热塑性弹性体SIS改性技术及应用
2024年热塑性橡胶SIS市场需求分析

2024年热塑性橡胶SIS市场需求分析概述热塑性橡胶(SIS)是一种高性能材料,具有良好的弹性和橡胶特性。
它广泛应用于各个行业,如汽车、电子、医疗等。
本文将对热塑性橡胶SIS市场的需求进行分析。
市场规模根据市场研究数据,热塑性橡胶SIS市场在过去几年中呈现稳定增长的趋势。
预计到2025年,全球热塑性橡胶SIS市场规模将达到X亿美元。
这主要归因于对高性能材料的需求增加以及相关产业的快速发展。
应用领域汽车行业汽车行业是热塑性橡胶SIS的主要应用领域之一。
热塑性橡胶SIS可以用于汽车密封件、悬挂系统和隔音材料等方面。
随着全球汽车产量的增加和对车辆舒适性的要求提高,热塑性橡胶SIS在汽车行业的需求将持续增长。
电子行业在电子行业,热塑性橡胶SIS通常用于电缆绝缘、电子密封件等应用。
随着电子产品的普及和更新换代速度的加快,对高性能材料的需求也越来越高,这为热塑性橡胶SIS市场带来了新的机遇。
医疗行业热塑性橡胶SIS在医疗行业中的应用也逐渐增加。
它可以用于制造医疗设备的密封件、管道等。
随着人们对医疗健康的关注度提高和医疗技术的进步,对高品质、安全可靠的材料的需求也在增加。
市场驱动因素技术进步随着科技的不断发展,热塑性橡胶SIS材料的制造技术和性能得到了提升,使其在各个领域中的应用更加广泛。
技术进步驱动了市场对高性能材料的需求增加。
环保要求热塑性橡胶SIS材料在生产过程中产生的污染较少,符合环保要求。
随着环保意识的提高和环境法规的推行,对环保材料的需求也在增加,这为热塑性橡胶SIS市场提供了机遇。
市场竞争热塑性橡胶SIS市场竞争激烈。
目前市场上存在着许多供应商,其产品在质量、性能和价格等方面存在差异。
为了在竞争中取得优势,供应商需要不断改进产品质量、推出创新产品以及提供竞争性价格。
总结热塑性橡胶SIS市场在汽车、电子、医疗等行业具有广阔的发展前景。
随着技术进步和环保要求的推动,对高性能材料的需求不断增加。
供应商在市场竞争中需要不断改进产品质量和推出创新产品,以满足市场需求。
SIS热塑丁苯橡胶的热重分析研究

SIS热塑丁苯橡胶的热重分析研究橡胶材料是广泛应用于工业领域的重要材料之一。
随着科学技术的发展,对于橡胶材料的研究也越来越深入。
本文将对SIS热塑丁苯橡胶进行热重分析研究,以探究其在高温条件下的热性能特征。
热重分析是通过在持续升温条件下,测量材料质量变化的分析技术。
通过监测材料的质量变化,可以了解材料的热稳定性、分解温度和质量损失情况。
因此,热重分析是研究橡胶材料在高温环境下性能的有效方法之一。
SIS热塑丁苯橡胶,即聚丁乙烯-聚苯乙烯-聚丁烯(Styrene-Isoprene-Styrene)橡胶,是一种热塑性弹性体,具有高弹性、耐油、耐磨、耐酸碱等优异性能。
热重分析可以揭示SIS热塑丁苯橡胶在高温条件下的热性能特征,为其在实际应用中的合理使用提供理论依据。
在进行热重分析之前,首先需要准备样品。
样品的准备应遵循一定的原则,避免外部因素对实验结果的影响。
接下来,将样品放置于热重分析仪器中,以一定的升温速率进行加热。
在整个过程中,通过记录样品的质量变化和温度变化,并绘制热重曲线。
根据热重曲线的形状和特征,可以得出许多关于样品性能的信息。
对于SIS热塑丁苯橡胶的热重分析,我们可以观察到几个关键的热重曲线特征。
首先,纵向对比不同温度下样品的质量变化。
温度升高,样品开始分解并失去质量,这是由于高温引起的橡胶分子链破裂和挥发性组分的释放。
此过程可以通过记录质量损失的速率来评估样品的热稳定性。
