二次函数与坐标轴交点
中考数学总复习《二次函数图像与坐标轴的交点问题》练习题-附带答案

中考数学总复习《二次函数图像与坐标轴的交点问题》练习题-附带答案一、单选题(共12题;共24分)1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①抛物线与x轴的另一个交点是(5,0);②4a+c>2b;③4a+b=0;④当x>-1时y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个2.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1B.-1C.2D.-2 3.已知二次函数y=x2−x+14m−1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5D.m>2 4.二次函数y=x2-2x-2与坐标轴的交点个数是()A.0B.1C.2D.3 5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤6.如图,抛物线y=ax2+bx+c交x轴于(-1,0),(3,0),则下列判断错误的是().A.图象的对称轴是直线x=1B.当x>1时y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根分别是-1和3D.当y<0时x<-17.若抛物线y=x2﹣2x+m与x轴有两个交点,则m的取值范围是()A.m<﹣1 B.m<1C.m>﹣1D.m>1 8.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1013y﹣1353①ac<0;②当x>1时y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=0的一个根;④当﹣1<x<3时ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个9.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2B.m≥2C.m≥0D.m>4 10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.4 11.已知抛物线y=ax2﹣2ax+a﹣c(a≠0)与y轴的正半轴相交,直线AB∥x轴,且与该抛物线相交于A(x1,y1)B(x2,y2)两点,当x=x1+x2时函数值为p;当x=x1+x2q.则p﹣q的值为()2时函数值为A.a B.c C.﹣a+c D.a﹣c 12.函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c﹣4=0的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根二、填空题(共6题;共6分)13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为.15.若抛物线y=x2与直线y=x+2的交点坐标为(﹣1,1)和(2,4),则方程x2﹣x﹣2=0的解为.16.已知二次函数y=x2-2x-3与x轴交于A、B两点,在x轴上方的抛物线上有一点C,且∥ABC的面积等于10,则C点坐标为.17.抛物线y=(m﹣1)x2+2x+ 12m图象与坐标轴有且只有2个交点,则m=.18.若二次函数y=kx2−4x+3的函数值恒大于0,则k取值范围是.三、综合题(共6题;共56分)19.已知二次函数y=x2-(m+2)x+2m-1(1)求证:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数的图象与y轴交于点(0,3).①求函数图象与x轴的交点坐标;②当0<x<5时求y的取值范围.20.(1)解方程:x2−x+13=3(x2+1)+5x;(2)求二次函数y=2x2−5x的图象与x轴的交点坐标.21.已知二次函数y=mx2﹣5mx+1(m为常数,m>0),设该函数的图象与y轴交于点A,该图象上的一点B与点A关于该函数图象的对称轴对称.(1)求点A,B的坐标;(2)点O为坐标原点,点M为该函数图象的对称轴上一动点,求当M运动到何处时∥MAO的周长最小.22.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标.23.已知函数y=mx2﹣6x+1(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.24.已知二次函数y=ax2﹣4ax+1(1)写出二次函数图象的对称轴:;(2)如图,设该函数图象交x轴于点A、B(B在A的右侧),交y轴于点C.直线y=kx+b经过点B、C.①如果k=﹣13,求a的值②设点P在抛物线对称轴上,PC+PB的最小值为√13,求点P的坐标.参考答案1.【答案】B2.【答案】A3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】A10.【答案】C11.【答案】A12.【答案】C13.【答案】0或114.【答案】815.【答案】﹣1或216.【答案】(4,5)或(-2,5)17.【答案】﹣1或2或018.【答案】k>4 319.【答案】(1)解:令y=0,则x2−(m+2)x+2m−1=0,∴△=[−(m+2)2]−4(2m−1)=m2+4m+4−8m+4=m2−4m+8=(m−2)2+4≥4∴△>0,∴方程总有两个不相等的实数根,即抛物线与x轴总有两个交点;(2)解:①∵函数的图象与y轴交于点(0,3).∴2m−1=3,∴m=2,∴抛物线的解析式为:y=x2−4x+3,当x2−4x+3=0,∴(x−1)(x−3)=0,∴x1=1,x2=3,所以抛物线与x 轴的交点坐标为:(−1,0),(−3,0). ②∵y =x 2−4x +3=(x −2)2−1,∴ 抛物线的开口向上,当x =2时函数的最小值为−1, 当x =0时 当x =5时∴ 当0<x <5时y 的取值范围为:−1≤y <8.20.