氨水吸收式制冷机
制冷与低温技术原理—第5章 吸收式制冷(氨水)

•1a-1 进入精馏塔的浓溶液被加热的过程; •1-2 浓溶液在发生段的加热汽化过程; •3’’-1’’ 提馏段的热交换过程; •1’’-5’’ 精馏段热质交换过程,含水氨蒸气浓度进一步提高; •5’’-6 冷剂氨蒸气在冷凝器中的冷凝过程; •6-6a 冷剂氨蒸气在过冷器中的过冷过程; •6a-7 6点状态的过冷液体经节流阀节流到p0 压力, 其湿蒸气达到点7状态的节流过程; •7-8 蒸发器中的蒸发过程;
5 ’’ 8 ’’ ’’ 7 8
h
pk
2
1 1a 4 a 4
6 7 7’ w ‘’r
p0
8
’
w ‘a
w ‘r
w
5’’ 1kg wr’’
5.2.3 氨水吸收式制冷循环的热力计算 精馏段
回流冷凝器
qR
1a f kg wr’
提馏段 在已知制冷量,冷凝温度和蒸发温度的情况下, qh 发生器 可以根据h-w图进行热力计算。
5.1.1 吸收式制冷原理
举例
目前吸收式制冷机主要应用的工质对:
氨水吸收式制冷机(氨-水) 可制取0℃以下的冷量,用于低温制冷装置。 溴化锂吸收式制冷机(水-溴化锂) 制取0℃以上的冷量,用于空调。 6. 吸收式制冷机的经济性 吸收式制冷机的热力系数: 式中:Q0 -- 蒸发器中的制冷量; Qh -- 发生器的耗热量。
制冷与低温技术原理
第五章 吸收式制冷
第五章 吸收式制冷
主要内容: 吸收式制冷原理; 溴化锂吸收式制冷机; 氨水吸收式制冷机。
5.1 吸收式制冷原理
5.1.1 吸收式制冷原理
Qk
发生器
冷凝器 节 流 阀 蒸发器
Qo QH
氨水吸收制冷机组操作

目录1 岗位任务 (1)2 工艺过程概述 (1)2.1 工艺原理 (1)2.2 工艺流程 (1)2.3主要工艺指标 (3)3 生产操作方法 (4)3.1 正常生产时的操作控制 (4)3.2 单体设备的开停车与倒车 (5)3.3 系统开车 (6)3.4 系统停车 (9)5.1现象:当吸收器压力升高或降低时 (10)5.2现象:精馏塔压力太高时 (11)5.3现象:精馏塔出口气氨纯度降低时 (11)5.4现象:液氨储槽液位高或低 (11)5.5现象:精馏塔底温度高或低 (12)5.6现象:氨水泵启动后没有压力或流量 (12)5.7现象:流量达不到要求,振动大 (13)5.8现象:精馏塔拦液 (13)6 安全技术要点 (14)6.1 氨的物化性质 (14)6.2 中毒症状 (14)6.3 安全注意事项 (15)7 附图和附表 (15)7.1 设备名称代号规格性能一览表 (15)7.2 分析化验项目频次表 (16)7.3 安全生产信号、联锁一览表 (16)7.4 仪表自调一览表 (17)7.5 工艺指标一览表 (17)7.6 氨的饱和蒸汽压及液氨的物理性质一览表 (18)7.7 带控制点的工艺流程图 (19)1 岗位任务:从冷量用户(空分、脱碳、硫回收)来的气氨经过气氨吸收、浓氨水精馏、气氨的冷凝使之液化重新制成液氨.氨吸收制冷是利用低压蒸汽(0.4MPa)为热源,以氨作为制冷剂,以稀氨水为吸收剂,进行吸收、精馏、冷凝等过程构成溶液循环系统的制冷装置。
本装置的制冷设计能力按年产甲醇24万吨生产规模所需冷量进行工程设计,其制冷量总计 5.40×106kcal/hr。
装置中吸收器R5101AB的吸收压力取决于其它工段的氨蒸发器的液氨蒸发压力,也取决于稀氨水浓度和吸收器温度。
压力应控制在0.30MPa以下。
精馏塔T5101的操作压力根据需要而定,不能超过1.40MPa。
2 工艺过程概述:2.1 工艺原理:2.1.1 气氨吸收:由于气氨极易溶于水,气氨通入吸收器R5101AB被精馏塔过来的稀氨水吸收,形成浓氨水,并放出大量热,热量被R5101AB管程的循环水带走。
氨吸收式制冷机组的原理

氨吸收式制冷机组的原理氨吸收式制冷机组是一种利用氨和水之间的吸收性作用来实现制冷的装置。
其主要原理是通过氨与水的吸收作用使氨气从蒸发器中吸收,形成稀薄的溶液,然后通过稀薄的溶液将热量带到吸收器中,再通过水的蒸发来释放这些热量。
