高中数学通用模型解题方法

合集下载

高中万能解题模板

高中万能解题模板

高中万能解题模板在高中学习阶段,解题是学生们必须面对的一项重要任务。

不论是数学、物理、化学,还是其他学科,都需要运用解题技巧来完成各种各样的任务。

为了更好地掌握解题技能,我们可以使用一些万能解题模板来提高自己的成功率。

一、数学1.方程解题模板(1)把未知数移到等号左边,常数移到等号右边。

(2)化简式子,把分数、根号、乘除法简化。

(3)通分。

(4)消去分母、根号,移项。

(5)合并同类项,得到唯一解。

2.几何解题模板(1)画图,并标记清晰。

特别是各个角、线段的名称等。

(2)根据题意,列出各个条件。

(3)根据题意,找到各个方法,如应用相似、勾股定理、正弦定理等。

(4)利用条件与方法,逐步解题。

(5)最后,检查答案是否合理。

二、物理1.运动解题模板(1)把已知量列出来。

(2)根据公式,列出未知量。

(3)通过数学关系,确定需要使用的公式。

(4)代入公式,进行计算。

(5)最后,检查答案是否合理。

2.电学解题模板(1)按照电路图,分析电路。

(2)列出各个电路元件的电压、电流大小、方向等。

(3)根据电路中的电荷守恒定律,列出电流方程。

(4)根据欧姆定律、基尔霍夫电压定律、基尔霍夫电流定律等,列出方程。

(5)根据需要,解决方程。

(6)最后,检查答案是否合理。

三、化学1.化学式计算模板(1)根据题目,确认物质的性质和分子式等。

(2)将元素原子量与其比例合成分子量。

(3)通过分子量,计算物质量、分子个数等。

(4)根据需要,进行单位换算。

2.化学反应式计算模板(1)根据题目,确认反应物和生成物等基本信息。

(2)写出反应方程式,并平衡方程。

(3)通过平衡方程,得到化学反应的比例关系。

(4)给定数据,根据比例关系,计算化学反应的量。

(5)最后,检查答案是否合理。

总之,在学习阶段,我们不仅需要学习各种知识点和理论,同时也需要掌握一些解题技巧和方法。

使用万能解题模板可以帮助我们更好地解决问题,并能够提高成绩。

高中数学解答题8个答题模板与做大题的方法

高中数学解答题8个答题模板与做大题的方法

高中数学解答题8个答题模板与做大题的方法高中数学解答题是每一位学生都要面对的考试难题,要想在考场上取得好成绩,就需要掌握一些答题模板和技巧。

本文将为大家分享一些高中数学解答题的8个答题模板以及做大题的方法。

一、直接套公式有些题目只需要把已知条件代入公式求解即可。

例如:已知正方形的一条对角线长度为10,求正方形面积。

解答:根据正方形对角线公式可知,正方形的边长等于对角线长度的平方除以2,即$a=\frac{\sqrt{2}}{2} \times 10=5\sqrt{2}$正方形面积为$a^2=50$。

二、代数相加减有些题目需要转换成代数式,通过相加减化简后求解。

例如:已知$\frac{x+2}{a}=\frac{4}{x-2}$,求$\frac{x^2+2x}{a^2}$的值。

解答:将已知条件转换为代数式,得到$x+2=\frac{4a}{x-2}$将$x^2+2x$用$x+2$和$x-2$表示出来,可得:$x^2+2x=(x+2)(x-2)+6$代入上式可得:$\frac{x^2+2x}{a^2}=\frac{(x+2)(x-2)+6}{a^2}=\frac{4a^2+6}{ a^2}=4+\frac{6}{a^2}$三、代数移项有些题目需要进行代数移项以消去未知量,例如:已知2x-3y=9,求y。