【答案】(1)解:将方程化为一般式,得x 2+3x −5=0.∵Δ=b 2−4ac =32−4×1×(−5)=29>0.∴x =−3±√292×1=−3±√292.解得x 1=−3+√292,x 2=−3+√292.(2)解:把y =0代入y =2x 2−5x 中得2x 2−5x =0. 解得x 1=0,x 2=52.∴二次函数y =2x 2−5x 的图象与x 轴的交点坐标是(0,0)和(52,0).21.【答案】(1)解:当x=0时y=1,则点A 的坐标为(0,1)∵抛物线对称轴为x= 5m 2m = 52∴B 点坐标为(5,1)(2)解:设直线OB 解析式为y=kx ,把B (5,1)代入可得5k=1,解得k= 15 ∴直线OB 解析式为y= 15 x由轴对称的性质可知当点M 运动到直线OB 与二次函数对称轴的交点时∥MAO 的周长最小.当x= 52时y= 12∴M 点的坐标为( 52, 12 )22.【答案】(1)解:由顶点A (﹣1,4),可设二次函数关系式为y=a (x+1)2+4(a≠0).∵二次函数的图象过点B (2,﹣5) ∴点B (2,﹣5)满足二次函数关系式 ∴﹣5=a (2+1)2+4 解得a=﹣1.∴二次函数的关系式是y=﹣(x+1)2+4(2)解:令x=0,则y=﹣(0+1)2+4=3∴图像与y轴的交点坐标为(0,3);令y=0,则0=﹣(x+1)2+4解得x1=﹣3,x2=1故图像与x轴的交点坐标是(﹣3,0)、(1,0)23.【答案】(1)解:当x=0时y=1.所以不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1);(2)解:①当m=0时函数y=mx2﹣6x+1的图象与x轴只有一个交点;②当m≠0时若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则方程mx2﹣6x+1=0有两个相等的实数根所以∥=(﹣6)2﹣4m=0,m=9.综上,若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则m的值为0或9 24.【答案】(1)直线x=2(2)解:①当x=0时y=1∴点C的坐标为(0,1).将(0,1)代入y=kx+b,得:b=1.∵k= −1 3∴y=−13x+1当y=0时有−13x+1=0解得:x=3∴点B的坐标为(3,0).将B(3,0)代入y=ax2﹣4ax+1,得:9a﹣12a+1=0解得:a=3;②当PC+PB取最小值时点P是直线BC与直线x=2的交点,且PC+PB的最小值=BC= √13.∵OC=1∴在Rt∥OBC中OB= 2√3∴此时点B的坐标为(2√3,0)将点B的坐标代入y=kx+1得:2√3k+1=0解得:k=−√36∴此时直线BC的解析式为:y=−√36x+1∵当x=2时.∴点P的坐标为(2,3−√33)。
二次函数与坐标轴交点

二次函数与坐标轴的交点问题
预习导入:
一次函数36
=+与x轴的交点坐标为;与y轴的交
y x
点坐标为。
思考问题:你能求出下列二次函数与x轴,y轴的交点坐标吗?请试一试。
1、223
y x x
=-+
=-+ 3、2610 =-- 2、244
y x x
y x x
归纳:二次函数2
=++的图像与x轴的位置关系:
y ax bx c
1、2
当时,抛物线与轴有个交点;
∆>=++
0y ax bx c x
2、2
∆==++
当时,抛物线与轴有个交点;
0y ax bx c x
3、2
当时,抛物线与轴个交点;
0y ax bx c x
∆<=++
例:若抛物线221
y x x m x
=-+-与轴有交点,求m的取值范围。
练习:1、抛物线2
=--+与坐标轴有个交点,
y x x
34
2、抛物线2
=++与x轴有两个交点,则m的取值范围
2
y x x m
3、已知抛物线22
y x m x m
=+-+与x轴只有一个交点,求m的值。
(21)
4、已知二次函数25
=-+-,求证:不论k为何实数,此函数图像与x
y x kx k
轴都有两个交点。
拓展探索:
1、已知抛物线2
=++与x轴的两个交点坐标分别为(-1,0)
y ax bx c
(5,0),那么一元二次方程20
++=的根是。
ax bx c
2、二次函数的图像如图所示,你能写出图像与x轴的
另外一个交点的坐标吗?请写下来。
中考数学《二次函数图像与坐标轴的交点问题》专项练习题及答案

中考数学《二次函数图像与坐标轴的交点问题》专项练习题及答案一、单选题1.如图,将二次函数y=31x2-999x+892的图形画在坐标平面上,判断方程31x2-999x+892=0的两根,下列叙述何者正确()A.两根相异,且均为正根B.两根相异,且只有一个正根C.两根相同,且为正根D.两根相同,且为负根2.已知抛物线y=ax2+bx+c(a<0)过A(-3,0)、O(1,0)、B(-5,y1)、C(5,y2)四点,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论正确的是()A.c<0B.a+b+c<0C.2a﹣b=0D.b2﹣4ac=04.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是() A.k≤2且k≠1B.k<2且k≠1C.k=2D.k=2或15.函数y=ax+1与抛物线y=ax2+bx+1(b≠0)的图象可能是().A.B.C.D.6.若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0B.1C.2D.37.对于每个非零自然数n,抛物线y=x2-2n+1n(n+1)x+1n(n+1)与x轴交于A n,B n两点,以A n B n表示这两点间的距离,则A1B1+A2B2+…+A2009B2009()A.20092008B.20082009C.20102009D.200920108.