十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

合集下载

十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1文科02】已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},∴∁U A={1,6,7},则B∩∁U A={6,7}故选:C.2.【2018年新课标1文科01】已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2} B.{1,2}C.{0} D.{﹣2,﹣1,0,1,2}【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B={0,2}.故选:A.3.【2017年新课标1文科01】已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x} B.A∩B=∅C.A∪B={x|x} D.A∪B=R【解答】解:∵集合A={x|x<2},B={x|3﹣2x>0}={x|x},∴A∩B={x|x},故A正确,B错误;A∪B={x||x<2},故C,D错误;故选:A.4.【2016年新课标1文科01】设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.5.【2015年新课标1文科01】已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2【解答】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.6.【2014年新课标1文科01】已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.7.【2013年新课标1文科01】已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.8.【2012年新课标1文科01】已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x∴B⊊A.故选:B.9.【2011年新课标1文科01】已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B.10.【2010年新课标1文科01】已知集合A={x||x|≤2,x∈R},B={x|4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题 1.若集合,,则AB =( )A .B .C .D .【答案】A 【解析】 解:,则,故选:A . 2.已知集合,,则AB =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】,,又,所以,故本题选C.3.已知集合,,则A B =( )A .B .{}1,0,1,2,3-C .{}3,2--D .【答案】B 【解析】因为,∴.4.已知全集U =R ,集合,则()U A B =ð( )A .(1,2)B .(]1,2 C .(1,3) D .(,2]-∞【答案】B 【解析】由24x >可得2x >,可得13x <<,所以集合,(,2]U A =-∞ð,所以()U A B =ð(]1,2,故选B.5.已知集合,集合,则集合A B ⋂的子集个数为( ) A .1 B .2C .3D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2y x =有2个交点,故A B ⋂的子集有4个. 6.已知集合,,则()R M N ⋂ð=( )A .{-1,0,1,2,3}B .{-1,0,1,2}C .{-1,0,1}D .{-1,3}【答案】D 【解析】 由题意,集合,则或3}x ≥又由,所以,故选D.7.已知集合,,则()R A B I ð=( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】 因为,所以,又,所以.8.已知R 是实数集,集合,,则()AB =Rð( )A .{}1,0-B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】即故选A 。