解答:将未知量y移至等式左侧,可得$2x-9=3y$将等式两侧同时除以3,即得y的值:$y=\frac{2x-9}{3}$。

四、因式分解有些题目需要通过因式分解来求解,例如:已知$x^2+3x-10=0$,求x。

解答:将$x^2+3x-10$进行因式分解,可得$(x+5)(x-2)=0$因此,$x=-5$或$x=2$。

五、有理化有些题目涉及分数,需要进行有理化操作,例如:已知$\frac{1}{\sqrt{3}-1}+\frac{2}{\sqrt{3}+1}=a+b\sqrt{3}$,求a和b的值。

解答:分别对两个分数进行有理化,可得:$\frac{1}{\sqrt{3}-1}=\frac{\sqrt{3}+1}{2}$,$\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$将上式代入原式,可得:$a+b\sqrt{3}=\frac{\sqrt{3}+1}{2}+\sqrt{3}-1=2\sqrt{3}-\frac{ 1}{2}$因此,a= -1/2,b= 2。

高中数学通用模型解题方法及技巧

高中数学通用模型解题方法及技巧

高中数学通用模型解题方法及技巧有许多的高中生是特别的想知道,高中数学通用模型的解题方法和技巧有哪些的,我整理了相关信息,盼望会对大家有所关心!高中数学通用模型解题有什么高考数学经典解题技巧一、选择题解答模型策略近几年来,陕西高考数学试题中选择题为10道,分值50分,占总分的33.3%。

注意多个学问点的小型综合,渗逶各种数学思想和方法,体现基础学问求深度的考基础考力量的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。

精确是解答选择题的先决条件。

选择题不设中间分,一步失误,造成错选,全题无分。

所以应认真审题、深化分析、正确推演、谨防疏漏;初选后仔细检验,确保精确。

快速是赢得时间,猎取高分的秘诀。

高考中考生“超时失分”是造成低分的一大因素。

对于选择题的答题时间,应当掌握在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。

一般地,选择题解答的策略是:①娴熟把握各种基本题型的一般解法。

②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,敏捷运用特例法、筛选法、图解法等选择题的常用解法与技巧。

③挖掘题目“共性”,寻求简便解法,充分利用选择支的示意作用,快速地作出正确的选择。

二、填空题解答模型策略填空题是一种传统的题型,也是高考试卷中又一常见题型。

陕西高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。

依据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求同学填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。

由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题消失。

二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。

在解答填空题时,基本要求就是:正确、快速、合理、简捷。

高中数学中的常用几何模型及构造方法大全

高中数学中的常用几何模型及构造方法大全

高中数学中的常用几何模型及构造方法大全一、全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转1、对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

2、对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

3、旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题4、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

5、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称6、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

二、模型变换说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

1、中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

高中数学模型解题法

高中数学模型解题法

高中数学模型解题法1.审题与解题的关系有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。

只有耐心仔细地审题,准确地把握题目中的关键词与量如“至少”,“a>0”,自变量的取值范围等,从中获取尽可能多的信息,才能迅速找准解题方向。

2.“会做”与“得分”的关系要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。

如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。

3.快与准的关系只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。

如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。

适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

4.难题与容易题的关系拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。

近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。

这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。

高中数学模型解题法

高中数学模型解题法

高中数学模型解题法高中数学模型解题理念数学模型解题首先需要明确以下六大理念(原则):理念之一——理论化原则。

解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有价值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的!理论之二——个性化原则。

倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性——通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。

因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。

理论之三——能力化原则。

只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则无力聚合!因此,充分训练我们的发散思维能力,尽情地展开我们联想与想象的翅膀,才能在创新的天空自由地翱翔!理论之四——示范化原则。

