高等数学二第二章多元函数积分学
多元函数积分知识点总结

多元函数积分知识点总结1. 多元函数的概念多元函数是指至少含有两个自变量的函数,它是自变量的多项式和、积、商或者反函数的复合函数。
多元函数的自变量可以是实数,也可以是复数。
例如,z=f(x,y)表示一个含有两个自变量的函数,其中x和y称为自变量,z称为因变量。
多元函数的图形通常是在三维坐标系中表示的,它描述了自变量之间的关系和对因变量的影响。
2. 多元函数的积分多元函数的积分是对多元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的所有微小部分进行求和。
多元函数的积分具有广泛的应用,例如在物理学、工程学、经济学等领域中都有重要应用。
多元函数的积分包括二重积分和三重积分两种重要形式。
3. 二重积分二重积分是对二元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的面积进行求和。
二重积分的计算通常涉及到对区域进行分割、确定积分范围、选择合适的坐标系等步骤。
二重积分的求解可以利用极坐标、直角坐标等不同坐标系进行计算,根据具体问题的情况选择合适的坐标系可以简化计算过程。
4. 三重积分三重积分是对三元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的体积进行求和。
三重积分的计算通常涉及到对区域进行分割、确定积分范围、选择合适的坐标系等步骤。
三重积分的求解可以利用柱面坐标、球面坐标等不同坐标系进行计算,根据具体问题的情况选择合适的坐标系可以简化计算过程。
5. 多元函数的积分性质多元函数的积分具有一些重要的性质,包括线性性质、可加性、区域可加性等。
其中线性性质指的是积分运算满足线性运算规律,可加性指的是积分在不同区域的和等于对整个区域的积分,区域可加性指的是积分在求和区域上的分割等价性。
这些性质在多元函数积分的计算中起着重要的作用,可以帮助简化计算过程和求得精确解。
6. 多元函数的变限积分多元函数的变限积分是对多元函数在变化区域上的积分运算,它可以表示为对函数在变限区域上的所有微小部分进行求和。
高等数学教材二目录

高等数学教材二目录第一章:函数与极限1.1 函数的概念与性质1.2 极限的概念及基本性质1.3 极限的运算法则1.4 无穷小与无穷大1.5 一元函数的连续性第二章:导数与微分2.1 导数的定义与性质2.2 基本函数的导数2.3 高阶导数与隐函数求导2.4 微分的概念及其应用2.5 泰勒公式与应用第三章:函数的应用3.1 函数的单调性与极值3.2 函数的最值与最值问题3.3 简单的应用问题3.4 分类讨论与探究第四章:不定积分4.1 不定积分的概念与基本性质 4.2 基本积分公式与换元法4.3 牛顿-莱布尼茨公式与应用 4.4 微分方程的基本概念4.5 可降次的微分方程第五章:定积分与定义5.1 定积分的概念与性质5.2 积分中值定理与应用5.3 积分的换元法与分部积分 5.4 可积函数与不可积函数5.5 微元法与应用第六章:定积分的应用6.1 曲线下的面积与弧长6.2 旋转体的体积与侧面积6.3 质量、质心与转动惯量6.4 弹性势能与物体受力6.5 场景模拟与实际问题第七章:多元函数的偏导数与全微分 7.1 二元函数与偏导数7.2 偏导数的连续性与可导性7.3 二元函数的全微分与近似计算 7.4 复合函数的求导法则7.5 总微分与偏导数的几何意义第八章:多元函数的积分8.1 二重积分的概念与性质8.2 二重积分的计算方法8.3 三重积分与坐标变换8.4 曲线与曲面的面积8.5 曲线积分与曲面积分第九章:无穷级数9.1 数列及其极限9.2 级数的概念与性质9.3 正项级数的审敛法与上下界9.4 绝对收敛与条件收敛9.5 幂级数与函数展开第十章:常微分方程10.1 常微分方程的基本概念10.2 一阶线性微分方程10.3 高阶线性常微分方程10.4 非齐次线性微分方程10.5 高阶线性方程的振动与抽样总结:通过本教材的学习,读者将对高等数学的核心概念及其应用有深入的了解。
每个章节都涵盖了特定的数学内容,从函数与极限开始深入探讨到常微分方程的应用。
高等数学多元函数微积分

高等数学多元函数微积分多元函数微积分是高等数学中的一个重要分支。
它研究在多变量空间中的单变元函数的微分和积分问题。
这对学习曲面、平面的渐变、凹凸和分界、曲面的体积、局部极值等问题具有重要意义。
一、基本概念1. 超曲面:一般讲,超曲面就是在n维空间中的一类曲面,它们由至少n+1个函数组成。