二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠010.如图,抛物线y=ax2+bx+c与x轴交于点(-1,0),对称轴为x=1,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根11.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;3.④a+b+cb−a的最小值为其中,正确结论的个数为()A.1个B.2个C.3个D.4个12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤二、填空题13.已知函数y=ax2−2x+1的图象与x轴只有一个公共点,则a的值是.14.经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是.15.如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=.16.抛物线y=x2﹣4x+c与x轴交于A、B两点,已知点A的坐标为(1,0),则线段AB的长度为.17.抛物线y= 49(x-3)2与x轴的交点为A,与y轴的交点为B,则△AOB的面积为18.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.三、综合题19.如图,二次函数y=- 12x2+bx+c的图象经过A(2,0)、B(0,-4)两点(1)求二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.20.已知二次函数y=ax2+bx+8,经过点(1,9)和(6,−16).(1)求此二次函数解析式;(2)若此二次函数与x轴的交点为点A、点B,与y轴的交点为点C,求△ABC的面积. 21.在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n与x轴交于点A,B(A在B的左侧).(1)若抛物线的对称轴为直线x=﹣3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;22.已知二次函数y=(x-1)(x-m).(1)若二次函数的对称轴是直线x=3,求m的值.(2)当m>2,0≤x≤3时,二次函数的最大值是7,求函数表达式.23.已知抛物线y=ax2-2ax-3+2a2 (a<0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求抛物线的函数解析式;24.已知抛物线顶点坐标为(1,3),且过点A(2,1).(1)求抛物线解析式;(2)若抛物线与x轴两交点分别为点B、C,求线段BC的长度.参考答案1.【答案】A2.【答案】A3.【答案】C4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】D9.【答案】C10.【答案】D11.【答案】D12.【答案】C13.【答案】0或114.【答案】y=﹣38x2+ 34x+315.【答案】5±√52或1或316.【答案】217.【答案】618.【答案】x1=4,x2=﹣219.【答案】(1)解:分别把点A(2,0)、B(0,-4)代入y=−12x2+bx+c得{−12×22+2x+c=0c=−4解得:{b=3c=−4∴这个二次函数的解析式为:y=−12x2+3x−4(2)解:由(1)中抛物线对称轴为直线∴点C的坐标为:(3,0)∴AC=3−2=1∴△ABC的面积为:12⋅OB⋅AC=12×4×1=220.【答案】(1)解:把点(1,9)和(6,−16)代入函数解析式得{9=a+b+8−16=36a+6b+8解得a=-1, b=2. 所以二次函数的解析式为y=−x2+2x+8(2)解: 令y=0,得-x 2+2x+8=0, 解得x=-4或x=2 得A 、B 的坐标为(-4,0),(2,0) 则AB=6令x=0, 得y=8 ∴C 点坐标为(0,8),则OC=8 ∴S △ABC =12AB ×OC =12×6×8=24 .21.【答案】(1)解:∵抛物线的对称轴为直线x =﹣3,AB =4∴A 、B 两点到对称轴的距离相等,且为2 ∴A 点坐标为(-5,0),B 点坐标为(-1,0)把A 、B 两点的坐标分别代入函数解析式中,得: {−25−5m +n =0−1−m +n =0解得: {m =−6n =−5∴y =−x 2−6x −5(2)解:∵y =−x 2−6x −5 平移后过原点∴设平移后过原点的抛物线为 y =−x 2+bx 令 y =−x 2+bx =0 ,解得:x=0 ∴C (b ,0)且b>0∵y =−x 2+bx =−(x −b 2)2+b 24∴顶点P 的坐标为 (b 2,b 24) ∵△OCP 是等腰直角三角形 ∴b 2=b 24解得:b=2∴顶点P 的坐标为 (1,1)22.【答案】(1)解: 令y =0,即0=(x −1)(x −m) ,得x 1=1,x 2=m也即抛物线与x轴的交点坐标为(1,0),(m,0)∵(1,0),(m,0)关于抛物线对称轴对称,且对称轴是直线x=3∴1+m2=3,解得m=5(2)解:由(1)可知,抛物线的对称轴为直线x=1+m 2∵m>2,∴x=1+m 2>32∵a=1>0,且0≤x≤3时,二次函数的最大值是7∴当x=0时y max=7∴把(0,7)带入抛物线表达式得7=(0−1)(0−m)∴m=723.【答案】(1)解:∵抛物线y=ax2−2ax−3+2a2=a(x−1)2+2a2−a−3∴抛物线的对称轴为直线x=1;(2)解:由(1)可得y=a(x−1)2+2a2−a−3∵抛物线的顶点在x轴上∴2a2−a−3=0解得a1=32,a2=-1∵a<0∴a=-1∴抛物线的解析式为y=−x2+2x−1.24.【答案】(1)解:设抛物线解析式为y=a(x﹣1)2+3把A(2,1)代入得a•(2﹣1)2+3=1,解得a=﹣2所以抛物线解析式为y=﹣2(x﹣1)2+3(2)解:y=0时,﹣2(x﹣1)2+3=0解得x1=1+ √62,x2=1﹣√62所以BC=1+ √62﹣(1﹣√62)= √6。