十年高考真题分类汇编(2010-2019) 数学 专题01 集合 解析版

十年高考真题分类汇编(2010-2019)  数学 专题01 集合  解析版

十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。

2020年全国卷1文科数学高考十年真题汇编(2010-2019)及答案详解

2020年全国卷1文科数学高考十年真题汇编(2010-2019)及答案详解

2020年全国卷1文科数学高考十年真题(2010-2019)及2020年高考模拟题汇编含答案详解历年高考真题汇编1.【2015年新课标1文科07】已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10D.122.【2013年新课标1文科06】设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1B.S n=3a n﹣2C.S n=4﹣3a n D.S n=3﹣2a n3.【2012年新课标1文科12】数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.18304.【2019年新课标1文科14】记S n为等比数列{a n}的前n项和.若a1=1,S3,则S4=.5.【2015年新课标1文科13】在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.6.【2012年新课标1文科14】等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.7.【2019年新课标1文科18】记S n为等差数列{a n}的前n项和.已知S9=﹣a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.8.【2018年新课标1文科17】已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.9.【2017年新课标1文科17】记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.10.【2016年新课标1文科17】已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.11.【2014年新课标1文科17】已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.12.【2013年新课标1文科17】已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.13.【2011年新课标1文科17】已知等比数列{a n}中,a1,公比q.(Ⅰ)S n为{a n}的前n项和,证明:S n(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.14.【2010年新课标1文科17】设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.考题分析与复习建议本专题考查的知识点为:数列的概念与简单表示法,等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.历年考题主要以选择填空或解答题题型出现.重点考查的知识点为:等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.预测明年本考点题目会比较稳定,备考方向以知识点等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项为重点较佳.最新高考模拟试题1.等差数列,等比数列,满足,,则能取到的最小整数是( ) A .B .C .D .2.中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟? A .B .C .D .3.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9填入的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数填入个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做阶幻方.记阶幻方的对角线上的数字之和为,如图三阶幻方的,那么 的值为( )A .41B .45C .369D .321{}n a {}n b 111a b ==53a b =9a 1-023253503507100733⨯21,2,3,,n n n ⨯n n n N 315N =9N4.设数列的前项和为,且 ,则数列的前10项的和是( ) A .290B .C .D .5.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:,即,此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列,则数列的前2019项的和为( ) A .672B .673C .1346D .20196.已知数列是等比数列,数列是等差数列,若,则的值是( )A .1B .C. D .7.已知数列满足,设数列满足:,数列的前项和为,若恒成立,则实数的取值范围为( ) A .B .C .D .8.已知函数的定义域为,当时,且对任意的实数,等式成立,若数列满足,且,则下列结论成立的是( )A .B .{}n a n n S 11a =2(1)()nn S a n n N n *=+-∈13n S n ⎧⎫⎨⎬+⎩⎭92051110111,1,2,3,5,8,13,21,34,55,()()()()()121,12F F F n F n F n ===-+-()3,n n N *≥∈{}n a {}n a {}n a {}n b 2610a a a ⋅⋅=16117b b b π++=21039tan1b b a a +-⋅2{}n a 2*123111()23n a a a a n n n N n++++=+∈{}n b 121n n n n b a a ++={}n b n n T *()1nn N T n nλ<∈+λ1[,)4+∞1(,)4+∞3[,)8+∞3(,)8+∞()y f x =R 0x <()1f x >,x y R ∈()()()f x f y f x y =+{}n a ()()1111n n f a f n N a *+⎛⎫=∈⎪+⎝⎭()10a f =()()20162018f a f a >()()20172020f a f a >C .D .9.在数列中,,则的值为______. 10.已知正项等比数列满足,若存在两项,,使得,则的最小值为__________. 11.已知数列满足对,都有成立,,函数,记,则数列的前项和为______. 12.已知数列的前项和为,满足,则=_____.13.等差数列中,且,,成等比数列,数列前20项的和____14.已知正项等比数列的前项和为.若,则取得最小值时,的值为_______.15.设数列的前项和为,且满足,则____.16.已知数列满足,则数列的前项和为___________.17.定义:从数列中抽取项按其在中的次序排列形成一个新数列,则称为的子数列;若成等差(或等比),则称为的等差(或等比)子数列.(1)记数列的前项和为,已知.①求数列的通项公式;()()20182019f a f a >()()20162019f a f a >{}n a 1111,,(*)2019(1)n n a a a n N n n +==+∈+2019a {}n a 5432a a a +=m a na 1a =91m n+{}n a *,m n N ∀∈m n m n a a a ++=72a π=()f x =2sin 24cos 2xx +()n n y f a ={}n y 13{}n a n n S 22()n n S a n n N *=+∈n a {}n a 410a =3a 6a 10a {}n a 20S ={}n a n n S 9362S S S =+631S S +9S {}n a n n S 11222n n a a a n -++⋯+=5S ={}n a 112(1)0,4n n n a na a ++-==(1)(2)na n n ⎧⎫⎨⎬++⎩⎭n {}n a (,3)m m N m ∈≥{}n a {}n b {}n b {}n a {}n b {}n b {}n a {}n a n n S 21nn S =-{}n a②数列是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由. (2)已知数列的通项公式为,证明:存在等比子数列.18.在等差数列中,已知公差,是与的等比中项 (1)求数列的通项公式; (2)若数列满足,求数列的通项公式; (3)令,数列的前项和为. {}n a {}n a ()n a n a a Q +=+∈{}n a {}n a 2d =2a 1a 4a {}n a {}n b 3122331313131nn n b b b ba =++++++++{}n b ()*4n nn a b c n N =∈{}n c n n T19.已知等差数列满足,等比数列满足,且.(1)求数列,的通项公式;(2)记数列的前项和为,若数列满足,求{}n a 32421,7a a a =-={}n b ()35242b b b b +=+()2*22n n b b n =∈N{}n a {}n b {}n a n n S {}n c ()*1212n n nc c c S n b b b ++⋯+=∈N的前项和为.20.等差数列前项和为,且,.(1)求的通项公式;(2)数列满足且,求的前项和.{}n c n n T{}n a n n S 432S =13221S ={}n a n a {}n b ()*1n n n b b a n N +-=∈13b =1n b ⎧⎫⎨⎬⎩⎭n n T21.设是单调递增的等比数列,为数列的前项和.已知,且,,构成等差数列.(1)求及;(2)是否存在常数.使得数列是等比数列?若存在,求的值;若不存在,请说明理由.{}n a n S {}n a n 313S =13a +23a 35a +n a n S λ{}n S λ+λ22.对于无穷数列,,若,,则称是的“收缩数列”.其中,分别表示中的最大数和最小数.已知为无穷数列,其前项和为,数列是的“收缩数列”.(1)若,求的前项和;{}n a {}n b {}{}1212max ,,,min ,,,k k k b a a a a a a =-1,2,3,k ={}n b {}n a {}12max ,,,k a a a {}12min ,,,k a a a 12,,,k a a a {}n a n n S {}n b {}n a 21n a n =+{}n b n(2)证明:的“收缩数列”仍是;(3)若且,,求所有满足该条件的.答案解析1.【2015年新课标1文科07】已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .B .C .10D .12【解答】解:∵{a n }是公差为1的等差数列,S 8=4S 4,{}n b {}n b 121(1)(1)(1,2,3,)22n n n n n n S S S a b n +-+++=+=11a =22a ={}n a∴8a11=4×(4a1),解得a1.则a109×1.故选:B.2.【2013年新课标1文科06】设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1B.S n=3a n﹣2C.S n=4﹣3a n D.S n=3﹣2a n【解答】解:由题意可得a n=1,∴S n33﹣23﹣2a n,故选:D.3.【2012年新课标1文科12】数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8)=1830,故选:D.4.【2019年新课标1文科14】记S n为等比数列{a n}的前n项和.若a1=1,S3,则S4=.【解答】解:∵等比数列{a n}的前n项和,a1=1,S3,∴q≠1,,整理可得,,解可得,q,则S4.