初中数学中考复习数轴中的数形结合共33页

合集下载

数学中考复习:数形结合思想PPT课件

数学中考复习:数形结合思想PPT课件

距水平面的高度是4米,离柱子OP的距离为1米。 (1)求这条抛物线的解析式; y
(2)若不计其它因素,水池
A
的半径至少要多少米,才能
使喷出的水流不至于落在池 外?
P 3
4
O 1B 水平面 x
5. 已知一次函数y=3x/2+m和 y=-x/2+n的图象都经过点A(﹣2,0),且与 y轴分别交于B、C两点,试求△ABC的面积。
∴S△ABC=1/2×BC×AO=4
6.某机动车出发前油箱内有42升油,行驶若干小时
后,途中在加油站加油若干升。油箱中余油量Q(升)
与行驶时间t(小时)之间的函数关系如图所示,根
据下图回答问题:
(1)机动车行驶几小时后加油?答:_5_小时
(2)加油前余油量Q与行驶时间t的函数关系式
是:_Q=__42_-_6_t Q(升)
中考复习
数形结合思想
2024/9/19
1
谈到“数形结合”,大多与函数问 题有关。
函数的解析式和函数的图象分别从
“数”和“形”两方面反应了函数的性 质,
函数的解析式是从数量关系上反应 量与量之间的联系;
函数图象则直观地反应了函数的各
种性质,使抽象的函数关系得到了形象 的显示。
“数形结合思想”就是通过数量与
B、M = 0
C、M < 0
D、不能确定
运用数形结合的方法,将 -1 0 1
x
函数的解析式、图象和性
质三者有机地结合起来
1.二次函数y=ax2+bx+c的图象如图所
示.下列关于a,b,c的条件中,
不正确的是 ( D ) y
(A)a<0,b>0,c<0
(B)b2-4ac<0
(C)a+b+c<0

中考数学专题之数形结合

中考数学专题之数形结合

中考数学专题 数形结合知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b 在数轴上的位置如图所示,化简2a ab +-=_________.【分析】 由数轴上a ,b 的位置可以得到a 〈0,b>0且a <b .∴2a a =-,a b b a -=-.【解】()22a a b a b a a b +-=-+-=-+【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒. 【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________.【分析】解不等式组得解集为2x ax >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n 〈0【例4】(08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.203210x yx y+-=⎧⎨--=⎩B.2103210x yx y--=⎧⎨--=⎩C.2103250x yx y--=⎧⎨+-=⎩D.20210x yx y+-=⎧⎨--=⎩【分析】根据图象我们可以知道这个方程组的解为11xy=⎧⎨=⎩,只要将解进行代入检验即可.【解】D【例5】已知二次函数y=a x2+bx+c的图象如图所示,若关于x的方程a x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k〉3 B.k=3 C.k<3 D.无法确定【分析】如果根据b2-4a c的符号来判别解的情况,本题将无从入手,可将原方程变形为a x2+bx+c=k,从而理解成是两个函数的交点问题,即2y ax bx cy k⎧=++⎨=⎩,由图象可知只要y=k〈3就一定定与抛物线有两个不同的交点,所以答案选C.【解】C三、在函数中的应用【例6】(08安徽)如图为二次函数y=a x2+bx+c的图象,在下列说法中:①a c<0 ②方程a x2+bx+c=0的根是x1=-1,x2=3 ③a+b+c>0 ④当x>1时,y随x的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】由图象可知,开口向上,与x轴交于-1和3两点,与y轴交于负半轴,则a>0,c〈0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误, (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+.(2)当运动员在空中距池边距离为335米时,即383255x=-=时,63y=-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误.四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2",这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数ky x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2〉y 1>y 3C .y 3>y 1〉y 2D .y 3〉y 2〉y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x 〈0,则a 的取值范围为 ( )A .a 〉0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m (m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值( )下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m〉0.晶晶:我发现图象的对称轴为x=1 2欢欢:我判断出x1<a〈x2.迎迎:我认为关键要判断a-1的符号.妮妮:m可以取一个特殊的值.A.y<0 B.0<y<m C.y〉m D.y=m8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A、B的坐标分别是_________和_________.9.在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b和y=a x+3的图象交点为P,则不等式x+b>a x+3的解集为__________.11.方程组211y xy x=-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b 在数轴上的位置,化简()222a b a b ---.13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的_______%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8;设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式()224129x x ++-+的最小值.16.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。