它是由n维变量组成的,因而可以容纳n维量空间中所有的事物,从而形成一个多维结构。
2. 多元函数微分:多元函数微分就是对在多元空间内变量中的一个函数进行微分的一类函数,它可以应用于求解曲面的斜率,曲面的凹凸和分界,比如计算椭圆曲线、抛物曲线等的曲率和斜率等问题。
3. 多元函数积分:多元函数积分是指在多元空间中的一个函数的积分运算,它可以用于计算曲面的体积,曲面的拉伸与缩小等问题,它也可以用于计算曲面的累积,例如计算三维抛物面、回旋曲线等曲率积分的体积等。
二、求解方法1. 黎曼微积分法:黎曼微积分法是指在进行多元函数微积分时,识别出包含所求函数的一组导函数,然后根据黎曼公式将这些导函数求和,不断缩小未知函数的范围,最终确定出未知函数的表达式的一类方法。
2. 光滑函数的变换法:光滑函数的变换法指的是在进行多变量函数积分时,先将所给函数进行光滑变换,然后根据变换法则和对称性,极限性和旋转对称性等等属性,运用变换法,不断将多变量函数转化为单变量函数,最后将单变量函数进行积分。
三、应用1. 力学中的应用:多元函数微积分在力学中有着重要的作用,通过多元函数微积分,可以研究分析物体的运动轨迹,甚至可以预测未来的物体的状态。
2. 热物理学的应用:多元函数微积分可以用来研究热物理学中各种复杂多变量的函数,如热力学量在温度和压力变化时的变化情况,揭示物质性质在热状态时的性质变化,以及热流、热量变化的关系等。
3. 数学建模的应用:多元函数微积分也可以用来进行数学建模,如多元微积分可以用来描述一个普通一般问题的结构特性,如一个多边形的周长、三角形的体积、四棱锥的表面积等。
2多元函数积分学.docx

2.多元函数积分学K考试内容》(数学一)二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件己知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用K考试要求》(数学一)1 •理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。
3•理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
4.掌握计算两类曲线积分的方法。
5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。
会用高斯公式、斯托克斯公式计算曲面、曲线积分。
7.了解散度与旋度的概念,并会计算。
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。
K考试要求』(数学二)1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。
K考试要求》(数学三)1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。
2.了解无界区域上较简单的广义二重积分及其计算。
K考试要求》(数学四)同数学三2.多元函数积分学K知识点概述H 2. 1二重积分基本概念:定义、基本性质计算方法:直角坐标法(x型简单区域;y型简单区域)极坐标法(r型简单区域;&型简单区域)一般变换法几何应用:面积、曲顶柱体体积物理应用:质量、质心、转动惯量2. 2三重积分基本概念:定义、基本性质计算方法:直角坐标法:x型简单区域;y型简单区域;z型简单区域投影法(先定积分后二重积分)截面法(先二重积分后定积分)柱坐标法;球坐标法;一般变换法儿何应用:体积物理应用:质量、质心、转动惯量、引力2. 3曲线积分第一类曲线积分基本概念:定义、基本性质计算方法:参数化法儿何应用:弧长物理应用:质量、质心、转动惯量、引力第二类曲线积分基本概念:定义、基本性质计算方法:参数化法曲线积分基本定理(曲线积分与路径无关的条件(平面情形,空间情形);全微分的原函数;场论基本概念与计算格林公式(平面曲线积分);斯托克斯公式(空间曲线积分)物理应用:功,环流量,通量第一类曲线积分与第二类曲线积分的联系2. 