故答案为:5.【2015年新课标1文科13】在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.【解答】解:∵a n+1=2a n,∴,∵a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:66.【2012年新课标1文科14】等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴(q﹣1)(q+2)2=0∵q≠1∴q=﹣2故答案为:﹣27.【2019年新课标1文科18】记S n为等差数列{a n}的前n项和.已知S9=﹣a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.【解答】解:(1)根据题意,等差数列{a n}中,设其公差为d,若S9=﹣a5,则S99a5=﹣a5,变形可得a5=0,即a1+4d=0,若a3=4,则d2,则a n=a3+(n﹣3)d=﹣2n+10,(2)若S n≥a n,则na1d≥a1+(n﹣1)d,当n=1时,不等式成立,当n≥2时,有d﹣a1,变形可得(n﹣2)d≥﹣a1,又由S9=﹣a5,即S99a5=﹣a5,则有a5=0,即a1+4d=0,则有(n﹣2)a1,又由a1>0,则有n≤10,则有2≤n≤10,综合可得:n的取值范围是{n|1≤n≤10,n∈N}.8.【2018年新课标1文科17】已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.【解答】解:(1)数列{a n}满足a1=1,na n+1=2(n+1)a n,则:(常数),由于,故:,数列{b n}是以b1为首项,2为公比的等比数列.整理得:,所以:b1=1,b2=2,b3=4.(2)数列{b n}是为等比数列,由于(常数);(3)由(1)得:,根据,所以:.9.【2017年新课标1文科17】记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【解答】解:(1)设等比数列{a n}首项为a1,公比为q,则a3=S3﹣S2=﹣6﹣2=﹣8,则a1,a2,由a1+a2=2,2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n[2+(﹣2)n+1],则S n+1[2+(﹣2)n+2],S n+2[2+(﹣2)n+3],由S n+1+S n+2[2+(﹣2)n+2][2+(﹣2)n+3],[4+(﹣2)×(﹣2)n+1+(﹣2)2×(﹣2)n+1],[4+2(﹣2)n+1]=2×[(2+(﹣2)n+1)],=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.10.【2016年新课标1文科17】已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n(1﹣3﹣n).11.【2014年新课标1文科17】已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)方程x2﹣5x+6=0的根为2,3.又{a n}是递增的等差数列,故a2=2,a4=3,可得2d=1,d,故a n=2+(n﹣2)n+1,(2)设数列{}的前n项和为S n,S n,①S n,②①﹣②得S n,解得S n2.12.【2013年新课标1文科17】已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的首项为a1,公差为d,则.由已知可得,即,解得a1=1,d=﹣1,故{a n}的通项公式为a n=a1+(n﹣1)d=1+(n﹣1)•(﹣1)=2﹣n;(Ⅱ)由(Ⅰ)知.从而数列{}的前n项和S n.13.【2011年新课标1文科17】已知等比数列{a n}中,a1,公比q.(Ⅰ)S n为{a n}的前n项和,证明:S n(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1,q∴a n,S n又∵S n∴S n(II)∵a n∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣n log33)=﹣(1+2+…+n)∴数列{b n }的通项公式为:b n14.【2010年新课标1文科17】设等差数列{a n }满足a 3=5,a 10=﹣9. (Ⅰ)求{a n }的通项公式;(Ⅱ)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 【解答】解:(1)由a n =a 1+(n ﹣1)d 及a 3=5,a 10=﹣9得 a 1+9d =﹣9,a 1+2d =5 解得d =﹣2,a 1=9,数列{a n }的通项公式为a n =11﹣2n (2)由(1)知S n =na 1d =10n ﹣n 2.因为S n =﹣(n ﹣5)2+25. 所以n =5时,S n 取得最大值. 考题分析与复习建议本专题考查的知识点为:数列的概念与简单表示法,等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.历年考题主要以选择填空或解答题题型出现.重点考查的知识点为:等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.预测明年本考点题目会比较稳定,备考方向以知识点等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项为重点较佳.最新高考模拟试题1.等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( )A .1-B .0C .2D .3【答案】B 【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=, 则2291812(1)211a d q q =+=+-=->-,可得9a 能取到的最小整数是0. 故选:B .2.中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟? A .253B .503C .D .1007【答案】D 【解析】因为5斗=50升,设羊、马、牛的主人应偿还的量分别为123,,a a a , 由题意可知其构成了公比为2的等比数列,且350S =则31(21)5021a -=-,解得1507a =, 所以马主人要偿还的量为:2110027a a ==, 故选D.3.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9填入33⨯的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数21,2,3,,n 填入n n ⨯个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记n 阶幻方的对角线上的数字之和为n N ,如图三阶幻方的315N =,那么 9N 的值为( )A .41B .45C .369D .321【答案】C 【解析】根据题意可知,幻方对角线上的数成等差数列, 31(123456789)153N =++++++++=,41(12345678910111213141516)344N =+++++++++++++++=,51(12345678910111213141516171819202122232425)655N =++++++++++++++++++++++++=, …211(12345)n N n n n ∴=+++++⋯+=故299(91)9413692N +==⨯=.故选:C4.设数列{}n a 的前n 项和为n S ,且11a = 2(1)()nn S a n n N n *=+-∈,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是( ) A .290 B .920C .511D .1011【答案】C 【解析】 由()2(1)nn S a n n N n*=+-∈得2(1)n n S na n n =--, 当2n ≥时,11(1)4(1)n n n n n a S S na n a n --=-=----,整理得14n n a a --=,所以{}n a 是公差为4的等差数列,又11a =, 所以()43n a n n N*=-∈,从而()2133222(1)2n n n a a S n n n n n n ++=+=+=+, 所以1111132(1)21n S n n n n n ⎛⎫==- ⎪+++⎝⎭,数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和115121111S ⎛⎫=-= ⎪⎝⎭.故选C .5.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,,即()()()()()121,12F F F n F n F n ===-+-()3,n n N *≥∈,此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{}n a ,则数列{}n a 的前2019项的和为( ) A .672 B .673C .1346D .2019【答案】C 【解析】由数列1,1,2,3,5,8,13,21,34,55,...各项除以2的余数, 可得{}n a 为1,1,0,1,1,0,1,1,0,1,1,0,..., 所以{}n a 是周期为3的周期数列, 一个周期中三项和为1102++=, 因为20196733=⨯,所以数列{}n a 的前2019项的和为67321346⨯=, 故选C.6.已知数列{}n a 是等比数列,数列{}n b 是等差数列,若2610a a a ⋅⋅=16117b b b π++=,则21039tan1b b a a +-⋅的值是( )A .1 BC.2-D.【答案】D 【解析】{}n a 是等比数列326106a a a a ∴⋅⋅==6a ∴={}n b 是等差数列 1611637b b b b π∴++== 673b π∴=2106239614273tan tan tan tan tan 111333b b b a a a πππ+∴===-=-=-⋅--本题正确选项:D 7.已知数列{}n a 满足2*123111()23n a a a a n n n N n++++=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*()1n n N T n nλ<∈+恒成立,则实数λ的取值范围为( ) A .1[,)4+∞ B .1(,)4+∞C .3[,)8+∞D .3(,)8+∞【答案】D 【解析】解:数列{}n a 满足212311123n a a a a n n n ++++=+,① 当2n ≥时,21231111(1)(1)231n a a a a n n n -+++⋯+=-+--,② ①﹣②得:12n a n n=,故:22n a n =,数列{}n b 满足:22121214(1)n n n n n b a a n n +++==+221114(1)n n ⎡⎤=-⎢⎥+⎣⎦, 则:2222211111114223(1)n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦21114(1)n ⎛⎫=- ⎪+⎝⎭, 由于*()1n n N T n nλ<∈+恒成立, 故:21114(1)1n n n λ⎛⎫-< ⎪++⎝⎭, 整理得:244n n λ+>+,因为211(1)4441n y n n +==+++在*n N ∈上单调递减, 故当1n =时,max 213448n n +⎛⎫= ⎪+⎝⎭ 所以38λ>. 故选:D .8.已知函数()y f x =的定义域为R ,当0x <时()1f x >,且对任意的实数,x y R ∈,等式()()()f x f y f x y =+成立,若数列{}n a 满足()()1111n n f a f n N a *+⎛⎫=∈ ⎪+⎝⎭,且()10a f =,则下列结论成立的是( )A .