任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。

关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。

理论之五——形式化原则。

哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。

八大模型解题技巧

八大模型解题技巧

八大模型解题技巧一、垂线段最短1. 定义:连接直线外一点与直线上各点的所有线段中,垂线段最短。

2. 应用:在平面直角坐标系中,求点P(x0,y0)到直线y=kx+b的最短距离。

3. 解题技巧:首先将点P的坐标代入直线方程,然后利用点到直线的距离公式计算出点P到直线的距离,最后比较所有距离得出最短距离。

二、平行四边形法则1. 定义:两个向量相加时,以这两个向量为邻边作平行四边形,则对角线所表示的向量为这两个向量的和。

2. 应用:求两个向量的和、差。

3. 解题技巧:利用平行四边形法则将两个向量相加或相减,然后利用向量模长公式计算结果。

三、三角形法则1. 定义:一个力在同一条直线上,如果方向相同则相加,如果方向相反则相减。

2. 应用:求合力、分力。

3. 解题技巧:利用三角形法则将两个力合成或分解,然后利用力的合成与分解公式计算结果。

四、相似三角形法1. 定义:利用相似三角形的性质解决实际问题。

2. 应用:求角度、长度等。

3. 解题技巧:首先根据题意画出相似三角形,然后利用相似三角形的性质计算结果。

五、正弦定理和余弦定理1. 正弦定理:在一个三角形ABC中,边长a、b、c与对应的角A、B、C的正弦值的比都相等,即a/sinA = b/sinB = c/sinC。

2. 余弦定理:在一个三角形ABC中,边长a、b、c与角的余弦值的比都相等,即a/cosA = b/cosB = c/cosC。

3. 应用:求角度、长度等。

4. 解题技巧:利用正弦定理或余弦定理将已知条件转化为角度或长度之间的关系,然后求解未知量。

六、抛物线模型1. 定义:以一定点为中心,对称轴为坐标轴的抛物线。

2. 应用:求最值、轨迹等。

3. 解题技巧:利用抛物线的性质将问题转化为二次函数的最值问题,然后利用二次函数的性质求解。

七、双曲线模型1. 定义:以两个定点为焦点,对称轴为坐标轴的双曲线。

2. 应用:求轨迹等。

3. 解题技巧:利用双曲线的性质将问题转化为双曲线的方程,然后求解。

高中数学通用模型解题方法

高中数学通用模型解题方法

13.反函数存在的条件是什么?〔一一对应函数〕求反函数的步骤掌握了吗?〔①反解 x;②互换 x、 y;③注明定义域〕1x x0如:求函数 f (x )2x 的反函数x0〔答: f 1x 1 x1(x )〕x x 014.反函数的性质有哪些?反函数性质:1、反函数的定义域是原函数的值域〔可扩展为反函数中的x 对应原函数中的y〕2、反函数的值域是原函数的定义域〔可扩展为反函数中的y 对应原函数中的x〕3、反函数的图像和原函数关于直线=x 对称〔难怪点〔 x,y〕和点〔 y,x〕关于直线y=x 对称①互为反函数的图象关于直线y=x 对称;②保存了原来函数的单调性、奇函数性;③设 y f(x) 的定义域为 A ,值域为 C,a A , b C,那么 f(a) =b f1 (b)af 1 f (a) f 1 ( b) a, f f 1 (b) f (a)b 由反函数的性质,可以快速的解出很多比拟麻烦的题目,如〔 04.上海春季高考〕已知函数 f (x)log 3 (4 2 ),那么方程f1 ( x)4的解xx __________.1对于这一类题目,其实方法特别简单,呵呵。