其次,横向对比不同材料的热重曲线特征。
不同的橡胶材料在高温下的分解温度和质量损失情况会有所不同。
通过比较样品之间的热重曲线,可以评估它们的热稳定性和相对热性能。
此外,还可以观察到热重曲线上的峰值变化。
这些峰值通常与样品中存在的不同组分、添加剂或杂质相关。
通过分析峰值的性质和位置,可以得出关于样品组成和成分的信息。
热重分析的结果可以为SIS热塑丁苯橡胶的合理应用提供重要的依据。
首先,可以根据样品的热稳定性和分解温度来确定该橡胶材料在高温环境下的使用温度范围。
热塑性弹性体(SBS)的合成、改性和应用

(1)大分子化学改性法 ① SBS接枝反应 SBS接枝可采用低分子化合物如马 来酸酥等, 用有机单体如丙烯酸在过氧化物引 发剂存在下进行接枝反应, 在SBS链上接枝极性的高分子链段, 也可在一元接枝的基础上进行二元、 三元、乃至四元接枝反应。
张爱民等人用示差扫描仪 研究了SBS, SBS -g-MAH改性沥青的储 存稳定性研究表明, 由于SBS -g-MAH的极性比SBS高, 与沥青之间能形成一种更稳定的、均 匀的、 分相而不分离的织态结构, 从而能有效改善沥青的热储存稳定性。
• • • • •
在生产中使用THF等添加剂, 由于活性种在非极性溶剂中以缔合形态存在, 随着THF的增加,平衡向右移动, 缔合体逐渐减少,形成单量体, 一络合体,二络合体等,反应如下:
• THF为给电子试剂, • 它的含量的增加削弱了活性种正离子Li十与 C之间的键能, • 使单量体增加,单体更易发生插入反应, 加快反应速度,同时它还影响到丁二烯嵌 段中1.2一结构的含量。 • 因此,它的加入量不大,一般控制在 THF/n-BuLi为0.5-2.0之间。
• 若将上述得到的官能化聚合物与盐酸、梭 酸、磷酸等反应可将聚合物末端氨基进一 • 步按化。端基基团能有效提高丁苯嵌段聚 合物的粘合性及与金属表面的粘合性能。
• 2. 3 SBS的结构与性能及其影响因素 • (1) SBS的结构与性能 • SBS的高分子链是由塑性嵌段(聚苯乙烯 硬段)和弹性嵌段(聚丁二烯软段)组成, • 聚苯乙烯嵌段连在聚丁二烯中间段的两端. 由于聚苯乙烯嵌段间的作用力,使其能与 其它大分子的聚苯乙烯嵌段聚集在一起, 形成物理交联,构成网状结构。
• 实验表明上述星型 SBS 在端基官能化后与 极性聚合物、极性填料之间的相容性有很 大的提高。
热塑性弹性体

第一章热塑性弹性体(TPE):一种在常温下表现橡胶的性能,在高温下表现为塑料能塑化的多功能材料。
1结构特点:有硬段和软段,硬段是塑料部分;软段是橡胶部分。
热塑性弹性特主要是嵌段共聚物或接枝共聚物。
A-B:表示两嵌段共聚物。
A-B-C:三嵌段共聚物。
A-B-A:三嵌段共聚物,A在两端,B在中间。
(A-B)n:交替嵌段共聚物。
如:聚苯乙烯丁二烯苯乙烯三嵌段共聚物 S-B-S热塑性弹性体按交联方式可分为物理交联与化学交联。
按特定分可分为嵌段共聚物和接枝共聚物。
2在加工应用上的特点:可用标准热塑性塑料的加工设备和工艺流程进行加工成型;不需要硫化,工艺简单;边角废料可回收使用;在高温下易软化,所制产品的使用温度有一定限制。
3热塑性弹性体的优点:可用一般热塑性塑料的加工设备加工成型;生产效率大幅度提高;易于回收利用,降低成本;节能;应用领域广;可用塑料增加、增韧改性。
4热塑性弹性体的缺点:加工前干燥;要求成批生产;使用温度有一定的限制;低硬度热塑性弹性体品种数量有限。
第三章苯乙烯类热塑性弹性体(TPS)1TPS又名苯乙烯嵌段共聚物SBC,由苯乙烯与丁二烯或异戊二烯以烷基锂为引发剂进行阴离子聚合制得。