4曲而积分第一类曲面积分基本概念:定义、基本性质计算方法:投影法(向xoy 平面投影;向yoz 平面投影;向zox 平面投影)儿何应用:曲面面积 物理应用:质量、质心、转动惯量、引力第二类曲面积分基本概念:定义、基本性质计算方法:有向投影法(各向投影;单向投影);化成第一类曲面积分;高斯公式;斯托克斯公式物理应用:通量第一类曲面积分与第二类曲面积分的联系K 典型例题一二重积分H例1 (91103)设D 是XOY 平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,®是D 在第 一象限部分,则 jjp (xy + cosxsin y)dxdy =()K 注》二重积分的对称性例2计算力dy,其中D 是由直线兀=-2,y = 0,y = 2以及曲线兀= -(2y- y 2所围成的平而区域K 注》平面区域的重心(质心)变式1计算Jjp(x+刃加/y,其中: 2以+》2 < y +1例3计算血(手+評如),,其中D :X 2 + y 2 </?2 (/?>0)注1极坐标法是计算二重积分的重要方法变式 1 计算 JJ^ln(x 2+ y 2 yixdy ,其中 D: x 2 + y 2 < 1 变式2计算吕-和如其中D :名+着「注2二重积分的轮换对称性变式3计算H (斗+其)必〃y ,其中D:x 2 + y 2<R 2 (/?>0) H D a 2 b 2(B) 2血 xydxdy (A)cosxsin ydxdy (C) (xy + cos x sin y)dxdy (D) 0x » 0, y 2 0上的正值连续函数例 4 (94103)计算 JJ D + xf(x 2 + y 2)]dxdy ,其中 D 由直线 y = x,y = -\,x = \ 围成,f 为连续函数 变式 1 (01306)计算 J.y [l +兀+〉)]dxdy ,其中 D 由直线 y = x.y =-l,x = 1^成 例 5(02107)计算 JJ 创曲{兀2,护}必労,其中 p = {(X5y ):o<x<l,O<y<l}变式 1 计算^D x 2dxdy ,其中 D: x 4 + y 4 < 1 变式 2 (95305)计算 jj /?2 min{x,y}e-^2^y 2)dxdy ,其中 M 为整个 xoy 平面 例6计算Z = J ■:必产号%‘注将二重积分化成二次积分计算时,确定积分次序是关键变式1计算心恥J 謬字变式2计算I = ff^sin y 2dxdy ,其中D 由y = x, y =五及Y 轴围成变式3计算/二J 診rj ; 了——dy , f\x)在[0, a ]连续u J(d-x)(x- y)例7设/(兀)在[0,1]上连续,证明J :闵:/(兀)/()曲=*[仃(兀)〃兀]2例 8 求在 D:x 2 + y 2 < y 9x>0上连续的 /(x,刃,使 /(x,y) = Jl-x 2一)2 一却需/仏*)dud\ 例9 (97306)求/(/),使得/⑴在[0,2)上连续,且满足方程 f ⑴=e 伽2 + 几2+严 <4,2 f(yx 2 + y 2)dxdy例]0 (00406)设 f(x,y)=<X "求 /(x, y)dxdy ,其中 D:x 2 + y 2 > 2x 0, 他变式 1 (05111)计算二重积分仏巩1 + %2 + y2]Jxdy ,其中 D :x 2 + y 2 < 72,x> 0, y > 0,[1 +兀2 +y2]表示不超过1 +兀2 + y2的最大整数变式4 (05204)计算血aj/(兀)+bj/(y) z/xdy ,其中 为常数,/(x)为£>:%2 + ^2 <4,变式 2 (05209)计算二重积分血| 兀 2+y2_i/dy,其中 D = {(x,y):O<x<l,O<y<l}K 典型例题一三重积分H例1 (88203)设有空间区域V1 : x 2 + y 2 + z 2 < /?2,z > 0 , V2 :x 2 + y 2 +z 2 < /?2,x>0, y >0,z>0,贝!J ()⑷ JJJy xdxdydz = 4川xdxdydz (B) JJ. ydxdydz = ydxdydz(0 zdxdydz = 4出” zdxdydz (D) xyzdxdydz = xyzdxdydz 注三重积分的对称性 例 2 计算 J%兀,其中 V : x 2 + y 2 + z 2 < /?2,x > 0,>?