初中数学 二次函数与坐标轴的交点如何求解

初中数学二次函数与坐标轴的交点如何求解
在初中数学中,二次函数与坐标轴的交点是一个重要的概念。
这些交点对于分析二次函数的性质、解决实际问题以及绘制函数图像都非常关键。
下面将详细介绍如何求解二次函数与坐标轴的交点:
二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b、c是实数,且a不等于零。
二次函数与坐标轴的交点可以通过以下步骤来求解:
1. 求解与x轴的交点:
当二次函数与x轴的交点时,函数的纵坐标为零。
我们可以通过以下公式来计算与x轴的交点的横坐标:f(x) = 0,即ax^2 + bx + c = 0。
这是一个二次方程,可以使用求根公式或配方法来解。
求解得到的解为二次函数与x轴的交点的横坐标。
2. 求解与y轴的交点:
当二次函数与y轴的交点时,函数的横坐标为零。
我们可以直接将x等于零代入二次函数的表达式中,得到与y轴的交点的纵坐标。
通过以上步骤,我们可以求解二次函数与坐标轴的交点。
这些交点对于我们理解二次函数的图像特征、分析函数的零点、最值以及对称性等都非常重要。
在解决实际问题和绘制函数图像时,求解二次函数与坐标轴的交点可以帮助我们确定函数的关键特征和行为。
理解如何求解二次函数与坐标轴的交点,可以帮助我们更好地理解和应用二次函数的概念。
备战中考数学专题二次函数图像与坐标轴的交点问题(含解析)

2019备战中考数学专题-二次函数图像与坐标轴的交点问题(含解析)一、单选题1.二次函数y=kx2-6x+3的图象与x轴有两个交点,则k的取值范围是()A.k<3B.k<0且k≠0C.k≤3D.k≤3且k≠02.如图图形中阴影部分的面积相等的是()A.①①B.①①C.①①D.①①①3.在如图所示的二次函数y=ax2+bx+c的图象中,大伟同学观察后得出了以下四条结论:①a <0,b>0,c>0;①b2﹣4ac=0;① <c;①关于x的一元二次方程ax2+bx+c=0有一个正根,你认为其中正确的结论有()A.1条B.2条C.3条 D.4条4.若函数的图象与坐标轴有三个交点,则的取值范围是()A. B. C.D.5.二次函数y=(x﹣1)(x﹣2)﹣1与x轴的交点x1,x2,x1<x2,则下列结论正确的是()A.x1<1<x2<2B.x1<1<2<x2C.x2<x1<1D.2<x1<x26.对某个函数给定如下定义:若存在实数M>0,对于任意的函数值y,都满足|y|≤M,则称这个函数是有界函数.在所有满足条件的M中,其中最小值称为这个函数的边界值.现将有界函数(0 x m,1≤m≤2)的图象向下平移m个单位,得到的函数边界值是t,且≤t≤2,则m的取值范围是()A.1≤m≤B.≤m≤C.≤m≤D.≤m≤27.二次函数y=x2-(m-1)x+4的图像与x轴有且只有一个交点,则m的值为()A.1或-3B.5或-3C.-5或3D.以上都不对8.如图,在平面直角坐标系中,抛物线y=α(x﹣1)2+k与x轴交于A.B两点,与y轴交于C点.CD①x轴与抛物线交于D点且A(﹣1,0)则OB+CD=()A.4B.5C.6D.79.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.﹣﹣苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x= ﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根10.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()A.k>-B.k>-且k≠0C.k≥-D.k≥-且k≠011.抛物线y=ax2+bx+c(a>0)的对称轴为x=1,它与x轴的一个交点的坐标为(﹣3,0),则它与x轴另一个交点的坐标为()A.(﹣2,0)B.(﹣1,0)C.(2,0)D.(5,0)二、填空题12.抛物线y=ax2+bx+c与x轴的公共点是(﹣1,0),(3,0),则关于x的方程ax2+bx+c=0的两个根是________.13.二次函数y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是________.14.二次函数y=x2﹣2x﹣1的图象在x轴上截得的线段长为________.15.已知y=﹣x2+2与x轴交于A,B两点,与y轴交于C点,则①ABC的面积为________.16.二次函数y=ax2+bx+c (a≠0)(a≠0,a,b,C为常数)的图象,若关于x的一元二次方程ax2+bx+c=m有实数根,则m的取值范围是________.17.已知正整数a满足不等式组(x为未知数)无解,则a的值为________;函数y=(3﹣a)x2﹣x﹣3图象与x轴的交点坐标为________18.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(-3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是________.三、解答题19.使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数)(1)当m=0时,求该函数的零点.(2)证明:无论m取何值,该函数总有两个零点.20.在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A的右侧),与轴交于点C,tan①CBA=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,①BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.四、综合题21.已知二次函数为y=x2﹣2x+m(1)写出它的图象的开口方向,对称轴;(2)m为何值时,其图象顶点在x轴上方?22.已知在平面直角坐标系内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C;(1)求抛物线的表达式;(2)求①ABC的面积.23.已知二次函数y=x2﹣2x﹣3与x轴交于A、B两点(A在B的左边),与y轴交于点C.(1)求出点A、B、C的坐标.(2)求S①ABC(3)在抛物线上(除点C外),是否存在点N,使得S①NAB=S①ABC,若存在,求出点N 的坐标,若不存在,请说明理由.答案解析部分一、单选题【考点】抛物线与x轴的交点【解析】【分析】利用kx2-6x+3=0有实数根,根据判别式可求出k取值范围。