氨吸收式制冷机组的主要组成部分包括蒸发器、冷凝器、吸收器、发生器、泵和膨胀阀等。
首先,高温高压氨气进入冷凝器,通过与外界空气的接触,氨气冷却凝结,释放热量,并转化为高压液态氨。
然后,高压液态氨经过膨胀阀降压,进入蒸发器中,由于蒸发器内部的低压环境,使氨气迅速蒸发,吸收周围物体的热量,从而形成冷气。
因此,蒸发器是实现制冷效果的关键组件。
蒸发器中的冷气与水在吸收器中进行接触和混合,形成氨气通过吸收作用被水吸收,生成浓缩溶液。
在吸收器中,水的吸收能力较强,能够迅速吸收氨气,形成富氨溶液。
富氨溶液被泵送到发生器中,通过加热使其分解,氨气从溶液中释放出来,并以蒸汽的形式进行排出。
而回流的水则返回吸收器,与进入吸收器的冷气继续进行吸收作用,形成循环。
在发生器中,氨气进一步加热,使其与浓缩溶液分离,然后以气体的形式排出,而浓缩溶液则经过降温器冷却,并返回到吸收器,与冷气继续进行吸收作用。
整个过程中,氨气在蒸发器中吸收空气中的热量,然后在吸收器中被水吸收和分离,通过发生器中的加热和分解,再次释放出来。
而水在吸收器中吸收氨气,并在发生器中与氨气分离,形成浓缩溶液。
相较于传统的压缩式制冷机组,氨吸收式制冷机组具有一定的优势。
首先,氨吸收式制冷机组采用的是吸收作用,不需要使用动力机械来压缩气体,因此能够减少能源的消耗。
其次,氨吸收式制冷机组不需要使用氟利昂等对臭氧层有害的物质,符合环保的要求。
此外,氨吸收式制冷机组还能够利用低温废热或余热来提供热源,实现能源的再利用,具有较高的能量效率。
总之,氨吸收式制冷机组是一种利用氨和水之间的吸收性作用来实现制冷的机组。
通过氨与水的吸收作用,使氨气蒸发吸收周围物体的热量,然后通过水的蒸发来释放热量,实现制冷效果。
氨水吸收式制冷机

氨水吸收式制冷机:高效环保的制冷解决方案氨水吸收式制冷机作为一种环保、高效的制冷技术,在我国得到了广泛应用。
它利用氨水溶液作为制冷剂,通过吸收和释放热量来实现制冷效果。
下面,让我们一起来了解一下这款制冷机的特点及其工作原理。
氨水吸收式制冷机的优势与应用领域一、环保性氨水吸收式制冷机采用氨作为制冷剂,氨是一种天然、无氟的制冷剂,对大气层无破坏作用,不会产生温室效应。
这使得氨水吸收式制冷机在环保方面具有显著优势,符合我国可持续发展的战略要求。
二、能效高氨水吸收式制冷机的能效比(COP)较高,尤其在低温环境下,其制冷效果更为显著。
该制冷机可以利用废热、余热等低品位能源,实现能源的梯级利用,进一步降低能耗。
三、适用范围广氨水吸收式制冷机适用于多种领域,如冷链物流、食品加工、制药、化工等行业。
特别是在一些缺乏电源的偏远地区,氨水吸收式制冷机可以充分利用当地资源,实现制冷需求。
工作原理浅析1. 发生过程:在发生器中,氨水溶液被加热,氨气从溶液中蒸发出来,形成高浓度的氨蒸气。
2. 吸收过程:氨蒸气进入冷凝器,释放热量后凝结成液态氨。
随后,液态氨流入蒸发器,吸收热量蒸发,实现制冷效果。
3. 吸收过程:蒸发后的氨气进入吸收器,与来自发生器的稀氨水溶液混合,重新形成氨水溶液。
这个过程释放出大量热量,使溶液温度升高,为发生过程提供热量。
氨水吸收式制冷机以其环保、高效、适用范围广等特点,在我国制冷市场中占据重要地位。
随着我国对环保和节能减排的不断重视,氨水吸收式制冷机的发展前景将更加广阔。
维护与保养:确保氨水吸收式制冷机长期稳定运行一、定期检查系统密封性氨是一种具有较强渗透性的气体,一旦系统出现泄漏,不仅会影响制冷效果,还可能对环境和人体造成危害。
因此,定期检查系统的密封性是必要的。
检查时应重点关注管道连接处、阀门、法兰等易泄漏部位。
二、清洁换热器换热器是制冷机中的关键部件,其工作效率直接影响到整个制冷系统的性能。
定期清洁换热器,去除污垢和沉积物,可以保证换热效率,延长设备使用寿命。
氨水吸收式制冷的工作原理

氨水吸收式制冷的工作原理
哎呀呀,今天咱们就来好好聊聊氨水吸收式制冷的工作原理,这可真是个超有趣的事儿呢!