2TPS分类按嵌段分:苯乙烯—丁二烯—苯乙烯嵌段共聚物 SBS;苯乙烯—异戊二烯—苯乙烯嵌段共聚物 SIS;氢化SBS SEBS;氢化SIS SEPS。
(1)TPS有两个玻璃化温度(2)聚苯乙烯相为分离的球形区域(球形相畴)是硬段,作为多功能连接的交联网络结构。
3制备方法:顺序聚合法:用单活性引发剂(丁基锂)引发第一单体聚合,然后加入其它单体一次进行聚合;偶联法:用单活性引发剂进行聚合,然后用偶联剂将活性链连接;多官能团引发剂法:用具有两个或两个以上的活性中心的引发剂引发第一单体聚合,然后加入第二单体继续聚合。
4 TPS的配合体系有哪些?采用什么加工方法?应用?混合料、增塑剂(软化和塑化该聚合物中的橡胶相)、填充剂(降低成本和改进性能的应用)、与其它聚合物并用(改进某些性能)、稳定剂(防止降解)、其它添加剂。
热塑性弹性体SEBS及其改性的研究进展

热塑性弹性体SEBS及其改性的研究进展樊筱灵(上海应用技术学院材料工程系03101251班)热塑性弹性体(Thermoplastic Elastomer, 简称TPE)是一类常温下显示橡胶弹性,高温下又能塑化成型的高分子材料,被称为“第三代橡胶”。
热塑性弹性体既具有类似硫化弹性体的物理性能,又具有加工方便、可回收利用等独特的优点,因此,其发展一直倍受关注。
热塑性弹性体高分子链的结构特点是它们同时串成或接枝某些化学组成不同的树脂段(硬段)和橡胶段(弹性软段),硬段形成物理“交联点”,软段则是自由旋转能力较大的高弹性链段。
硬段在常温下起着约束大分子成分的作用和补强作用,且具有可逆性,即在高温下约束力丧失,呈塑性,温度降至常温时,“交联”又恢复,起类似硫化橡胶交联点的作用,同时还产生补强作用。
由于高分子链段的结构特点和交联状态的可逆性,TPE一方面在常温下显示出硫化橡胶的弹性和形变特性等物理机械性能,此时可用于生产具有硫化胶性能的制品;另一方面,在高温下硬段会熔化而呈塑性流动,显现热塑性塑料的加工特性。
所以,TPE有以下几个显著特点:(1)可用于热塑性加工,如挤出、注射、吹塑等,加工流动性好,可与多种材料复合成型,而且自我补强性着色的自由度大;(2)无须硫化,因而设备投资少、能耗低、工艺简单、加工周期短、生产效率高、加工费用低;(3)边角料可完全回收,故可节省资源、利于环保。
一.SEBS的结构与特征聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯(SEBS)是一种多用途的新型热塑性弹性体,是热塑性嵌段共聚物苯乙烯-丁二烯-苯乙烯(SBS)分子中橡胶段聚丁二烯不饱和双键经过选择加氢而制得的新型改性弹性体。
聚丁二烯橡胶软段的加氢度一般应小于90%,而聚苯乙烯塑料硬段加氢度则要求大于10%,加氢后的SBS的中间聚丁二烯嵌段就转化成了乙烯和1-丁烯的无规共聚段而成为SEBS。
SEBS不但具有优异的耐老化性能,且具有较好的力学性能,断裂伸长率为0~150%,超过了硫化橡胶,不仅对臭氧、紫外线、电弧具有良好的耐受性,还具有良好的耐油、耐化学品腐蚀性以及优异的耐低温性。
TPS苯乙烯类热塑性弹性体加工应用

TPS-苯乙烯类热塑性弹性体(SBS、SEBS、SIS)加工应用一、SBS-热塑性弹性体我们的SBS生产装置是依靠国内技术建设起来的,1984年巴陵石化公司采用燕山石化公司研究院的技术工业化成功,90和93年分别在巴陵和燕山建成万吨级工业生产装置,意大利EniChem公司和台湾合成橡胶公司的SBS就是使用中国燕山的技术。
1997年茂名石化引进比利时Fina公司生产装置。
现在中国已有11条SBS生产线,设计能力23万吨/年。
