. 如果B,则A。
C. 如果非B,则非A。
D. 如果A且非B,则非A。
12. 如果“所有A都是B”和“有些C是A”为真,那么下列哪些命题必然为真?A. 所有C都是B。
逻辑测试题目及答案

逻辑测试题目及答案1. 如果所有的猫都会爬树,而Tom是一只猫,那么Tom会爬树吗?A. 会B. 不会C. 不确定D. 以上都不是答案:A2. 假设在一个房间里,所有的人都是医生,所有的医生都戴眼镜。
如果John戴眼镜,那么John是医生吗?A. 是B. 不是C. 不确定D. 以上都不是答案:C3. 以下哪项陈述是逻辑上正确的?A. 如果今天下雨,那么地面会湿。
B. 如果今天不下雨,那么地面不会湿。
C. 如果地面湿了,那么今天下雨了。
D. 如果地面不湿,那么今天没有下雨。
答案:D4. 一个逻辑上有效的论证是:A. 一个前提为假,结论为假的论证。
B. 一个前提为真,结论为假的论证。
C. 一个前提为假,结论为真的论证。
D. 一个前提为真,结论为真的论证。
答案:D5. 如果所有的苹果都是水果,而所有的水果都是食物,那么苹果是食物吗?A. 是B. 不是C. 不确定D. 以上都不是答案:A6. 如果一个命题的否定是真的,那么原命题是:A. 真的B. 假的C. 不确定D. 以上都不是答案:B7. 以下哪个选项是“如果P,则Q”的逆否命题?A. 如果非Q,则非PB. 如果Q,则PC. 如果非P,则非QD. 如果P,则非Q答案:A8. 如果一个逻辑论证的前提都为真,但结论为假,那么这个论证是:A. 有效的B. 无效的C. 有效的,但结论不是由前提推导出来的D. 以上都不是答案:B9. 以下哪个选项是“如果P,则Q”的逆命题?A. 如果非Q,则非PB. 如果Q,则PC. 如果非P,则非QD. 如果P,则Q答案:B10. 如果一个命题的逆命题是真的,那么原命题也是真的吗?A. 是B. 不是C. 不确定D. 以上都不是答案:C。
最新经典逻辑思维训练题(25题-带答案)

经典逻辑思维训练题(25题,带答案)快去训练一下你的大脑的逻辑思维能力吧!1.世界级的马拉松选手每天跑步不超过6公里。
因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手。
以下哪项与上文推理方法相同?(A)跳远运动员每天早晨跑步。
如果早晨有人跑步,则他不是跳远运动员。
(B)如果每日只睡4小时,对身体不利。
研究表明,最有价值的睡眠都发生在入睡后第5小时。
(C)家长和小孩做游戏时,小孩更高兴。
因此,家长应该多做游戏。
(D)如果某汽车早晨能起动,则晚上也可能起动。
我们的车早晨通常能启动,同样,它晚上通常也能启动。
(E)油漆三小时之内都不干。
如果某涂料在三小时内干了,则不是油漆。
2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。
那些没有牛的,通常是好吃懒做的人。
因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。
这位改革家明显犯了一个逻辑错误。
下列选项哪个与该错误相类似?(A)天下雨,地上湿。
现在天不下雨,所以地也不湿。
(B)这是一本好书,因为它的作者曾获诺贝尔奖。
(C)你是一个犯过罪的人,有什么资格说我不懂哲学?(D)因为他躺在床上,所以他病了。
3.有一天,某一珠宝店被盗走了一块贵重的钻石。
经侦破,查明作案人肯定在甲、乙、丙、丁之中。
于是,对这四个重大嫌疑犯进行审讯。
审讯所得到的口供如下:甲:我不是作案的。
乙:丁是罪犯。
丙:乙是盗窃这块钻石的罪犯。
丁:作案的不是我。
经查实:这四个人的口供中只有一个是假的。
那么,以下哪项才是正确的破案结果?(A)甲作案。
(B)乙作案。
(C)丙作案。
(D)丁作案。
(E)甲、乙、丙、丁共同作案。
4.古代一位国王和他的张、王、李、赵、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。
打猎中,一只鹿中箭倒下,但不知是何人所射。
张说:“或者是我射中的,或者是李将军射中的。
王说:“不是钱将军射中的。
李说:“如果不是赵将军射中的,那么一定是王将军射中的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.“|a|>0”是“a>0”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件答案 B
解析因为|a|>0⇔a>0或a<0,所以a>0⇒|a|>0,但|a|>0a>0.