反函数的y,不就是原函数的x 吗?那代进去阿,答案是不是已经出来了呢?〔也可能是告诉你反函数的x 值,那方法也一样,呵呵。

自己想想,不懂再问我15. 如何用定义证明函数的单调性?〔取值、作差、判正负〕判断函数单调性的方法有三种:(1) 定义法:根据定义,设任意得x1,x 2,找出 f(x 1),f(x2)之间的大小关系可以变形为求 f ( x1 )f ( x2)的正负号或者f ( x1)与1的关系x1x2 f ( x2 )(2)参照图象:①假设函数 f(x) 的图象关于点 (a ,b) 对称,函数 f(x) 在关于点 (a ,0) 的对称区间具有一样的单调性;〔特例:奇函数〕②假设函数 f(x) 的图象关于直线 x= a 对称,那么函数 f(x) 在关于点 (a ,0) 的对称区间里具有相反的单调性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13. 反函数存在的条件是什么? (一一对应函数)求反函数的步骤掌握了吗? (①反解x ;②互换x 、y ;③注明定义域)()()如:求函数的反函数f x xx xx ()=+≥-<⎧⎨⎪⎩⎪1002()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110()14. 反函数的性质有哪些?反函数性质: 1、 反函数的定义域是原函数的值域 (可扩展为反函数中的x 对应原函数中的y ) 2、 反函数的值域是原函数的定义域(可扩展为反函数中的y 对应原函数中的x ) 3、 反函数的图像和原函数关于直线=x 对称(难怪点(x,y )和点(y ,x )关于直线y=x 对称①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1=∈∈⇔=-()b a [][]∴====---f f a f b a f f b f a b 111()()()(), 由反函数的性质,可以快速的解出很多比较麻烦的题目,如(04. 上海春季高考)已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x __________.1对于这一类题目,其实方法特别简单,呵呵。

已知反函数的y,不就是原函数的x 吗?那代进去阿,答案是不是已经出来了呢?(也可能是告诉你反函数的x 值,那方法也一样,呵呵。

自己想想,不懂再问我15 . 如何用定义证明函数的单调性? (取值、作差、判正负)判断函数单调性的方法有三种: (1)定义法:根据定义,设任意得x 1,x 2,找出f(x 1),f(x 2)之间的大小关系可以变形为求1212()()f x f x x x --的正负号或者12()()f x f x 与1的关系(2)参照图象:①若函数f(x)的图象关于点(a ,b)对称,函数f(x)在关于点(a ,0)的对称区间具有相同的单调性; (特例:奇函数)②若函数f(x)的图象关于直线x =a 对称,则函数f(x)在关于点(a ,0)的对称区间里具有相反的单调性。

(特例:偶函数) (3)利用单调函数的性质:①函数f(x)与f(x)+c(c 是常数)是同向变化的②函数f(x)与cf(x)(c 是常数),当c >0时,它们是同向变化的;当c <0时,它们是反向变化的。

③如果函数f1(x),f2(x)同向变化,则函数f1(x)+f2(x)和它们同向变化;(函数相加)④如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘) ⑤函数f(x)与1()f x 在f(x)的同号区间里反向变化。

⑥若函数u =φ(x),x[α,β]与函数y =F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]同向变化,则在[α,β]上复合函数y =F[φ(x)]是递增的;若函数u =φ(x),x[α,β]与函数y =F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y =F[φ(x)]是递减的。

(同增异减) ⑦若函数y =f(x)是严格单调的,则其反函数x =f -1(y)也是严格单调的,而且,它()如:求的单调区间y x x =-+log 1222(设,由则u x x u x =-+><<22002 ()且,,如图:log 12211u u x ↓=--+当,时,,又,∴x u u y ∈↑↓↓(]log 0112当,时,,又,∴x u u y ∈↓↓↑[)log 1212∴……)16. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。

(在个别点上导数等于a b f x f x '()()≥0零,不影响函数的单调性),反之也对,若呢?f x '()≤0[)如:已知,函数在,上是单调增函数,则的最大a f x x ax a >=-+∞013() 值是( ) A. 0B. 1C. 2D. 3(令f x x a x a x a '()=-=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪≥333302则或x ax a ≤-≥33由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤ ∴a 的最大值为3)17. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔ 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