2004年国产SBS世界第一产量26万吨(充油SBS占61%),接近世界产量1/5。
中国是SBS的消费大国,2006年消费量达46.6万吨,约占世界消费量的1/3。
同时也是世界SBS的最大进口国(2006年进口17.8万吨)。
目前在建SBS的生产能力为22.5万吨/年,预计未来数年SBS的产量大于国内需求量,应用方向市场压力会增大。
SBS最大的市场是鞋材和沥青改性(铺路材料,防水材料等)1、鞋材由于SBS质轻、弹性好、美观、耐屈桡、表面摩擦大、耐寒、抗湿滑、着色性佳、透气性良好等优点,广汽应用于鞋材,如皮鞋底(绉片底)、休闲鞋、便鞋、防寒鞋等,但因其耐磨性和耐热性较差,不宜作运动鞋和登山鞋底用。
国内外SBS生产厂不仅生产多种牌号的SBS纯胶,而且还生产许多牌号鞋用SBS混合粒料供鞋厂选用。
SBS纯胶在结构上分为星型和线型,而且有不同牌号的充油SBS(一般是充环烷油)(1)SBS混合粒料A.配方设计(a). SBS牌号很多,可从各公司的样本根据需要进行选择。
表5列举几种国产SBS纯胶和充油胶的性能。
(b)树脂通过添加树脂(聚苯乙烯、聚—@—甲基苯乙烯、聚乙烯、EVA、聚丙烯、古马隆、松香季戊四醇酯,RX-80树脂等),可以调节SBS的性能,例如硬度、强度、耐磨、老化、流动性、氢化、粘性等。
聚苯乙烯树脂(PS)的综合性能最佳,是SBS混合料中的重要添加剂。
常用流动性的PS,例如日本Asahi Dow公司的Styron 679.(c)软化剂(加工油)软化剂是SBS费用不可的组分,其作用是调节硬度,流动性,并降低成本,充油SBS 可使配炼加工更容易。
热塑性弹性体SIS结构与性能关系分析

热塑性弹性体SIS结构与性能关系分析当前经济快速发展,化学材料方面也取得了很多成绩。
下面就以环己烷为溶剂、四氢肤喃为活化剂等,分析SIS结构与性能之间的关系。
具体而言,分析SIS的结构变量对其性能产生的影响,包括分子构型、分子量、嵌段比等。
在此基础上,分析了SIS结构变化和SIS粘合剂性能之间的关系,下面就对使用的原材料、SIS的合成和测试进行分析,并依据数据总结SIS结构与性能之间的关系,为以后的工作奠定坚实的基础。
标签:热塑性弹性体;SIS结构;性能关系SIS是苯乙烯类热塑性弹性体的一种,在进行SBS开发中就对SIS进行了深入研究,当相关技术成熟之后就开始进行了工业化生产,SIS材料优势明显,在很多领域都可以应用,下面就分析其具体的性能和影响因素。
1分析试验使用的原材料具体试验中需要使用到很多原材料,包括苯乙烯,分为聚合单体,纯度大于9.95%,这次试验中该材料选择茂名石油化工公司生产。
异戊二烯材料,主要是聚合单体,纯度大于99.5%,选用的是上海金山石化公司生产的。
技术人员要清楚,苯乙烯和异戊二烯生产投用前进行处理,将其中的水、阻聚剂等杂质脱除掉。
使用的粗环己烷,要求纯度在98%以上,该材料的生产厂家为岳化总厂化工。
对于正丁基锉材料而言,是技术人员自己进行制作准备的,浓度是2.0M.2分析SIS的合成和测试进行SIS合成中使用阴离子溶液聚合生产原理,利用顺序加料的方法就可以进行生产和合成,其中的线形结构产品由三步顺序加料方法进行合成,星型产品通过两步加料偶联法进行合成,但是要在聚合产物中加入一定的防腐剂,再使用经典水析法将溶剂脱除,通过干燥脱水就可以对这一样品进行测试和分析,分析时主要对分子量进行分析。
通过试验可以测定SIS产物机械力学性能和熔融流动性能。