()()20162018f a f a >B .()()20172020f a f a >C .()()20182019f a f a >D .()()20162019f a f a >【答案】A 【解析】由()()()f x f y f x y =+,令0x =,1y =-,则()()()011f f f -=-0x <时,()1f x > ()11f ∴-> ()01f ∴= 11a ∴=当0x >时,令y x =-,则()()()01f x f x f -==,即()()1f x f x =-又()1f x -> ∴当0x >时,()01f x << 令21x x >,则21>0-x x()()()1212f x f x x f x ∴-=,即()()()()22110,1f x f x x f x =-∈ ()f x ∴在R 上单调递减又()()11111011n n n n f a f f a f a a ++⎛⎫⎛⎫=+== ⎪ ⎪++⎝⎭⎝⎭ 111n na a +∴=-+ 令1n =,212a =-;令2n =,32a =-;令3n =,41a = ∴数列{}n a 是以3为周期的周期数列201632a a ∴==-,201711a a ==,2018212a a ==-,201932a a ==-,202011a a ==()f x 在R 上单调递减 ()()1212f f f ⎛⎫∴->-> ⎪⎝⎭()()20162018f a f a ∴>,()()20172020f a f a =,()()20182019f a f a <,()()20162019f a f a =本题正确选项:A 9.在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 【答案】1 【解析】 因为11,(*)(1)n n a a n N n n +=+∈+所以1111(1)1n n a a n n n n +-==-++,2111,2a a -=-3211,23a a -=-...,201920181120182019a a -=-,各式相加,可得20191112019a a -=-, 201911120192019a -=-,所以,20191a =,故答案为1.10.已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a ,使得1a =,则91m n+的最小值为__________. 【答案】2 【解析】正项等比数列{}n a 满足5432a a a +=,432111=+2a q a q a q ∴,整理,得210+2q q -=,又0q >,解得,12q =, 存在两项m a ,n a 使得1m n a a =,2221164m n a q a +-∴=, 整理,得8m n +=,∴9119119()()(10)88m n m n m n m n n m+=++=++ 19(10)28m n n m+=, 则91m n+的最小值为2. 当且仅当9m n n m=取等号,但此时m ,*n N ∉.又8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:211.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos 2xx +,记()n n y f a =,则数列{}n y 的前13项和为______. 【答案】26 【解析】 解:对*,m n ∀∈N ,都有m n m n a a a ++=成立,可令1m =即有11n n a a a +-=,为常数, 可得数列{}n a 为等差数列, 函数2()sin 24cos 2xf x x =+sin 22(1cos )x x =++, 由()()()sin 221cos f x fx x x π+-=++()()()sin 221cos 4x x ππ+-++-=,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,113212a a a a +=+=6872a a a π=+==,∴()()()()113212f a f a f a f a +=+=()()()6874,2f a f a f a =+==,∴可得数列{}n y 的前13项和为46226⨯+=.故答案为:26.12.已知数列{}n a 的前n 项和为n S ,满足22()n n S a n n N *=+∈,则n a =_____.【答案】122n +- 【解析】由题意,数列{}n a 满足22()n n S a n n N *=+∈, 则1122(1)(2,)n n S a n n n N *--=+-≥∈,两式相减可得11222,(2,)n n n n S S a a n n N *--+≥∈-=-, 即1222,(2,)n n n a a a n n N *-=+≥∈-整理得122,(2)n n a a n -=-≥,即12(2),(22)n n a a n -=-≥-,即12,(2)22n n a n a -=≥--, 当1n =时,1122S a =+,即1122a a =+,解得12a =-,所以数列{}2n a -表示首项为124a -=-,公比为2的等比数列,所以112422n n n a -+-=-⨯=-,所以122n n a +=-.13.等差数列{}n a 中,410a =且3a ,6a ,10a 成等比数列,数列{}n a 前20项的和20S =____ 【答案】200或330 【解析】设数列{}n a 的公差为d ,则3410a a d d =-=-,641042102,6106a a d d a a d d =+=+=+=+,由3610,,a a a 成等比数列,得23106a a a =,即()()()210106102d d d -+=+,整理得210100d d -=,解得0d =或1d =, 当0d =时,20420200S a ==;当1d =时,14310317a a d =-=-⨯=, 于是2012019202071903302S a d ⨯=+=⨯+=, 故答案为200或330.14.已知正项等比数列{}n a 的前n 项和为n S .若9362S S S =+,则631S S +取得最小值时,9S 的值为_______.【答案】3【解析】由9362S S S =+,得:q≠1,所以936111(1)(1)(1)2111a q a q a q q q q---=+---,化简得:936112(1)q q q -=-+-,即963220q q q --+=,即63(1)(2)0q q --=,得32q =,化简得631S S +=6131(1)11(1)a q qq a q --+--=11311a q q a -+≥- 当11311a q q a -=-,即1a =时,631S S +取得最小值, 所以919(1)1a q S q -==-9(1)1q q --=315.设数列{}n a 的前n 项和为n S ,且满足11222n n a a a n -++⋯+=,则5S =____.【答案】3116【解析】 解:11222n n a a a n -+++=,可得1n =时,11a = ,2n ≥时,2121221n n a a a n --++⋯+=-,又11222n n a a a n -++⋯+=,两式相减可得121n n a -=,即112n n a -⎛⎫= ⎪⎝⎭,上式对1n =也成立,可得数列{}n a 是首项为1,公比为12的等比数列, 可得551131211612S -==-. 故答案为:3116.16.已知数列{}n a 满足112(1)0,4n n n a na a ++-==,则数列(1)(2)na n n ⎧⎫⎨⎬++⎩⎭的前n 项和为___________.【答案】2222n n +-+【解析】由12(1)0n n n a na ++-=,得121n n a an n+=⨯+, 所以数列n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的等比数列,于是11422n n na n-+=⨯=, 所以12n n a n +=⋅,因为12(1)(2)(1)(2)n n a n n n n n +⋅=++++212221n n n n ++=-++, 所以(1)(2)na n n ⎧⎫⎨⎬++⎩⎭的前n 项和324321222222324321n n n S n n ++⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭2222n n +=-+. 17.定义:从数列{}n a 中抽取(,3)m m N m ∈≥项按其在{}n a 中的次序排列形成一个新数列{}n b ,则称{}n b 为{}n a 的子数列;若{}n b 成等差(或等比),则称{}n b 为{}n a 的等差(或等比)子数列.(1)记数列{}n a 的前n 项和为n S ,已知21n n S =-. ①求数列{}n a 的通项公式;②数列{}n a 是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由. (2)已知数列{}n a 的通项公式为()n a n a a Q +=+∈,证明:{}n a 存在等比子数列. 【答案】(1)①12n n a ;②见解析;(2)见证明【解析】解:(1)①因为21n n S =-,所以当1n =时,11211a =-=,当2n ≥时,1121n n S --=-,所以()()1121212nn n n a --=---=.综上可知:12n na .②假设从数列{}n a 中抽3项,,()k l m a a a k l m <<成等差, 则2l k m a a a =+,即1112222l k m ---⨯=+, 化简得:2212l k m k --⨯=+.因为k l m <<,所以0l k ->,0m k ->,且l k -,m k -都是整数, 所以22l k -⨯为偶数,12m k -+为奇数,所以2212l k m k --⨯=+不成立. 因此,数列{}n a 不存在三项等差子数列.若从数列{}n a 中抽(,4)m m N m ∈≥项,其前三项必成等差数列,不成立. 综上可知,数列{}n a 不存在等差子数列.(2)假设数列{}n a 中存在3项0n a +,0n a k ++,0()n a l k l ++<成等比. 设0n a b +=,则b Q +∈,故可设b =(p 与q 是互质的正整数). 则需满足()()()2000n a k n a n a l ++=+++,即需满足2()()b k b b l +=+,则需满足2222k pk l k k b q=+=+. 取k q =,则2l k pq =+.此时222222()2q q q b q q q p p p ⎛⎫+=+=++ ⎪⎝⎭,2222()22q q q q b b l q pq q p p pp ⎛⎫+=++=++ ⎪⎝⎭.故此时2()()b k b b l +=+成立.因此数列{}n a 中存在3项0n a +,0n a k ++,0()n a l k l ++<成等比, 所以数列{}n a 存在等比子数列.18.在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足3122331313131nn nb b b ba =++++++++,求数列{}n b 的通项公式; (3)令()*4n nn a b c n N =∈,数列{}n c 的前n 项和为n T . 【答案】(1)2n a n =;(2)2(31)nn b =+;(3)()()12133142n n n n n T +-⨯++=+. 【解析】(1)因为2a 是1a 与4a 的等比中项,所以21111(2)(6)2a a a a +=+∴=,∴数列{}n a 的通项公式为2n a n =.(2)∵()31223131313131n n n b b b ba n =+++++≥++++① ∴311212313131313131n n n n n b b b b ba +++=+++++++++++② ②-①得:111231n n nn b a a +++=-=+,()11231n n b ++=+,故()()*231n n b n N =+∈。