数轴上的数形结合

数轴上的数形结合

数轴上的数形结合《数轴上的数形结合》嘿,同学们!你们知道吗?在数学的世界里,有一个超级神奇的东西,那就是数轴!有一次上数学课,老师在黑板上画了一条长长的线,然后在线上标了几个数字,告诉我们这就是数轴。

我当时心里就犯嘀咕:“这有啥神奇的呀?不就是一条带数字的线嘛!”可是,随着老师的讲解,我发现自己大错特错啦!老师说:“同学们,想象一下,数轴就像是一个神奇的跑道,数字们在上面赛跑。

正数就像向前冲的运动员,跑得又快又远;负数呢,就像是倒着跑的,越跑离起点越远。

”这比喻,一下子让我觉得数轴有趣多了!老师还在数轴上标出了几个点,然后问我们:“如果这个点代表5,那距离它3 个单位长度的点是多少呢?”同学们都开始叽叽喳喳地讨论起来。

小明说:“那肯定是8 呀!”小红马上反驳道:“不对不对,还有可能是2 呢!”我在心里默默想:“哎呀,他们说得好像都有道理,到底是多少呢?”老师笑着说:“大家说得都对,距离5 三个单位长度的点,既可能是8,也可能是2。

这就是数轴的魅力呀!”后来,老师又出了一道题:“在数轴上,A 点表示-2,B 点表示4,那么A、B 两点之间的距离是多少?”这可把我难住了,我瞪大眼睛看着数轴,脑子却像一团乱麻。

同桌拍拍我的肩膀说:“别着急,你看,4 - (-2)不就等于6 嘛,这就是距离呀!”我恍然大悟:“原来是这样啊!”通过这一次次的学习和讨论,我越来越觉得数轴就像一个藏着无数秘密的宝藏图。