初中数学专题复习(二次函数图像与坐标轴交点问题)

初中数学专题复习(二次函数图像与坐标轴交点问题)1.二次函数y=(a﹣1)x2﹣(2a﹣3)x+a﹣4的图象与x轴有两个公共点,a取满足条件的最小整数,将图象在x 轴上方的部分沿x轴翻折,其余部分保持不变,得到一个新图象,当直线y=kx﹣2与新图象恰有三个公共点时,则k的值不可能是()A.﹣1B.﹣2C.1D.2解:∵二次函数y=(a﹣1)x2﹣(2a﹣3)x+a﹣4的图象与x轴有两个公共点,则△>0且a≠1,当△=(﹣2a+3)2﹣4(a﹣1)(a﹣4)=8a﹣7>0时,解得a>,∵a取满足条件的最小整数,而a≠1,故a=2,当a=2时,y=(a﹣1)x2﹣(2a﹣3)x+a﹣4=x2﹣x﹣2,设原抛物线交x轴于点A、B,交y轴于点C,将图象在x轴上方的部分沿x轴翻折,其余部分保持不变,得到一个新图象,如下图所示,对于y=x2﹣x﹣2,令y=0,则y=x2﹣x﹣2=0,解得x=﹣1或2,令x=0,则y=﹣2,故点A、B、C的坐标分别为(﹣1,0)、(2,0)、(0,﹣2),由直线y=kx﹣2知,该直线过点C,①当k>0时,∵直线y=kx﹣2与新图象恰有三个公共点时,则此时直线过点B、C,将点B的坐标代入y=kx﹣2得:0=2k﹣2,解得k=1;②当k<0时,∵直线y=kx﹣2与新图象恰有三个公共点时,则此时直线过A、C点或直线与y=x2﹣x﹣2只有一个交点,当直线过点A、C时,将点A的坐标代入直线表达式得:0=﹣k﹣2,解得k=﹣2,当直线与y=x2﹣x﹣2只有一个交点时,联立直线和抛物线的表达式得:x2﹣x﹣2=kx﹣2,即x2﹣(k+1)x=0,则△=(﹣k﹣1)2﹣4×1×0=0,解得k=﹣1,综上,k=1或﹣2或﹣1,答案:D.2.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),答案:B.3.函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是()①abc>0;②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.A.①③B.①②③C.①④D.②③④解:依照题意,画出图形如下:∵函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.∴a<0,c>0,对称轴为x=﹣=﹣1,∴b=2a<0,∴abc>0,故①正确,∵对称轴为x=﹣1,∴x=1与x=﹣3的函数值是相等的,故②错误;∵顶点为(﹣1,n),∴抛物线解析式为;y=a(x+1)2+n=ax2+2ax+a+n,联立方程组可得:,可得ax2+(2a﹣k)x+a+n﹣1=0,∴△=(2a﹣k)2﹣4a(a+n﹣1)=k2﹣4ak+4a﹣4an,∵无法判断△是否大于0,∴无法判断函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象的交点个数,故③错误;当﹣3≤x≤3时,当x=﹣1时,y有最大值为n,当x=3时,y有最小值为16a+n,故④正确,答案:C.4.关于二次函数y=x2﹣6x+a+27,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点(4,5),则a=﹣5B.当x=12时,y有最小值a﹣9C.x=2对应的函数值比最小值大7D.当a<0时,图象与x轴有两个不同的交点解:A、将二次函数向上平移10个单位,再向左平移2个单位后,表达式为:,若过点(4,5),则,解得:a=﹣5,故选项正确;B、∵,开口向上,∴当x=12时,y有最小值a﹣9,故选项正确;C、当x=2时,y=a+16,最小值为a﹣9,a+16﹣(a﹣9)=25,即x=2对应的函数值比最小值大25,故选项错误;D、△=,当a<0时,9﹣a>0,即方程有两个不同的实数根,即二次函数图象与x轴有两个不同的交点,故选项正确,答案:C.5.对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A.0<<1B.>1C.0<<1D.>1解:由题意关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),就是关于x的二次函数y=﹣x2﹣10x+m(m≠0)与直线y=﹣2的交点的横坐标,画出函数的图象草图如下:∵抛物线的对称轴为直线x=﹣=﹣5,∴x3<x1<﹣5,由图象可知:0<<1一定成立,答案:A.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴B(3,0),A(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,答案:B.7.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向下,∵关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,∴这两个整数根是﹣4或2,答案:B.8.在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0解:A、错误.由M1=2,M2=2,可得a2﹣4>0,b2﹣8>0,取a=3,b2=12,则c==4,此时c2﹣16=0.故A错误.B、正确.