(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

专题01集合历年考题细目表历年高考真题汇编1.【2019年北京文科01】已知集合A={x|﹣1<x<2},B={x|x>1},则A∪B=()A.(﹣1,1)B.(1,2)C.(﹣1,+∞)D.(1,+∞)【解答】解:∵A={x|﹣1<x<2},B={x|x>1},∴A∪B={x|﹣1<x<2}∪{x|x>1}=(﹣1,+∞).故选:C.2.【2018年北京文科01】已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1} B.{﹣1,0,1} C.{﹣2,0,1,2} D.{﹣1,0,1,2}【解答】解:A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},则A∩B={0,1},故选:A.3.【2018年北京文科08】设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a时,(2,1)∉A【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;当a=1,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,x+y>4,x﹣y≤2},显然(2,1)∉A,所以当且仅当a<0错误,所以C不正确;故选:D.4.【2017年北京文科01】已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.5.【2016年北京文科01】已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5} C.{x|2<x<3} D.{x|x<2或x>5}【解答】解:∵集合A={x|2<x<4},B={x|x<3或x>5},∴A∩B={x|2<x<3}.故选:C.6.【2015年北京文科01】若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2} B.{x|﹣5<x<2} C.{x|﹣3<x<3} D.{x|﹣5<x<3}【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.7.【2014年北京文科01】若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4} B.{0,4} C.{1,2} D.{3}【解答】解:∵A={0,1,2,4},B={1,2,3},∴A∩B={0,1,2,4}∩{1,2,3}={1,2}.故选:C.8.【2013年北京文科01】已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0} B.{﹣1,0} C.{0,1} D.{﹣1,0,1}【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.9.【2012年北京文科01】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=()A.(﹣∞,﹣1)B.(﹣1,)C.(,3)D.(3,+∞)【解答】解:因为B={x∈R|(x+1)(x﹣3)>0}={x|x<﹣1或x>3},又集合A={x∈R|3x+2>0}={x|x},所以A∩B={x|x}∩{x|x<﹣1或x>3}={x|x>3},故选:D.10.【2011年北京文科01】已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1] B.[1,+∞)C.[﹣1,1] D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由集合P中的不等式x2≤1,解得﹣1≤x≤1,所以集合P=[﹣1,1],由全集U=R,得到∁U P=(﹣∞,1)∪(1,+∞).故选:D.11.【2010年北京文科01】集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=()A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x≤3}【解答】解:∵集合P={x∈Z|0≤x<3},∴P={0,1,2},∵M={x∈Z|x2<9},。

十年高考真题分类汇编(2010-2019) 数学 专题01 集合

十年高考真题分类汇编(2010-2019)  数学 专题01 集合

十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。

(2010-2019)十年高考数学真题分类汇编:三角函数(含解析)

(2010-2019)十年高考数学真题分类汇编:三角函数(含解析)

(2010-2019)十年高考数学真题分类汇编:三角函数(含解析)1.(2019·全国2·理T10文T11)已知α∈0,π2,2sin 2α=cos 2α+1,则sin α=()A.15B.√55C.√33D.2√55【答案】B【解析】∵2sin 2α=cos 2α+1,∴4sin αcos α=2cos2α.∵α∈(0,π2),∴cos α>0,sin α>0,∴2sin α=cos α.又sin2α+cos2α=1,∴5sin2α=1,即sin2α=15.∵sin α>0,∴sin α=√55.故选B.2.(2019·全国2·文T8)若x1=π4,x2=3π4是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω=()A.2B.32C.1 D.12【答案】A【解析】由题意,得f(x)=sin ωx的周期T=2πω=23π4−π4=π,解得ω=2,故选A.3.(2019·全国2·理T9)下列函数中,以π2为周期且在区间π4,π2单调递增的是()A.f(x)=|cos 2x|B.f(x)=|sin 2x|C.f(x)=cos|x|D.f(x)=sin|x|【答案】A【解析】y=|cos 2x|的图象为,由图知y=|cos 2x|的周期为π2,且在区间(π4,π2)内单调递增,符合题意;y=|sin 2x|的图象为,由图知它的周期为π2,但在区间(π4,π2)内单调递减,不符合题意;因为y=cos|x|=cos x,所以它的周期为2π,不符合题意;y=sin |x|的图象为,由图知其不是周期函数,不符合题意.故选A.4.(2019·天津·理T7)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g(π4)=√2,则f(3π8)=()A.-2B.-√2C.√2D.2【答案】C【解析】已知函数为奇函数,且|φ|<π,故φ=0. f(x)=Asin ωx.∴g(x)=Asin x.∵g(x)的最小正周期为2π,∴2πω=2π,∴ω=1. ∴g(x)=Asin x.由g(π4)=√2,得Asin π4=√2,∴A=2.∴f(x)=2sin 2x.∴f(3π8)=2sin 3π4=√2.故选C.5.(2019·北京·文T8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β【答案】B【解析】(方法一)如图,设圆心为O ,连接OA ,OB ,半径r=2,∠AOB=2∠APB=2β,阴影部分Ⅰ(扇形)的面积S 1=βr 2=4β为定值,S △OAB =12|OA||OB|sin 2β=2sin 2β为定值,全部阴影部分的面积S=S △PAB +S 1-S △OAB .当P 为弧AB 的中点时S △PAB 最大,最大值为12(2|OA|sin β)(OP+|OA|cosβ)=2sin β(2+2cos β)=4sin β+2sin 2β,所以全部阴影部分的面积S 的最大值为4β+4sin β,故选B.(方法二)观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP=∠AOP=π-β,面积S的最大值为βr 2+S △POB +S △POA =4β+12|OP||OB|sin(π-β)+12|OP||OA|sin(π-β)=4β+2sin β+2sinβ=4β+4sin β,故选B.6.(2019·全国3·理T12)设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点 ②f(x)在(0,2π)有且仅有2个极小值点 ③f(x)在(0,π10)单调递增 ④ω的取值范围是[125,2910) 其中所有正确结论的编号是( )A.①④B.②③C.①②③D.①③④ 【答案】D【解析】∵f(x)=sin (ωx +π5)(ω>0)在区间[0,2π]上有且仅有5个零点, ∴5π≤2πω+π5<6π, 解得125≤ω<2910,故④正确.画出f(x)的图像(图略),由图易知①正确,②不正确. 当0<x<π10时,π5<ωx+π5<ωπ10+π5, 又125≤ω<2910,∴ωπ10+π5<29π100+20π100=49π100<π2,∴③正确.综上可知①③④正确.故选D.7.(2018·北京·文T7)在平面直角坐标系中,AB ⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( ) A.AB⏜ B.CD⏜C.EF ⏜ D.GH ⏜【答案】C【解析】若P 在AB⏜上,则由角α的三角函数线知,cos α>sin α,排除A;若P 在CD ⏜上,则tan α>sin α,排除B;若P 在GH⏜上,则tan α>0,cos α<0,sin α<0,排除D;故选C. 8.(2018·全国1·文T11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=23,则|a-b|=( ) A.15 B.√55C.2√55D.1【答案】B。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):常用逻辑用