每一个点都像是一个神秘的符号,等待着我们去解读它的含义。

数轴不就像我们的人生道路吗?正数是顺境,负数是逆境。

有时候我们顺风顺水,一路向前;有时候又会遭遇挫折,仿佛在倒退。

但不管怎样,我们都在这条“数轴人生”上努力前行,不是吗?总之,数轴上的数形结合可真是太有趣、太有用啦!它让我看到了数学的奇妙,也让我更加喜欢探索数学的世界!。

初中数形结合知识点

初中数形结合知识点

初中数形结合知识点
初中数学中的数形结合知识点包括以下几个方面:
1. 数轴上的数与点的对应关系:实数与数轴上的点是一一对应的,这种对应关系是数形结合的基础。

通过在数轴上标注数字,可以直观地表示出数字的大小和位置关系。

2. 平面直角坐标系中的坐标与点的对应关系:在平面直角坐标
系中,每一个点都有一个唯一的坐标,这个坐标可以表示出该点在空间中的位置。

这种对应关系是平面直角坐标系的基础。

3. 函数图像与函数表达式的对应关系:函数图像是数形结合的
重要体现。

每一个函数表达式都可以对应一个或多个函数图像,通过观察函数图像可以直观地理解函数的性质和变化规律。

4. 三角形、四边形等图形的性质与判定:三角形和四边形等图
形的性质和判定方法可以通过数形结合的方式进行理解和掌握。

例如,勾股定理可以通过勾股定理的逆定理进行证明,而平行四边形的判定可以通过两组对边分别平行的判定定理进行证明。

5. 图形运动中的数形结合:图形运动是数学中的重要概念之一,其中涉及到的平移、旋转、对称等运动都可以通过数形结合的方式进
行理解和掌握。

例如,在研究图形的旋转性质时,可以通过观察旋转前后图形的变化来理解旋转的性质。

总之,数形结合是初中数学中的一个重要思想方法,通过将抽象的数学语言与直观的图形相结合,可以帮助学生更好地理解数学概念和解决数学问题。

中考数学总复习专题四数形结合问题课件

中考数学总复习专题四数形结合问题课件
(1)求点 A,点 B 的坐标. (2)若点 P 是 x 轴上任意一点,求证: PA -PB≤AB. (3)当 PA -PB 最大时,求点 P 的坐标.
(1)解:抛物线 y=-14x2-x+2 与 y 轴交于点 B, 令 x=0 得 y=2. ∴B(0,2) ∵y=-14x2-x+2=-41(x+2)2+3 ∴A(-2,3).
(1)若一次函数y1=x+1的图象与y轴交于点B,求△ABO的 面积.
(2)利用函数图象直接写出当 y1>y2 时,x 的取值范围.
解:(1)令 x=0,则 y1=1. ∴B(0,1). ∴OB=1. ∴S△ABO=12×1×1=12.
(2)结合函数图象可得,当 y1>y2 时,x<1.
例2:如图,AB,CD 是⊙O 的两条互相垂直的直径,点 P 从 点 O 出发,沿 O→C→B→O 的路线匀速运动,设∠APD=y(单位: 度),那么 y 与点 P 运动的时间(单位:秒)的关系图是( )
A
B
C
D
答案:B
例 3:如下图,抛物线 y=-41x2-x+2 的顶点为 A,与 y 轴交 于点 B.
例1:甲、乙两地之间是一条直路,在全民健身活动中,赵明 阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时 出发,王浩月先到达目的地,两人之间的距离 s(单位:km)与运动 时间 t(单位:h)的函数关系大致如图所示,下列说法中错误的是 ()
A.两人出发 1 h 后相遇 B.赵明阳跑步的速度为 8 km/h C.王浩月到达目的地时两人相距 10 km D.王浩月比赵明阳提前 1.5 h 到目的地 答案:C
得方程组- b=2k2+,b=3,
解得k=-12, b=2,
∴y=-12x+2;
当 y=0 时,x=4.

中考数学第二轮复习课件第11讲数形结合

中考数学第二轮复习课件第11讲数形结合
y O 3 x
y kx b
y xa
【考题解析】
例(2007恩施自治州)路在山腹行是沪蓉西高速公路的显著 特点之一,全线共有隧道37座,共计长达742421.2米。下图 是正在修建的庙垭隧道的截面,截面是由一抛物线和一矩形 构成,其行车道CD总宽度为8米,隧道为单行线2车道. (1).建立恰当的平面直角坐标系,并求出隧道拱抛物线的解 析式;(2)在隧道拱的两侧距地面3米高处各安装一盏路灯, 在⑴的平面直角坐标系中用坐标表示其中一盏路灯的位置; (3) 为了保证行车安全,要求行驶车辆顶部 (设为平顶) 与隧道拱在竖直方向上高度之差至少有0.5米。现有一辆汽 车,装载货物后,其宽度为米,车载货物的顶部与路面的距 离为2.5米,该车能否通过这个隧道?请说明理由。
【考题解析】
例(2007乌兰察布盟)甲乙两同学从A地出发,骑 自行车在同一条路上行驶到B地,他们离出发地 的距离s(千米)和行驶时间t(时)之间的函数 关系的图象,如图所示。根据图中提供的信息, 有下列说法: ⑴他们都行驶了18千米。 ⑵甲车停留了0.5小时。 ⑶乙比甲晚出发了0.5小时。 ⑷相遇后甲的速度小于乙的速度。 ⑸甲、乙两人同时到达目的地。 其中符合图象描述的说法有( C ) A、2个 B、3个 C、4个 D、5个
60 y 日销售量/万件 60 y 销售利润/(元/件)
O 图 10
30
40
t /天OΒιβλιοθήκη 20 图 1140
t /天
【思维拓展】
学以致用
解:(1) 由图10可得, 当0≤t≤30时,设市场的日销售量y=k t. ∵ 点(30,60)在图象上,∴ 60=30k. ∴ k=2.即 y=2 t. 当30≤t≤40时,设市场的日销售量y=k1t+b. 因为点(30,60)和(40,0)在图象上, 所以 60 30 k1 b