()若是奇函数且定义域中有原点,则。

2f(x)f(0)0=如:若·为奇函数,则实数f x a a a x x()=+-+=2221(∵为奇函数,,又,∴f x x R R f ()()∈∈=000即·,∴)a a a 22210100+-+== 又如:为定义在,上的奇函数,当,时,,f x x f x xx()()()()-∈=+1101241()求在,上的解析式。

f x ()-11()()(令,,则,,x x f x xx ∈--∈-=+--1001241()又为奇函数,∴f x f x x x xx()()=-+=-+--241214()又,∴,,)f f x x x x xxxx ()()()0024110024101==-+∈-=+∈⎧⎨⎪⎪⎩⎪⎪判断函数奇偶性的方法一、定义域法一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数..二、奇偶函数定义法在给定函数的定义域关于原点对称的前提下,计算)(x f -,然后根据函数的奇偶性的定义判断其奇偶性.这种方法可以做如下变形f(x)+f(-x) =0 奇函数f(x)-f(-x)=0 偶函数f(x)1 偶函数 f(-x)f(x)1 奇函数f(-x)==- 三、复合函数奇偶性18. 你熟悉周期函数的定义吗?()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()() 函数,T 是一个周期。

)()如:若,则f x a f x +=-()(答:是周期函数,为的一个周期)f x T a f x ()()=2我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这个函数周期2t. 推导:()()0()(2)()(2)0f x f x t f x f x t f x t f x t ++=⎫=>=+⎬+++=⎭,同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称, 对称轴可以由括号内的2个数字相加再除以2得到。

比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a 对称。

()()()()()()(2)(2)(2)()(2)2,222,()(22)()(22),()2||(,,f x x a x b f a x f a x f b x f b x f x f a x f a x f b x f x f b x t a x b x t b a f t f t b a f x f x b a f x b a a b ==+=-+=-=-⎧⎫=>=>-=-⎨⎬=-⎩⎭=--=+-=+-=+--又如:若图象有两条对称轴,即,令则即所以函数以为周期因不知道的大小关系为保守起见我加了一个绝对值如:19. 你掌握常用的图象变换了吗?f x f x y ()()与的图象关于轴对称- 联想点(x,y ),(-x,y) f x f x x ()()与的图象关于轴对称- 联想点(x,y ),(x,-y) f x f x ()()与的图象关于原点对称-- 联想点(x,y ),(-x,-y) f x fx y x ()()与的图象关于直线对称-=1联想点(x,y ),(y,x)f x f a x x a ()()与的图象关于直线对称2-= 联想点(x,y ),(2a-x,y) f x f a x a ()()()与的图象关于点,对称--20 联想点(x,y ),(2a-x,0) 将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00上移个单位下移个单位b b b b y f x a b y f x a b()()()()>−→−−−−−−−−>=++=+-00 (这是书上的方法,虽然我从来不用, 但可能大家接触最多,我还是写出来吧。

对于这种题目,其实根本不用这么麻烦。

你要判断函数y-b=f(x+a)怎么由y=f(x)得到,可以直接令y-b=0,x+a=0,画出点的坐标。

看点和原点的关系,就可以很直观的看出函数平移的轨迹了。

)注意如下“翻折”变换:()|()|x ()(||)y f x f x f x f x −−→−−→把轴下方的图像翻到上面把轴右方的图像翻到上面 ()如:f x x ()log =+21()作出及的图象y x y x =+=+log log 2211y=log 2x19. 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠ (k 为斜率,b 为直线与y 轴的交点)()()()反比例函数:推广为是中心,200y k x k y b k x ak O a b =≠=+-≠'()的双曲线。

()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a =++≠=+⎛⎝ ⎫⎭⎪+- 顶点坐标为,,对称轴--⎛⎝ ⎫⎭⎪=-b aac b a x ba 24422开口方向:,向上,函数a y ac b a>=-0442mina y acb a<=-0442,向下,max1212122,,|||b x ab cx x x x x x a a a -=+=-⨯=-=根的关系:2212121212()()()()(m n ()()()(,2()()()(,)(,)f x ax bx c f x a x m n f x a x x x x x x f x a x x x x h x h x h =++=-+=--=--+二次函数的几种表达形式:一般式顶点式,(,)为顶点是方程的个根)函数经过点(应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程ax bx c x x y ax bx c x 212200++=>=++,时,两根、为二次函数的图象与轴∆ 的两个交点,也是二次不等式解集的端点值。

相关文档
最新文档