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):常用逻辑用

A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
28.(2014•陕西•理 T8)原命题为“若 z1,z2 互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真
假性的判断依次如下,正确的是( )
A.真,假,真 B.假,假,真
C.真,真,假 D.假,假,假
的( )
A.充要条件
B.充分而不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
3
18.(2016•山东•理 T6)已知直线 a,b 分别在两个不同的平面 α,β 内.则“直线 a 和直线 b 相交”是“平面
α 和平面 β 相交”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
13.(2017•天津•理 T4)设 θ∈R,则“
π
- 12
<
π
12”是“sin
1
θ<2”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
14.(2017•浙江•理 T6)已知等差数列{an}的公差为 d,前 n 项和为 Sn,则“d>0”是“S4+S6>2S5”的 ( )
+ ≥ 6, 1.(2019•全国 3•文 T11)记不等式组 2 - ≥ 0 表示的平面区域为 D.命题 p:∃(x,y)∈D,2x+y≥9;命题 q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题 ①p∨q ②¬p∨q ③p∧¬q ④¬p∧¬q 这四个命题中,所有真命题的编号是( ) A.①③ B.①② C.②③ D.③④

河北省2019-2010年十年对口招生高考(对口升学)数学试题含答案

河北省2019-2010年十年对口招生高考(对口升学)数学试题含答案

河北省对口招生高考数学历年真题(2010-2019)目录✧..2019年河北省普通高等学校对口招生考试数学试题 (1)✧..2019年河北省对口招生考试数学参考答案 (4)✧..2018年河北省普通高等学校对口招生考试数学试题 (7)✧..2018年河北省对口招生考试数学参考答案 (12)✧..2017年河北省普通高等学校对口招生考试数学试题 (13)✧..2017年河北省对口招生考试数学参考答案 (18)✧..2016年河北省普通高等学校对口招生考试数学试题 (23)✧..2016年河北省对口招生考试数学参考答案 (28)✧..2015年河北省普通高等学校对口招生考试数学试题 (29)✧..2015年河北省对口招生考试数学参考答案 (34)✧..2014年河北省普通高等学校对口招生考试数学试题 (36)✧..2014年河北省对口招生考试数学参考答案 (41)✧..2013年河北省普通高等学校对口招生考试数学试题 (42)✧..2013年河北省对口招生考试数学参考答案 (47)✧..2012年河北省普通高等学校对口招生考试数学试题 (50)✧..2012年河北省对口招生考试数学参考答案 (54)✧..2011年河北省普通高等学校对口招生考试数学试题 (55)✧..2011年河北省对口招生考试数学参考答案 (59)✧..2010年河北省普通高等学校对口招生考试数学试题 (63)✧..2010年河北省对口招生考试数学参考答案 (67)2019年河北省普通高等学校对口招生考试数学试题一、选择题(每题3分,共45分)1.设集合A={b,c,d},则集合A 的子集共有()A.5个B.6个C.7个D.8个2.若22b a <,则下列不等式成立的是()A.ba < B.ba 22< C.0)(log 222<-a b D.||||b a <3.在ABC ∆中,“sinA=sinB ”是“A=B ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.已知一次函数b kx y +=关于原点对称,则二次函数)0(2≠++=a c bx ax y 一定是()A.奇函数B.偶函数C.非奇非偶函数D.奇偶性和c 有关5.函数|cos sin |x x y =的最小正周期为()A.2π B.πC.π2D.π46.设向量b a x b a ∥且),1,(),2,4(==,则x=()A.2B.3C.4D.57二次函数b ax x y ++=2图像的顶点坐标为(-3,1),则b a ,的值为()A.10,6=-=b a B.10,6-=-=b a C.10,6==b a D.10,6-==b a 8.在等差数列}{n a 中,n S 为前n 项和,===642,8,0a S S 则若()A.5B.7C.9D.169.在等比数列}{n a 中,=+=⋅>1047498log log ,161.0a a a a a n 则若()A.-2 B.-1 C.0 D.210.下列四组函数中,图像相同的是()A.x x y x y 220cos sin +==和B.xy x y lg 10==和C.xy x y 222log 2log ==和 D.)2cos(sin x y x y -==π和11.过点A(1,2)且与直线012=-+y x 平行的直线方程为()A.042=-+y x B.052=-+y x C.02=-y x D.032=++y x 12.北京至雄安将开通高铁,共设有6个高铁站(包含北京站和雄安站),则需设计不同车票的种类有()A.12种B.15种C.20种D.30种13.二项式于的展开式中,常数项等122)12(x x -()A.84122⋅C B.84122⋅-C C.66122⋅C D.66122⋅-C 14.在正方体1111D C B A ABCD -中,棱C D D A 11与所成的角为()A.6π B.4π C.3π D.32π15.已知双曲线方程为192522=-y x ,则其渐近线方程为()A.x y 45±=B.xy 35±= C.xy 54±= D.xy 53±=二、填空题(每题2分,共30分)16.已知函数3)(3++=bx ax x f 满足=-=)1(,6)1(f f 则.17.函数|3|lg 37121)(2-++-=x x x x f 的定义域为.18.计算:=-+++|3|281log 45tan2log 31e e π.19.若不等式02<-+b ax x 的解集为(1,2),则)(log 6ab =.20.数列1,22241-3121,,-的通项公式为.21.若|b |3b a 4b a 4|a |→→→→→→==⋅=,则,,,π=.22.已知ααααα2cos 137cos sin 1317cos sin ,则,=-=+=.23.已知以21F F ,为焦点的椭圆1361622=+y x 交x 轴正半轴于点A ,则21F AF ∆的面积为.24.已知99.0log 10099.010099.0100===c b a ,,,则c b a ,,按由小到大的顺序排列为.25.在正方体1111D C B A ABCD -中,与AB 为异面直线的棱共有条.26.某学校参加2019北京世界园艺博览会志愿活动,计划从5名女生,3名男生中选出4人组成小分队,则选出的4人中2名女生2名男生的选法有种.27.已知αβαβαβαβα2sin 81)sin()cos()cos()sin(,则=-++-+=.28.设,,,,)sin 11()1cos 1(A n A m +-=+=→→其中∠A 为ABC ∆的内角.→→⊥n m 若,则∠A=.29.不等式x x 5log )6(log 222>+的解集为.30.一口袋里装有4个白球和4个红球,现在从中任意取3个球,则取到既有白球又有红球的概率为.三、解答题(7个小题,共45分)31.(5分)设集合R B A m x x B x x x A =≥+=>--= ,若,}1|{}012|{2,求m 的取值范围.32.(6分)某广告公司计划设计一块周长为16米的矩形广告牌,设计费为每平方米500元.设该矩形一条边长为x 米,面积为y 平方米.(1)写出y 与x 的函数关系式;(2)问矩形广告牌长和宽各为多少米时,设计费最多,最多费用为多少元?33.(8分)若数列}{n a 是公差为23的等差数列,且前5项和155=S .(1)求数列}{n a 的通项公式;(2)若n a n e b =,求证}{n b 为等比数列并指出公比q ;(3)求数列}{n b 的前5项之积.34.(6分)函数x x y 2sin )23sin(+-=π(1)求该函数的最小正周期;(2)当x 为何值时,函数取最小值,最小值为多少?35.(6分)过抛物线x y 42=的焦点,且斜率为2的直线l 交抛物线于A ,B 两点.(1)求直线l 的方程;(2)求线段AB 的长度.36.(7分)如图所示,底面ABCD 为矩形,PD ⊥平面ABCD ,|PD|=2,平面PBC 与底面ABCD所成角为45°,M 为PC 中点.(1)求DM 的长度;(2)求证:平面BDM ⊥平面PBC.37.(7分)一颗骰子连续抛掷3次,设出现能被3整除的点的次数为ξ,(1)求)2(=ξP ;(2)求ξ的概率分布.P DMCAB2019年河北省对口招生考试数学参考答案一、选择题题号123456789101112131415答案DDCBAACCADBDACD二、填空题16.017.),3()3,(+∞-∞ 18.019.120.21)1(n a n n +-=21.222.169119-23.5824.ba c <<25.426.3027.8128.4π29.),3()2,0(+∞ 30.76三、解答题31.解:}34|{}012|{2-<>=>--=x x x x x x A 或}1|{}1|{m x x m x x B -≥=≥+=因为R B A = 所以431≥-≤-m m 即所以m 的取值范围为),4[+∞.32.