(九年级数学)专题复习——数形结合思想

(九年级数学)专题复习——数形结合思想

(九年级数学)专题复习——数形结合思想班别姓名一、复习内容:数形结合数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法。

考点1.借助数轴解不等式及根式的化简例1、实数ba,在数轴上对应位置如图所示,则||a b-)abDaCbaBaA---..2..变1、实数cba,,在数轴上对应的点如图所示,则下列式子中正确的是()考点2.图表问题3、某人从A地向B地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y(元)与通话时间(分)之间的关系的图象如图所示,正确的是()4、二次函数cbxaxy++=2的图像(如右图)经过),0,3(),0,3(),0,1(CBA则对称轴为_______cbcaDcbaCbabaBbcacA-->--<-<--=->....考点3. 借助平面直角坐标系解函数问题5、若一次函数m x m y +-=)2(的图象经过第一、二、四象限时,m 的取值范围是_______.6、若点),1(,),1(,),2(321y y y -- 在反比例函数xy 2=的图像上,则( ) 123213312321....y y y D y y y C y y y B y y y A >>>>>>>>7、已知二次函数c bx ax y ++=2的图像如左下图所示,顶点为)0,1(-,下列结论0)5(,0)4(,2)3(,04)2(,0)1(2>++>+-==-<c b a c b a a b ac b abc其中正确的有_______8、已知二次函数22y x x m =-++的部分图象如右上图所示,则关于x 的一元二次方程220x x m -++=的解为9、已知二次函数c bx ax y ++=2中,函数y 与x 的部分对应值如下表:则当5<y 时,x 的取值范围是10、抛物线21=-的大致图象如图所示,点By xA,是抛物线与x轴的交点,点C是抛物线与y轴交点;(1)判断ABC∆的形状,并说明理由;(2)点P是抛物线上的一点,它的横坐标为2,问在y轴上是否存在一点D,使得BDPD+的长度最小?求出这时点D的坐标。

中考数学专题复习——数形结合专题

中考数学专题复习——数形结合专题

数形联合思想【中考热门剖析】数形联合思想是数学中重要的思想方法,它依据数学识题中的条件和结论之间的内在联系,既剖析其数目关系,又揭露其几何意义,使数目关系和几何图形奇妙的联合起来,并充足利用这类联合,探究解决问题的思路,使问题得以解决的思虑方法。

几何图形的形象直观,便于理解;代数方法的一般性,解题过程的操作性强,便于掌握。

【经典考题讲练】例1.(2015衢州)如图,已知直线y3x3分别交x轴、y轴于点A、B,P是抛物线14yx22x5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线2y 3x3于点Q,则当PQ=BQ时,a的值是.4例2.(2014?广州)已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,极点为C.点P(m,n)(n<0)为抛物线上一点.1)求抛物线的分析式与极点C的坐标.2)当∠APB为钝角时,求m的取值范围.(3)若,当∠为直角时,将该抛物线向左或向右平移t()个单位,点APB、挪动后对应的点分别记为、,能否存在t ,使得首尾挨次连结、、、所PC AB组成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由.分析:(1)待定系数法求分析式即可,求得分析式后变换成极点式即可.2)由于AB为直径,因此当抛物线上的点P在⊙C的内部时,知足∠APB为钝角,因此-1<m<0,或3<m<4.(3)左右平移时,使A′D+DB″最短即可,那么作出点C′对于x轴对称点的坐标为C″,获得直线P″C″的分析式,而后把A点的坐标代入即可.答案:(1)解:依题意把的坐标代入得:;解得:抛物线分析式为极点横坐标,将代入抛物线得(2)如图,当时,设,则过作直线轴,(注意用整体代入法)解得,当在之间时,或时,为钝角.(3)依题意,且设挪动(向右,向左)连结22则又的长度不变四边形周长最小,只要最小即可将沿轴向右平移5各单位到处沿轴对称为∴当且仅当、B、三点共线时,最小,且最小为,此时,设过的直线为,代入∴即将代入,得:,解得:∴当,P、C向左挪动单位时,此时四边形ABP’C周’长最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档