你想啊,就好像是一场奇妙的接力比赛。
先来说说氨水这个“主力军”吧。
氨水就像是一个特别能跑的选手,在这个制冷的“赛道”上拼命奔跑。
氨气就是其中精力充沛的那部分,它呀,可是个急性子,活力满满,到处乱窜。
而水呢,则像个沉稳的伙伴,一直陪伴着氨气。
在发生器里,就像是给氨气这个“小淘气”加了一把火,让它热得受不了,迫不及待地跑出来,这就是氨气从氨水中分离出来啦!这就好比夏天里大家在太阳下热得直冒汗,都想找个凉快地方呢。
然后呢,这些跑出来的氨气一路冲啊冲,就到了冷凝器,哎呀,在这里氨气就被“凉快”了一下,变成了液态氨,就像人跑累了停下来歇一歇。
接着液态氨进入蒸发器,哇,这里就是它大显身手的地方啦!液态氨迅速蒸发,会吸收大量的热量,让周围变得凉飕飕的,这不就和我们热的时候吃个冰激凌,感觉一下子凉快下来一样嘛。
同时呢,被氨气抛下的水也没闲着呀,它在吸收器里等着氨气回来呢。
等氨气又和水“会师”啦,它们就又一起愉快地组成了氨水,准备下一轮的“制冷之旅”。
你说这是不是超级神奇呢?整个过程就像一场精彩的表演,各个“角色”相互配合,共同完成制冷这个大任务呀!这就是氨水吸收式制冷的工作原理啦,是不是觉得很有意思呀?我反正是觉得超棒的,它让我们享受到了凉爽的舒适呢!。
氨水吸收制冷

HZF
一 氨吸收制冷特点
1.1优点 1 有利于热能的综合利用。氨吸收制冷
加热需要的热源的温度较低,故可利用蒸汽 透平的排气,化工生产中放出的低位能的热 量,如合成氨生产中的变换气余热,也可利 用低温蒸汽作为热源,以降低生产成本
2
氨吸收制冷设备易于加工。由于氨
吸收制冷装置除溶液泵外,都是塔、罐等静 止的化工设备,结构简单,制造周期短,各 地都可加工制造,易于上吗,且维修简单, 易于管理。
3.2 与压缩式制冷比较 (1)氨吸收式比电动压缩式初投资费用高。在高盐水 温度范围内,初投资的价格差更大;在低盐水温度范 围内投资价格差缩小。若考虑全年使用,则机组运转 在部分负荷下的时间较多。在部分负荷时,压缩式制 冷机效率降低而吸收式制冷机效率上升,可节省能源; (2)氨吸收式制冷机的运动部件少因此耐久性、可靠 性、维护性皆优; (3)氨吸收式制冷机用电少,且用低压电,电容量小。 例冷量175kW,盐水出口温度-30℃时,电动压缩式的 耗电140kW,而氨吸收式溶液泵耗电仅7.5kW; (4)氨吸收式制冷机可在室外安装无需设置机房
4、东南大学能源与环境学院,改进了一种渔
船利用自身动力柴油机的尾气驱动氨水吸收 式制冷机的技术,该技术采用可提高循环效 率的溶液冷却吸收和溶液加热发生的循环方 式,计算表明该改进型循环比传统循环的 COP提高20%左右。
5、Zaltash等研究了在氨一水中添加溴化锂
对基本GAX机组性能的影响。结果表明,添 加溴化锂后机组COP可提高21%,精馏塔负 荷可降低50,其它各换热器的负荷均有不同 程度的降低,发生温度越高,三元工质的优 势越明显。采用NH3-H20-LiBr:三元工质的缺 点是系统的腐蚀比氨水系统更加严重。
氨吸收余热制冷制冷技术相关资料

氨吸收余热制冷制冷技术相关资料一、产品特点尾气、余热制冷机组是一种新型的节能、环保制冷设备,尾气、余热为驱动源通过氨水吸收制冷方式来实现制冷。
通过氨水吸收制冷机组热冷转换,废气热量重新得到有效的利用,大大节约能源消耗,显著增加经济效益和社会效益。
余热制冷机组的特点有:1、使用寿命长。