3结果分析3.1分析SIS结构和机械力学之间的关系为了研究二者之间的关系,必须分析嵌段化大小对SIS机械力学的影响情况,通过得到的试验结果技术人员将数据进行整理分析,绘制出下图,通过图就可以看到当St%从13%增加到30%时,SIS的机械力学性能的三个指标分别开始增强,指标分别是硬度、拉伸强度、定身强度,除此之外,永久变形也开始增加,但是伸长率没有出现较大的变化,变化范围在1000-1200范围。
热塑性弹性体SEBS及其改性的研究进展

热塑性弹性体SEBS及其改性的研究进展樊筱灵(上海应用技术学院材料工程系03101251班)热塑性弹性体(Thermoplastic Elastomer, 简称TPE)是一类常温下显示橡胶弹性,高温下又能塑化成型的高分子材料,被称为“第三代橡胶”。
热塑性弹性体既具有类似硫化弹性体的物理性能,又具有加工方便、可回收利用等独特的优点,因此,其发展一直倍受关注。
热塑性弹性体高分子链的结构特点是它们同时串成或接枝某些化学组成不同的树脂段(硬段)和橡胶段(弹性软段),硬段形成物理“交联点”,软段则是自由旋转能力较大的高弹性链段。
硬段在常温下起着约束大分子成分的作用和补强作用,且具有可逆性,即在高温下约束力丧失,呈塑性,温度降至常温时,“交联”又恢复,起类似硫化橡胶交联点的作用,同时还产生补强作用。
由于高分子链段的结构特点和交联状态的可逆性,TPE一方面在常温下显示出硫化橡胶的弹性和形变特性等物理机械性能,此时可用于生产具有硫化胶性能的制品;另一方面,在高温下硬段会熔化而呈塑性流动,显现热塑性塑料的加工特性。
所以,TPE有以下几个显著特点:(1)可用于热塑性加工,如挤出、注射、吹塑等,加工流动性好,可与多种材料复合成型,而且自我补强性着色的自由度大;(2)无须硫化,因而设备投资少、能耗低、工艺简单、加工周期短、生产效率高、加工费用低;(3)边角料可完全回收,故可节省资源、利于环保。
一.SEBS的结构与特征聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯(SEBS)是一种多用途的新型热塑性弹性体,是热塑性嵌段共聚物苯乙烯-丁二烯-苯乙烯(SBS)分子中橡胶段聚丁二烯不饱和双键经过选择加氢而制得的新型改性弹性体。
聚丁二烯橡胶软段的加氢度一般应小于90%,而聚苯乙烯塑料硬段加氢度则要求大于10%,加氢后的SBS的中间聚丁二烯嵌段就转化成了乙烯和1-丁烯的无规共聚段而成为SEBS。
SEBS不但具有优异的耐老化性能,且具有较好的力学性能,断裂伸长率为0~150%,超过了硫化橡胶,不仅对臭氧、紫外线、电弧具有良好的耐受性,还具有良好的耐油、耐化学品腐蚀性以及优异的耐低温性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文摘自再生资源回收-变宝网()热塑性弹性体SIS改性技术及应用
热塑性弹性体SIS自1963年问世以来就引起了极大的关注,它是由苯乙烯与异戊二烯组成的三嵌段共聚物。
中间是彼此孤立的柔软橡胶链段,两边是硬塑料链段,在室温下具有硫化橡胶的性能,在高温下又呈现可塑性,兼具有良好的弹性和粘结强度、耐低温、耐溶解性好、溶液粘度低、固化快等优点,所以通常用于与SBS或其他材料配制胶黏剂,主要用作热熔胶和压敏胶,用在医疗、电绝缘、包装、保护和掩蔽、标志、粘接固定以及复合袋的层间黏合等。
但是,SIS极性小,耐油性和耐溶剂性较差,使其应用范围受到了很大的限制。
如在高温下作胶粘剂或用于粘接鞋、木料等极性基材时存在许多缺点:与极性材料粘接强度不高,耐热性和耐候性差,特别是用作热熔压敏时,其软化点低。
近年来,各大公司为了提高自身竞争能力,均致力于开发高性能SIS,为满足市场对高性能热熔粘合剂的要求。
SIS改性的原理及方法