2.(2012·陕西)设a,b∈R,i是虚数单位,则“ab=0”是“复数a+b
i为纯
虚数”的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件答案 B
解析由a+b
i为纯虚数可知a=0,b≠0,所以ab=0.而ab=0a=0,且
b≠0.故选B项.
3.“a>1”是“1
a<1”的()
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既非充分也非必要条件
答案 B
4.(2013·湖北)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()
A.(綈p)∨(綈q) B.p∨(綈q)
C.(綈p)∧(綈q) D.p∨q
答案 A
解析綈p:甲没有降落在指定范围;綈q:乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即綈p或綈q发生.故选A.
5.命题“若x2<1,则-1<x<1”的逆否命题是()
A.若x2≥1,则x≥1或x≤-1
B.若-1<x<1,则x2<1
C.若x>1或x<-1,则x2>1
D.若x≥1或x≤-1,则x2≥1
答案 D
解析原命题的逆否命题是把条件和结论都否定后,再交换位置,注意“-1<x<1”的否定是“x≥1或x≤-1”.
6.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
答案 A
解析因为x≥2且y≥2⇒x2+y2≥4易证,所以充分性满足,反之,不成立,
如x=y=7
4,满足x
2+y2≥4,但不满足x≥2且y≥2,所以x≥2且y≥2是x2+
y2≥4的充分而不必要条件,故选择A.
7.已知p:a≠0,q:ab≠0,则p是q的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
答案 B
解析ab=0a=0,但a=0⇒ab=0,因此,p是q的必要不充分条件,故选B.
8.设M、N是两个集合,则“M∪N≠∅”是“M∩N≠∅”的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件
答案 B
解析M∪N≠∅,不能保证M,N有公共元素,但M∩N≠∅,说明M,N中至
少有一元素,∴M ∪N ≠∅.故选B.
9.若x ,y ∈R ,则下列命题中,甲是乙的充分不必要条件的是( )
A .甲:xy =0 乙:x 2+y 2=0
B .甲:xy =0 乙:|x |+|y |=|x +y |
C .甲:xy =0 乙:x 、y 至少有一个为零
D .甲:x <y 乙:x y <1
答案 B
解析 选项A :甲:xy =0即x ,y 至少有一个为0,
乙:x 2+y 2=0即x 与y 都为0.甲乙,乙⇒甲.
选项B :甲:xy =0即x ,y 至少有一个为0,
乙:|x |+|y |=|x +y |即x 、y 至少有一个为0或同号.
故甲⇒乙且乙甲.
选项C :甲⇔乙,选项D ,由甲x <y 知当y =0,x <0时,乙不成立,故甲乙.
10.在△ABC 中,设p :a sin B =b sin C =c sin A ;q :△ABC 是正三角形,那么p
是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件 答案 C
解析 若p 成立,即a sin B =b sin C =c sin A ,由正弦定理,可得a b =b c =c a =k .
∴⎩⎪⎨⎪⎧ a =kb ,b =kc ,
c =ka ,∴a =b =c .则q :△ABC 是正三角形成立.
反之,若a =b =c ,∠A =∠B =∠C =60°,则a sin B =b sin C =c sin A .
因此p⇒q且q⇒p,即p是q的充要条件.故选C.