理由:∵M1=1,M2=0,∴a2﹣4=0,b2﹣8<0,∵a,b,c是正实数,∴a=2,∵b2=ac,∴c=b2,对于y3=x2+cx+4,则有△=c2﹣16=b4﹣16=(b4﹣64)=(b2+8)(b2﹣8)<0,∴M3=0,∴选项B正确,C、错误.由M1=0,M2=2,可得a2﹣4<0,b2﹣8>0,取a=1,b2=18,则c==18,此时c2﹣16>0.故C错误.D、由M1=0,M2=0,可得a2﹣4<0,b2﹣8<0,取a=1,b2=4,则c==4,此时c2﹣16=0.故D错误.答案:B.二.填空题(共7小题)9.我们约定:(a,b,c)为函数y=ax2+bx+c的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m,﹣m﹣2,2)的函数图象与x轴有两个整交点(m为正整数),则这个函数图象上整交点的坐标为(1,0)、(2,0)和(0,2).解:根据题意,令y=0,将关联数(m,﹣m﹣2,2)代入函数y=ax2+bx+c,则有mx2+(﹣m﹣2)x+2=0,△=(﹣m﹣2)2﹣4×2m=(m﹣2)2>0,∴mx2+(﹣m﹣2)x+2=0有两个根,且m≠2,由求根公式可得x=,x=,x1==1,x2===,当m=1时符合题意;此时x2=2;所以这个函数图象上整交点的坐标为(2,0),(1,0);令x=0,可得y=c=2,即得这个函数图象上整交点的坐标(0,2).综上所述,这个函数图象上整交点的坐标为(2,0),(1,0)和(0,2);故答案为:(2,0),(1,0)和(0,2).10.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是2.解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.11.若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是k>﹣1.解:∵二次函数y=﹣x2+2x+k的图象与x轴有两个交点,∴△=4﹣4×(﹣1)•k>0,解得:k>﹣1,故答案为:k>﹣1.12.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是﹣3<x<1.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.13.在平面直角坐标系中,已知A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为4.解:∵点A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,∴,解得,b=﹣4,∴抛物线解析式为y=x2﹣4x+1=(x﹣2)2﹣3,∵将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,∴n的最小值是4,故答案为:4.14.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,顶点为C,对称轴为直线x=1,给出下列结论:①abc <0;②若点C的坐标为(1,2),则△ABC的面积可以等于2;③M(x1,y1),N(x2,y2)是抛物线上两点(x1<x2),若x1+x2>2,则y1<y2;④若抛物线经过点(3,﹣1),则方程ax2+bx+c+1=0的两根为﹣1,3.其中正确结论的序号为①④.解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,正确,符合题意;②△ABC的面积=AB•y C=AB×2=2,解得:AB=2,则点A(0,0),即c=0与图象不符,故②错误,不符合题意;③函数的对称轴为x=1,若x1+x2>2,则(x1+x2)>1,则点N离函数对称轴远,故y1>y2,故③错误,不符合题意;④抛物线经过点(3,﹣1),则y′=ax2+bx+c+1过点(3,0),根据函数的对称轴该抛物线也过点(﹣1,0),故方程ax2+bx+c+1=0的两根为﹣1,3,故④正确,符合题意;故答案为:①④.15.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.三.解答题(共5小题)16.如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.解得a=﹣.则该抛物线解析式为y=﹣x2+x+2.由于y=﹣x2+x+2=﹣(x+1)(x﹣4).故A(﹣1,0),B(4,0);(2)存在,理由如下:由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,∴CD∥EG,∴=.∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).∴CD=2﹣1=1.∴=EG.设BC所在直线的解析式为y=mx+n(m≠0).将B(4,0),C(0,2)代入,得.解得.∴直线BC的解析式是y=﹣x+2.设E(t,﹣t2+t+2),则G(t,﹣t+2),其中0<t<4.∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.∴=﹣(t﹣2)2+2.∵<0,∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).17.如图,开口向下的抛物线与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.解:(1)∵A(﹣1,0),B(2,0),C(0,4),设抛物线表达式为:y=a(x+1)(x﹣2),将C代入得:4=﹣2a,解得:a=﹣2,∴该抛物线的解析式为:y=﹣2(x+1)(x﹣2)=﹣2x2+2x+4;(2)连接OP,设点P坐标为(m,﹣2m2+2m+4),m>0,∵A(﹣1,0),B(2,0),C(0,4),可得:OA=1,OC=4,OB=2,∴S=S四边形CABP=S△OAC+S△OCP+S△OPB=×1×4+×4m+×2×(﹣2m2+2m+4)=﹣2m2+4m+6=﹣2(m﹣1)2+8,当m=1时,S最大,最大值为8.18.