目前关于SIS热熔压敏胶改性的研究主要集中在三个方面:第一是对SIS弹性体进行改性,在弹性体上引入极性基团或链
段,改变分子的极性,包括:环氧化、接枝改性。
第二是对SIS 压敏胶进行改性,主要通过加入其他类型的粘结剂或添加剂来改变粘结剂的表面张力和极性,从而改进胶黏剂与被粘材料之间的粘结力;其次通过改变压敏胶的组分来改性;第三是利用电子束或紫外光的照射下,是SIS弹性体的双键断裂而产生自由基,然后进行分子内、分子间以及与其它聚合物之间的聚合、接枝、交联等过程。
1)环氧化改性
由于聚苯乙烯和聚异戊二烯属于非极性物质,与极性物质的混溶性和所形成的粘接剂的间接性都受到限制,对SIS的改性,主要是在其上引入极性基团。
邸明伟等报道了SIS弹性体的环氧化改性。
将环氧化改性后得到的ESIS按最佳配方配成的压敏胶与未改性的SIS按最佳配方配成的压敏胶进行性能对比。
结果表明,ESIS压敏胶的剥离强度、持粘性、耐老化性能比未改性的SIS压敏胶好。
2)接枝改性
SIS弹性体中存在双键,可以通过接枝增加粘结剂的初粘性、耐热性和粘结性等。
采用与聚烯烃结构及表面性能相近的单体与SIS进行接枝。
丙烯酸及丙烯酸酯类接枝
目前国内对SIS与丙烯酸酯类接枝改性的研究,一般采用溶液接枝的方法。
杨性坤等对以甲基丙烯酸甲酯(MMA)、甲基丙烯酸丁酯(BMA)、丙烯腈(AN)、丙烯酸(MAH)为单体对SIS 进行改性。
实验测定结果表明在过氧化苯甲酰(BPO)作用下MMA 和BMA及其混合物可有效接枝SIS,增强其极性和柔韧性,改进与极性材料表明的粘接性能。
丁基橡胶改性
由于SIS中的聚异戊二烯链段受到氧、热、光等作用易断裂而降解和交联,影响压敏胶的性能。
丁基橡胶的化学不饱和度低,加上聚异丁烯链的不活泼性,使得丁基橡胶的耐热和耐氧化性能远优于其它通用橡胶。
有人研究了SIS、丁基橡胶、增粘剂和增塑剂等对产品性能的影响,并制得丁基橡胶改性SIS热压敏胶带,其具有良好的耐老化性能,优良初粘性和持粘性等性能。
3)SIS压敏胶改性
SIS弹性体本身没有初粘性,要将它配成压敏胶时,必须添加粘结树脂、软化剂、防老剂以及其它添加剂。
SIS压敏胶改性,主要有两种改性方式,其一是改变压敏胶的组成或含量,根据胶黏剂的要求选择不同的增粘树脂、溶剂及其添加剂或各组份的含量;其二是共混改性,通过加入其它类型的胶黏剂或添加剂来增加体系的极性,使混合粘结剂与极性面料的粘合力增大,这是目前为了生产特殊性能粘合剂常采用的方法。
杨性坤等报道了将SIS与SBS进行共混改性,将两种弹性体混合使用后得到的压敏胶比单一组份的性能优越,在二者适当配比的条件下,剥离强度可以达到一最大值。
SIS压敏胶改性可以显著提高与极性材料的粘结力,耐热性和耐候性也一定提高,这种改性比较简便,所需设备较简单,与弹性体改性相比,原料和能源消耗较低,适合于公司生产满足不同性能要求的粘结剂。
4)紫外光或电子束改性
紫外光或电子束改性是在热熔压敏胶涂布后,通过短暂的电子束或紫外照射,使SIS弹性体的双键断裂产生自由基,然后进行聚合反应。
一般在涂布后,使弹性体冷却至PS链段的Tg以下,则PS只进行物理交联,再用电子束或紫外照射,则又进行部分化学交联,可以弥补物理交联的不足,可以大幅度提高胶黏剂的
耐温性和耐溶剂性,而不影响粘性。
紫外和电子束改性可以提高剥离强度和持粘性,适合某些特殊领域的应用,环境污染小,原料和能耗极少,是很有发展前景的一项技术。
本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站;
变宝网官网:/?cj
买卖废品废料,再生料就上变宝网,什么废料都有!。