机组由多台换热设备组成,除1台小功率溶液泵外无其它的运动部件。
制冷工质采用全封闭运行方式,制冷液永无泄漏。
机组维护简单、使用方便,寿命较压缩机制冷机组约长一倍以上。
2、使用安全可靠。
机组内设有各种保护装置,在运行中如出现故障机组具有能自动报警、停机、复位等功能。
机组停用时整个系统会自动恢复到无压状态。
3、节约能源显著。
以1台小时制冷量为2万大卡(23KW)为例,采用压缩式制冷机组需要的耗电功率为11kW,而采用尾气、余热制冷机组需要耗电功率仅为1.1kW,仅为压缩式制冷机组耗电功率的12%左右。
4、机组采用先进的PLC控制技术,真正实现了“一键开机”和自动控制运行。
并设有过热、超压等安全保护,在间接制冷系统中,不冻液温差检测延时开停,完全保证机组安全正常运行。
二、氨吸收制冷技术㈠原理吸收式制冷装置由发生器、冷凝器、蒸发器、吸收器、循环泵、节流阀等部件组成,工作介质包括制取冷量的制冷剂和吸收、解吸制冷剂的吸收剂,二者组成工质对。
浓氨水溶液在发生器中被加热,分离出一定流量的冷剂蒸气进入冷凝器中,冷剂蒸气在冷凝器中被冷却,并凝结成液态;液态冷剂经过节流降压,进入蒸发器,在蒸发器内吸热蒸发,产生冷效应,冷剂由液态变为气态,再进入吸收器中;另外,从发生器流出的稀溶液经换热器和节流降压后进入吸收器,吸收来自蒸发器的冷剂蒸气,吸收过程产生的浓溶液由循环泵加压,经换热器吸热升温后,重新进入发生器,如此循环制冷。
氨水吸收式制冷以自然存在的水或氨等为制冷剂,对环境和大气臭氧层无害;以热能为驱动能源,除了利用锅炉蒸气、燃料产生的热能外,还可以利用余热、废热、太阳能等低品位热能,在同一机组中还可以实现制冷和制热(采暖)的双重目的。
制冷原理及设备-第六章 氨水吸收式制冷机

将低压制冷剂蒸气变为高压制冷剂蒸气时采取的方式不同
蒸气压缩式制冷机通过原动机驱动压缩机完成,吸收式制冷机则是通过吸收器、 溶液泵、发生器和节流阀完成。
提供的冷源温度不同
整个系统包括 两个回路:
制冷剂回路 溶液回路
机械学院能动教研室
基本原理
(1)制冷剂循环 发生器中产生的冷剂蒸气在冷凝器中冷凝成冷剂水,经U 形管进入蒸发器,在低压下蒸发,产生制冷效应。这些过程与 蒸气压缩式制冷循环在冷凝器、节流阀和蒸发器中所产生的过 程完全相同;
(2)溶液循环 发生器中流出的浓溶液降压后进入吸收器,吸收由蒸发器 产生的冷剂蒸气,形成稀溶液,用泵将稀溶液输送至发生器, 重新加热,形成浓溶液。这些过程的作用相当于蒸气压缩式制 冷循环中压缩机所起的作用。
吸收式制冷机利用溶 液在一定条件下能折出低 沸点组分的蒸汽,在另一 条件下又能强烈吸收低沸 点组分的蒸汽这一特性完 成制冷循环。
机械学院能动教研室
吸收式制冷基本原理
制冷剂蒸发
吸收热量制冷
气体制冷剂回复到液体状态 (利用吸收方式)
机械学院能动教研室
吸收式制冷基本原理
吸收式制冷利用溶液在一定条件下能析出低 沸点组分的蒸气,在另一种条件下又能吸收低沸点 组分这一特性完成制冷循环。
第六章氨水吸收式制冷机
6.1 概述 6.2 氨水溶液的性质 6.3 单级氨水吸收式制冷机循环过程及其在h-w图上的表示 6.4 氨水吸收式制冷机与蒸气压缩式制冷机性能的比较
机械学院能动教研室
6.1 概 述