解:矩形的另一边长为)(82216米x x-=-则x x x x y 8)8(2+-=-=(0<x<8)(2)16)4(822+--=+-=x x x y 当x=4米时,矩形的面积最大,最大面积为16平方米此时广告费为)(800016500元=⨯所以当广告牌长和宽都为4米时矩形面积最大,设计费用最多,最多费用为8000元.33.解:(1)由已知23,155==d S 得1552)(53515==+=a a a S 解得33=a所以232323)3(3)3(3-=⋅-+=-+=n n d n a a n (2)由)2323(-==n a n eeb n所以n eb 231=+所以23a 111e e e ee b b d a a a n n n n n n ====-+++,又101==e b 所以}{n b 为以1为首项23e 为公比的等比数列.(3)由题意可得155)13(235354321)(e eb b b b b b ===⋅⋅⋅⋅-,所以}{n b 的前5项积为15e .34.解:x x x x x y 2sin 2sin 3cos 2cos 3sin 2sin )23sin(+-=+-=πππ=)32sin(2cos 232sin 21π+=+x x x 所以函数的最小正周期为ππ==22T (2)当1-)(125)(2232小值为时,函数有最小值,最即Z k k x Z k k x ∈-=∈-=+πππππ.35.解:(1)由抛物线方程x y 42=得焦点F(1,0),又直线l 的斜率为2,所以直线方程为022)1(2=---=y x x y 即.(2).设抛物线与直线的交点坐标为),(),,(2211y x B y x A 联立两方程得01322422=+-⎩⎨⎧-==x x x y xy 整理得由韦达定理得1,32121==+x x x x 由弦长公式得549414)(1||212212=-+=-++=x x x x k AB 36.解:(1)因为PD ⊥平面ABCD 所以PD ⊥BC又因为ABCD 为矩形,得BC ⊥CD 所以BC ⊥平面PCD 所以BC ⊥PC所以∠PCD 为平面PBC 与平面ABCD 所成角即∠PCD=45°从而△PDC 为等腰直角三角形在RT ∆PDC 中||||45sin PC PD =︒得2245sin ||||=︒=PD PC 又M 为PC 的中点,则DM ⊥PC所以在2||21||==∆PC DM DMC RT 中,(2)证明:由(1)可知BC ⊥平面PCD 所以BC ⊥DM由(1)可知DM ⊥PC ,且BC PC=C,所以DM ⊥平面PBC又DM ⊆平面BDM ,所以平面BDM ⊥平面PBC37.解:(1)能被3整除的只有3和6,则在一次抛掷中出现的概率为31,从而出现不能被3整除的点的概率为32所以9232()31(223=⨯⨯=C P (2)ξ的可能取值为0,1,2,3且278)32()31()0(3003=⨯⨯==C P ξ94)32(31()1(2113=⨯⨯==C P ξ9232()31()2(1223=⨯⨯==C P ξ271)32()31()3(0333=⨯⨯==C P ξ所以ξ的概率分布为ξ0123P27894922712018年河北省普通高等学校对口招生考试数学试题一、选择题(本大题共15小题,每小题3分,共45分)1、设集合M={0,1,2,3,4},N={xl0<x ≤3},则N M ⋂=()A{1,2}B{0,1,2}C{1,2,3}D{0,1,2,3}2、若a,b,c 为实数,且a>b,则()A a-c>b-cB a 2>b 2C ac>bcD ac 2>bc 23、2>x 是x>2的()A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件4、下列函数中,既是奇函数又是减函数的是()A xy 31=B 22x y =C 3x y -=D xy 1=5、函数42sin(π-=x y 的图像可以有函数x y 2sin =的图像如何得到()A 向左平移4π个单位B 向右平移4π个单位C 向左平移8π个单位D 向右平移8π个单位6、已知),,3(),2,1(m b a =-=b a b a -=+则m=()A -23B23C 6D -67、下列函数中,周期为π的偶函数是()A xy sin =B xy 2sin =C xy sin =D 2cosx y =8、在等差数列{a n }中,若a 1+a 2+a 3=12,a 2+a 3+a 4=18,则a 3+a 4+a 5=()A 22B 24C 26D 309、记S n 为等比数列{a n }的前n 项和,若S 2=10,S 4=40,则S 6=()A 50B 70C 90D 13010、下列各组函数中,表示同一个函数的是()A x y =与2x y =B x y =与33x y =C x y =与2x y =D 2x y =与33x y =11、过圆2522=+y x 上一点(3,4)的切线方程为()A 3x+4y-25=0B 3x+4y+25=0C 3x-4y-25=0D 3x-4y+25=012、某体育兴趣小组共有4名同学,如果随机分为两组进行对抗赛,每组两名队员,分配方案共有()A2种B3种C6种D12种13、设(2x-1)2018=a 0+a 1x+a 2x 2+……….+a 2018x 2018,则a 0+a 1+a 2+…….+a 2018=()A 0B 1C -1D 22018-114、已知平面上三点A (1,-2),B (3,0),C (4,3),则点B 关于AC 中点是对称点的坐标是()A (1,4)B (5,6)C (-1,-4)D (2,1)15、下列命题中正确的是()(1)平行于同一直线的两条直线平行(2)平行于同一平面的两条直线平行(3)平行于同一直线的两个平面平行(4)平行于同一平面的两个平面平行A(1)(2)B(1)(3)C(1)(4)D(2)(4)二、填空题(共15小题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1文科02】已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},∴∁U A={1,6,7},则B∩∁U A={6,7}故选:C.2.【2018年新课标1文科01】已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2} B.{1,2}C.{0} D.{﹣2,﹣1,0,1,2}【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B={0,2}.故选:A.3.【2017年新课标1文科01】已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x} B.A∩B=∅C.A∪B={x|x} D.A∪B=R【解答】解:∵集合A={x|x<2},B={x|3﹣2x>0}={x|x},∴A∩B={x|x},故A正确,B错误;A∪B={x||x<2},故C,D错误;故选:A.4.【2016年新课标1文科01】设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.5.【2015年新课标1文科01】已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2【解答】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.6.【2014年新课标1文科01】已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.7.【2013年新课标1文科01】已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.8.【2012年新课标1文科01】已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x∴B⊊A.故选:B.9.【2011年新课标1文科01】已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B.10.【2010年新课标1文科01】已知集合A={x||x|≤2,x∈R},B={x|4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题 1.若集合,,则AB =( )A .B .C .D .【答案】A 【解析】 解:,则,故选:A . 2.已知集合,,则AB =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】,,又,所以,故本题选C.3.已知集合,,则A B =( )A .B .{}1,0,1,2,3-C .{}3,2--D .【答案】B 【解析】 因为,∴.4.已知全集U =R ,集合,则()U A B =( )A .(1,2)B .(]1,2 C .(1,3) D .(,2]-∞【答案】B 【解析】由24x >可得2x >,可得13x <<,所以集合,(,2]UA =-∞,所以()U A B =(]1,2,故选B.5.已知集合,集合,则集合A B ⋂的子集个数为( ) A .1 B .2C .3D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2y x 有2个交点,故A B ⋂的子集有4个.6.已知集合,,则()R M N ⋂=( )A .{-1,0,1,2,3}B .{-1,0,1,2}C .{-1,0,1}D .{-1,3}【答案】D 【解析】 由题意,集合,则或3}x ≥又由,所以,故选D.7.已知集合,,则()R A B =( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】 因为,所以,又,所以.8.已知R 是实数集,集合,,则()AB =R( ) A .{}1,0- B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】即故选A 。