如图,二次函数y=x2+bx的图象与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,﹣3).(1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P'(x1,y1)、Q'(x2,y2).若|y1﹣y2|=2,求x1、x2的值.解:(1)直线与抛物线的对称轴交于点D(2,﹣3),故抛物线的对称轴为x=2,即﹣b=2,解得:b=﹣4,(2)∵b=﹣4∴抛物线的表达式为:y=x2﹣4x;把y=﹣3代入y=x2﹣4x并解得x=1或3,故点B、C的坐标分别为(1,﹣3)、(3,﹣3),则BC=2,∵四边形PBCQ为平行四边形,∴PQ=BC=2,故x2﹣x1=2,又∵y1=x12﹣4x1,y2=x22﹣4x2,|y1﹣y2|=2,故|(x12﹣4x1)﹣(x22﹣4x2)|=2,|x1+x2﹣4|=1.∴x1+x2=5或x1+x2=3,由,解得;由,解得.19.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.解:(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,∵a1+a2=0,b1=b2,c1+c2=0,∴a2=﹣1,b2=﹣4,c2=﹣3,∴函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,∴,解得:,∴(m+n)2020=(﹣2+3)2020=1.(3)证明:当x=0时,y=2(x﹣1)(x+3)=﹣6,∴点C的坐标为(0,﹣6).当y=0时,2(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3,∴点A的坐标为(1,0),点B的坐标为(﹣3,0).∵点A,B,C关于原点的对称点分别是A1,B1,C1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.20.如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.解:(1)把B(1,0)代入y=ax2+4x﹣3,得0=a+4﹣3,解得a=﹣1,∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴A(2,1),∵对称轴为直线x=2,B,C关于x=2对称,∴C(3,0),∴当y>0时,1<x<3.(2)∵D(0,﹣3),∴点D平移到点A,抛物线向右平移2个单位,向上平移4个单位,可得抛物线的解析式为y=﹣(x﹣4)2+5.。
二次函数公式:顶点式、交点式、两根式

一般地,自变量x和因变量y之间存在如下关系:(1)一般式:y=ax2+bx+c (a,b,c为常数,a0),则称y为x的二次函数。
顶点坐标(-b/2a,(4ac-b^2)/4a)(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a0)。
(3)交点式(与x轴):y=a(x-x1)(x-x2)(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a0.说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点。
(2)当抛物线y=ax2+bx+c 与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的
分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2)。
二次函数知识点总结

二次函数知识点总结定义:二次函数的一般形式为 f(x)=ax2+bx+cf(x) = ax^2 + bx +cf(x)=ax2+bx+c,其中a≠0a \neq 0a=0。
开口方向:当 a>0a > 0a>0 时,二次函数开口向上。
当 a<0a < 0a<0 时,二次函数开口向下。
对称轴:二次函数的对称轴是直线 x=−b2ax = -\frac{b}{2a}x=−2ab。
顶点:二次函数的顶点坐标为 (−b2a,f(−b2a))(-\frac{b}{2a}, f(-\frac{b}{2a}))(−2ab,f(−2ab))。
判别式:二次函数的判别式Δ=b2−4ac\Delta = b^2 - 4acΔ=b2−4ac 用于判断二次函数的根的情况。
当Δ>0\Delta > 0Δ>0 时,方程有两个不相等的实根。
当Δ=0\Delta = 0Δ=0 时,方程有两个相等的实根(重根)。
当Δ<0\Delta < 0Δ<0 时,方程无实根,有两个共轭复根。
函数的增减性:当 a>0a > 0a>0 时,函数在对称轴左侧是减函数,在对称轴右侧是增函数。
当 a<0a < 0a<0 时,函数在对称轴左侧是增函数,在对称轴右侧是减函数。
二次函数与坐标轴的交点:与 xxx 轴交点:解方程 ax2+bx+c=0ax^2 + bx + c =0ax2+bx+c=0。
与 yyy 轴交点:当 x=0x = 0x=0 时,y=cy = cy=c。
二次函数的图像变换:平移:通过改变 bbb 和 ccc 的值实现。
伸缩:通过改变 aaa 的值实现。
旋转:通过改变 xxx 的系数实现,但这并不改变函数本质。
二次函数的性质:对称性:函数图像关于对称轴对称。
最大值或最小值:函数在其定义域内有最大值或最小值,该值在顶点处取得。
二次函数的应用:抛物线的应用:如投篮轨迹、喷泉抛物线等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与坐标轴交点,二次函数顶点,及与不等式
1、抛物线
342-=x y 的顶点坐标是_____.