吸收式制冷机和蒸汽压缩式制冷机都是利用制冷剂的汽 化潜热制冷的,两者的主要区别在于前者依靠消耗热能作为 补偿实现制冷,后者则通过消耗功作为补偿实现制冷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶液热交换器负荷 f(h1a-h4a) = (f-1)(h2-h2a)
循环热力计算
系统总热平衡: q0+qg=qk+qr+qa 热力系数 ζ= q0/qg 热力完善度
6
运行参数对循环性能的影响
热源温度的影响 冷却水温度的影响 蒸发温度的影响
2015-01-06
氨水吸收式制冷循环的性能提升方法
运行工况的改良 对喷淋溶液前节流差压的利用 增压吸收 吸收强化
7
2015-01-06
12.4 扩散-吸收式制冷
基于蒸气分压力差的扩散蒸发制冷原理
扩散-吸收式制冷循环
利用氨-氢气-水的三元 扩散吸收式制冷循环
利用水-空气-盐溶液的 三元扩散吸收(除015-01-06
第12章 氨水吸收式制冷机
12.1 氨水吸收式制冷原理 12.2 氨水溶液的性质和焓浓度图 12.3 单级氨水吸收式制冷机 12.4 扩散-吸收式制冷机
12.1 氨水吸收式制冷原理与特点
二元非共沸溶液—低沸点组分为制冷剂,高沸点组分 为吸收剂:氨—制冷剂,水—吸收剂
可以获取0oC以下-60oC以上(凝固点-77.7oC)的低温 常压下氨沸点为-33.4oC ,制冷循环需加设精馏装置 氨在通常蒸发温度下气化潜热为1300kJ/kg左右,是
氟利昂制冷剂R22的7倍 氨与水任意比例互溶(0<ξ<1) 氨水对有色金属釉腐蚀作用
1
2015-01-06
12.2 氨水溶液的性质和焓浓度图
氨有毒,氨高温下可分解,因此发生温度不 宜超过160-170oC
密度、动力粘度、比热、热导率 氨水溶液的热力性质
p-t图
2
氨水溶液焓浓度图
(与溴化锂水溶液焓浓度图有区别)
5
2015-01-06
氨水吸收式制冷循环过程热力分析
冷凝、过冷、节流过程
冷凝过程热负荷:qk=h5-h6 过冷器负荷:qN=h6-h6a=h8-h8a
蒸发过程
单位制冷量: q0=h8-h7
吸收过程
qa+f·h4=h8a+(f-1)h3 单位热负荷: qa=h8a-h3+(h3-h4) f
氨水吸收式制冷循环过程热力分析
2015-01-06
12.3 单级氨水吸收式制冷机
工作循环
发 生 器
3
精馏塔
精馏过程的作用 精馏过程的原理 精馏过程实现的物理模型
2015-01-06
工质状态在h-w图上的表示
1, wR
qr
5 R+12a
R
f, wr 1a
3 8a
qk
6
qa
qg
f -1 4
2 wa
78
q0
4
2015-01-06
发生及精馏过程原理
为什么需要精馏过程?
精馏原理 氨水蒸气精馏过程原理图
qr
1, w R
5 R +1
T
o x5
x4
y5 y4 x3 x2
p=C
y3 y2
x1 y1
f, w r
R
1a
0
x0
1
qg
2
f -1 wa
溶液的蒸发、蒸汽的引出与冷凝过程称为蒸馏。
不断进行这样的加热、蒸发、引出、冷凝过程,可得很纯的低 沸点组分——精馏。
氨水吸收式制冷循环过程热力分析
发生、精馏过程负荷
1. 精馏段能量方程 qr=(R+1)h1”-h5-R·h1
物料平衡方程 (R+1) w1” =R·w1+wR R=(w1” - w1)/(wR- w1” )
2.发生塔内热平衡 qg+f·h1a=h5+(f-1)h2+qr qg=(h5-h2)+f(h2-h1a)+qr