9.设集合,,则A B ⋂=( )A .{}1B .{}1,2C .{}2101--,,, D .{}2-【答案】B 【解析】求解对数不等式可得,结合题意和交集的定义可知:A B ⋂={}1,2. 故选:B .10.已知集合{}1,2A =,集合{}0,2B =,设集合,则下列结论中正确的是( )A .A C φ⋂=B .AC C ⋃= C .B C B ⋂=D .AB C =【答案】C 【解析】由题设,{0,2,4}C =,则B C ⊆,故B C B ⋂= 选C .11.已知集合,,则A B ⋂=( ) A .{1,2}- B .{1,4}C .[0,)+∞D .R【答案】D 【解析】 由题可得因为、。

所以A B R ⋂=12.已知集合{}0,1,2A =,若是整数集合),则集合B 可以为( ) A . B .C .D .【答案】C 【解析】 A 选项:若B =,则,不符合; B 选项:若B =,则,不符合;C 选项:若B =,则,符合;D 选项:若B =,则B 集合的元素为所有整数的平方数:0,1,4,9,,则,不符合.故答案选C. 13.已知集合,,则A B ⋂=( ).A .B .{1,0,1,2}-C .{}1,2D .{0,1,2}【答案】D 【解析】,本题正确选项:D14.已知集合{1,2}A =-,,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( )A .11,2⎧⎫⎨⎬⎩⎭B .11,2⎧⎫-⎨⎬⎩⎭C .10,1,2⎧⎫⎨⎬⎩⎭D .11,0,2⎧⎫-⎨⎬⎩⎭【答案】D 【解析】因为集合{1,2}A =-,,B A ⊆,若B 为空集,则方程1ax =无解,解得0a =; 若B 不为空集,则0a ≠;由1ax =解得1x a =,所以11a =-或12a =,解得1a =-或12a =, 综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭. 故选D 15.已知集合,集合2{}2A =-,,则UA =( )A .{}1,0,1-B .{}1,1-C .[]1,1-D .()1,1-【答案】A 【解析】 ∵集合,集合2{}2A =-,, ∴.故选:A . 16.已知集合,集合,则AB =( )A .(),2-∞B .(],2-∞C .()0,2D .[)0,+∞【答案】D 【解析】 解:,;∴.故选:D .17.设全集U =R ,集合,则UMN =( )A .[]0,1B .(]0,1C .[)0,1D .(],1-∞【答案】A 【解析】,,则,故选:A . 18.设集合,,,则集合C 中元素的个数为( ) A .11 B .9C .6D .4【答案】A 【解析】解:根据条件得:x 从1-,0,1任选一个,y 从而1-,0,1任选一个,有9种选法;2x =-或2时,0y = ,有两种选法;共11种选法;∴C 中元素有11个.故选:A . 19.已知集合,,则A B ⋂=( ) A . B .C .D .{|2}x x ≤【答案】B 【解析】由二次根式有意义的条件可得,解得31x -≤≤, 所以.由对数函数的性质可得,解得02x <≤, 所以,所以A B ⋂=.故选B. 20.设集合,,则MN =( )A .{}2,1--B .{}1,0-C .{}0,1D .{}1,2【答案】C 【解析】;故选:C21.已知集合{2,1}A =-,,若AB B =,则实数a 值集合为( )A .{}1-B .{2}C .{1,2}-D .{1,0,2}-【答案】D 【解析】,{}2,1A =-的子集有, 当B φ=时,显然有0a =;当{}2B =-时,;当{}1B =时,;当{}2,1B =-,不存在a ,符合题意,实数a 值集合为{}1,0,2-,故本题选D. 22.已知函数2y x x =-的定义域为A ,则A =R( )A .B .C .D .【答案】D 【解析】 由已知,故,故选D.23.已知集合,则( )A .N M ⊆B .M N ⊆C .M N ⋂=∅D .M N R =【答案】B【解析】由题意知:,则M N ⊆本题正确选项:B24.已知集合,,则A B =( )A .{|0}x x >B .C .D .{|0x x >且1}x ≠【答案】A【解析】根据不等式的解法,易得B={x|0<x <2},又有A={x|x >1},则A ∪B={x|x >0}.故选:A .25.已知集合,集合,则A B =( )A .()2,3B .(]2,3C .[)0,5D .(]0,5【答案】C【解析】=,则A B =[)0,5故选:C26.已知全集U =R ,集合,,则()A .B .C .D .{}|1x x ≥-【答案】B【解析】由题意,集合,则,根据集合的并集运算,可得,故选B .27.设集合A ={x|x 2﹣x ﹣2>0},B ={x|0<2log x <2},则A∩B=( )A .(2,4)B .(1,1)C .(﹣1,4)D .(1,4)【答案】A【解析】A ={x|x <﹣1或x >2},B ={x|1<x <4};∴A∩B=(2,4).故选:A .28.已知集合,则z C A =( )A .{0}B .{1}C .{0,1}D .{-1,0,1,2}【答案】C【解析】由集合,解得: ∴}{z 0,1C A =,故答案选C 。

相关文档
最新文档