2、抛物线y=(x+1)2-2的顶点坐标是 .
3、抛物线
362+-=x x y 的顶点坐标是________.
4、已知抛物线21
432
y x x =-++,则该抛物线的顶点坐标为( )
A 、(1,1)
B 、(4,11)
C 、(4,-5)
D 、(-4,11)
5、根据下列表格的对应值,判断方程ax 2+bx+c=0(a≠0)一个解x 的取值范围( )
x 3.23 3.24 3.25 3.26 y=ax 2+bx+c
-0.06
-0.02
0.03
0.09
A 、3<x<3.23
B 、3.23<x<3.24
C 、3.24<x<3.25
D 、3.25<x<3.26 6、函数图象y=ax 2+(a -3)x+1与x 轴只有一个交点则a 的值为( )
A 、0,1
B 、0,9
C 、1,9
D 、0,1,9 7. 对于每个非零自然数n ,抛物线
2211(1)
(1)
n n n n n y x x +++=-
+
与x 轴交于A n 、B n 两点,以n n
A B 表示这两点间的距离,则112220112011A B A B A B +++的值是( )
A .
20112010
B .20102011
C .20122011
D .
20112012
8 (2011年江苏盐都中考模拟)如图,已知抛物线y=ax 2+bx+c(a >0)的对称轴是过点(1,0)且平行于y 轴
的直线,并且经过点P (3,0),则a -b+c 的值为 ( )A.3 B.-3 C.-1 D.0 9、(2011杭州模拟)已知二次函数
)0(2>++=a c bx ax y 经过点M (-1,2)和点N (1,-2),交x 轴于A ,B 两点,交y 轴于C 则……( ▲ )①2-=b ; ②该二次函数图像与y 轴交与负半轴
③ 存在这样一个a ,使得M 、A 、C 三点在同一条直线上④若2
,1OC OB OA a =⋅=则 以上说法正确的有:A .①②③④ B .②③④ C .①②④ D .①②③
10抛物线
()20y x x p p =++≠的图象与x 轴一个交点的横坐标是P ,那么该抛物线的顶点坐标是
A .(0,-2)
B .19,24⎛⎫
-
⎪⎝
⎭ C .19,24⎛⎫
-
⎪⎝
⎭ D .19,24⎛⎫
-
- ⎪⎝
⎭ 11、. 已知抛物线y =ax 2
+bx +c 的开口向下,顶点坐标为(3,-2),那么该抛物线有 ( ) A.
最小值3 B.
最大值3 C.
最小值-2 D.
最大值-2
12.已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是( ) A .0x < B .11x -<<或2x > C .1x >-
D .1x <-或12x <<
13下列函数的图象,经过原点的是( )
A.
x x y 352-= B.12-=x y C.x
y 2=
D.
73+-=x y
14.(2011杭州市模拟)已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下
表所示: 1
O y
x
1- 2
(第1题图)
x … 0 1 2 3 … y
…
5
2
1
2
…
点A (1x ,
1y )
、B (2x ,2y )在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是 A .
1y ≥2y
B .
12y y > C .12y y <
D .
1y ≤2y
15下列函数的图象中,有最高点的函数是【 】
A .
35y x =+ B .23y x =-+
C .
2
14
y x =
D .24y x =- 16..二次函数y =(m -1)x 1
2
+m
+4x -5m 的图象的对称轴方程是
A 、x =1
B 、x =-1
C 、x =2
D 、x =-2
17、小颖同学想用“描点法”画二次函数
2
(0)y ax bx c a =++≠的图象,取自变量x 的5个值,分别计
算出对应的y 值,如下表:
x … 2-
1-
0 1 2 … y
…
11
2
-1
2
5
…
由于粗心,小颖算错了其中的一个y 值,请你指出这个算错的y 值所对应的x= ______.
18、(2011淮北市第二次月考五校联考)抛物线y=ax 2+bx+c (a≠0)上两点,当x 取-1与3时,y 值相同,
抛物线的对称轴是__________.
19、已知关于x 的函数y =(m -1)x 2+2x +m 图像与坐标轴有且只有2个交点,则m =
20、如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x=1,若
其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c>0的解集是 . 21已知抛物线
21y x x =--与x 轴的一个交点为(0)m ,
,则代数式22008m m -+的值为____
22、抛物线y=(k+1)x 22
k +-9开口向下,且经过原点,则k=_____.
23.抛物线
2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:
x … -2 -1 0 1 2 … y
…
4
6
6
4
…
从上表可知,下列说法中正确的是 .(填写序号) ①抛物线与x 轴的一个交点为(3,0); ②函数
2y ax bx c =++的最大值为6;
③抛物线的对称轴是1
2
x =
; ④在对称轴左侧,
y 随x 增大而增大.。