11.“a=1”是“函数f(x)=lg(ax)在(0,+∞)上单调递增”的()
A.充分不必要条件B.充分必要条件
C.必要不充分条件D.既不充分也不必要条件
答案 A
解析∵当a=1时,f(x)=lg x在(0,+∞)上单调递增,∴a=1⇒f(x)=lg(ax)在(0,+∞)上单调递增,而f(x)=lg(ax)在(0,+∞)上单调递增可得a>0,∴“a =1”是“函数f(x)=lg(ax)在(0,+∞)上单调递增”的充分不必要条件,故选A.
12.“x>y>0”是“1
x<
1
y”的________条件.
答案充分不必要
解析1
x<
1
y⇒xy·(y-x)<0,
即x>y>0或y<x<0或x<0<y.
13.“tan θ≠1”是“θ≠π
4”的________条件.答案充分不必要
解析题目即判断θ=π
4是tan θ=1的什么条件,显然是充分不必要条件.14.如果对于任意实数x,〈x〉表示不小于x的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x-y|<1”是“〈x〉=〈y〉”的________条件.答案必要不充分
解析可举例子,比如x=-0.5,y=-1.4,可得〈x〉=0,〈y〉=-1;比如x=1.1,y=1.5,〈x〉=〈y〉=2,|x-y|<1成立.因此“|x-y|<1”是〈x〉=〈y〉的必要不充分条件.
15.已知A为xOy平面内的一个区域.
命题甲:点(a ,b )∈{(x ,y )|⎩⎨⎧ x -y +2≤0,
x ≥0,
3x +y -6≤0
};
命题乙:点(a ,b )∈A . 如果甲是乙的充分条件,那么区域A 的面积的最小值是________. 答案 2
解析 设⎩⎪⎨⎪⎧ x -y +2≤0,x ≥0,
3x +y -6≤0所对应的区域如右图所示的阴影部分PMN 为集
合B .由题意,甲是乙的充分条件,则B ⊆A ,所以区域A 面积的最小值为S △PMN = 12×4×1=2.
16.“a =14”是“对任意的正数x ,均有x +a x ≥1”的________条件. 答案 充分不必要
解析 当a =14时,对任意的正数x ,x +a x =x +14x ≥2x ·14x =1,而对任意的正数x ,要使x +a x ≥1,只需f (x )=x +a x 的最小值大于或等于1即可,而在a 为
正数的情况下,f (x )=x +a x 的最小值为f (a )=2a ≥1,得a ≥14,故充分不必要.
17.已知命题p :|x -2|<a (a >0),命题q :|x 2-4|<1,若p 是q 的充分不必要条件,求实数a 的取值范围. 答案 0<a ≤5-2
解析 由题意p :|x -2|<a ⇔2-a <x <2+a ,q :|x 2-4|<1⇔
-1<x 2-4<1⇔
3<x 2<5⇔-5<x <-3或3<x < 5.
又由题意知p 是q 的充分不必要条件,
所以有⎩⎪⎨⎪⎧ -5≤2-a ,2+a ≤-3,
a >0, ①或⎩⎪⎨⎪⎧ 3≤2-a ,2+a ≤5,a >0, ②.
由①得a 无解;由②解得0<a ≤5-2.
18.已知集合M ={x |x <-3或x >5},P ={x |(x -a )·(x -8)≤0}.
(1)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的充要条件;
(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件;
(3)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的一个必要但不充分条件.
答案 (1){a |-3≤a ≤5} (2)在{a |-3≤a ≤5}中可任取一个值a =0
(3){a |a <-3}
解析 由题意知,a ≤8.
(1)M ∩P ={x |5<x ≤8}的充要条件-3≤a ≤5.
(2)M ∩P ={x |5<x ≤8}的充分但不必要条件,显然,a 在[-3,5]中任取一个值都可.
(3)若a =-5,显然M ∩P =[-5,-3)∪(5,8]是M ∩P ={x |5<x ≤8}的必要但不充分条件.
结合①②知a <-
3时为必要不充分.。