> 0,z > 0 (/? > 0)解一:投影法解二:截面法解三:柱坐标变换法解四:球坐标变换法,2 n 变式1用截面法计算出“如皿,其中V:^- + -p- + ^-<l,z>0变式 2 利用对称性计算^^x-dxdydz ,其中 V : x 2 + y 2 4- z 2 < /?2,z > 0 (7? > 0)dxdydz (l+|x| + |y| + |z|)3 例 4 计算 (x + y + z)dxdydz ,其中 V : 2以+3y2 + 么2 5 z注空间区域的重心(质心)变式 1 设 /⑴可导,V :以 +『2 + z2 w/2 , = /(x 2 +y2 + z^)dxdydz,求 F'(/) 例 6 (03112)设/(r)为正值连续函数,V(t):x 2 + y 2 + z 2 <t 2 , D(t):x 2 + y 2<r 2, 肛⑴ /X + y 2 + z2 Zdxdydz血初 f(x 2 + y 2)dxdy F ⑴ JJ D(Z) /(x 2 + y 2)dxdy (1)讨论F(f)在(0,+oo)内的单调性(2)证明(>0时,F(r)>-G(r)71 K 典型例题一曲线积分与曲面积分H例1计算#厶(2兀2+3y2)〃$ ,其中厶:兀2 + y2 = 2(兀+y)解一:参数化法 解二:利用曲线积分的对称性变式1计算+ yz + xz)d$ ,其中厶为球面兀2 +y2 +z2 =]与平面乂+y + z 二0的交线例3计算皿 其中 V:|x| + |y| + |z|<l例5设/⑴可导, /(0) = 0, V :兀2 + y2 + z2 5/2 求 Ii m+ y2 + z 2)dxdydz f_t f(x 2)dx变式2计算#/2ds ,其中厶为球面兀2 +歹2 + z2 =以与平面兀+ + z = 0的交线例2 计算(x2 + y)dS 9其中S: x2 + y2=a^fi<z< h.a > 0解一:投影法解二:利用曲面积分的对称性例3 (87103)计算(2xy-2y)dx4-(x2 -4x)dy,其中L:x2 + y2 =9取正向(逆时针方向)解一:参数化法解二:格林公式例4 (03110)己知平面区域£)= {(x,y):0<x<^, 0<y<7r},厶为其正向边界,试证(1 )彳厶壮sin yjy _ y^-sin x(}x = #厶壮-sin y dy - ye s^n X dx , ( 2 ) #厶xe sin ydy - >^_sin X dx > 2兀2解一:参数化法解二:格林公式例5 (97105)计算(z - y)dx + (x - z)dy 4- (x - y)dz ,其中L x2 + y2 = 1与平面x-y + z = 2的交线,从Z轴正向往Z轴负向看厶的方向是顺时针正向解-:参数化法解二:斯托克斯公式例6 (00106)计算i r Xdy~ycb",其中厶是以点(1,0)为中心,半径为R(R > 1)的圆周,JL 4兀2 +y2取逆时针方向例7 (98106)确定常数使在右半平面x>0上的向量A(x,y) = 2xy(x4 + y2)a i -x2(x4 + y2)a j为某二元函数u(x9y)的梯度,并求u(x9y)解一:曲线积分法解二:不定积分法变式1(05112)设函数0(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线厶上, 曲线积分£俠鑒身晋的值恒为同一常数。
山东高等数学二教材内容

山东高等数学二教材内容山东高等数学二教材是山东省高等教育出版社出版的一本针对大学高等数学课程的教材。
该教材经过精心编写和整理,旨在帮助学生建立坚实的数学基础,掌握高等数学的核心概念和解题方法。
本文将介绍山东高等数学二教材的内容,并分析其特点和适用范围。
第一章微分学第一章介绍微分学的基本概念和理论。
首先讲述了函数的极限与连续性,包括函数极限的定义、极限的性质和运算法则,以及连续函数的定义和性质。
然后引入导数的概念与性质,包括导数的定义、导数的运算法则和基本导数公式。
最后,讲解微分中值定理和泰勒展开式等重要的微分学理论。
第二章积分学第二章介绍积分学的基本概念和理论。
首先讲述不定积分与定积分的概念,包括基本积分法和换元积分法。
然后引入定积分的性质和运算法则,包括积分区间的可加性和乘性,以及定积分的上下界性质。
最后,介绍重要的积分学理论,如牛顿-莱布尼茨公式和变限积分等。
第三章无穷级数第三章介绍无穷级数的概念和性质。
首先讲述数列极限的概念和判敛法则,包括单调有界数列的极限和比较判别法等。
然后引入级数的定义和收敛性,包括正项级数和任意项级数的判敛法则。
最后,介绍重要的级数性质,如级数的逐项和、级数的收敛域和绝对收敛等。
第四章傅里叶级数第四章介绍傅里叶级数的基本概念和性质。
首先讲述周期函数的傅里叶级数展开,包括正弦级数和余弦级数的表达式和性质。
然后引入复数形式的傅里叶级数,包括欧拉公式和复数的三角级数展开。
最后,介绍傅里叶级数的收敛性和应用,如奇偶性函数的收敛和周期函数的逼近等。
第五章多元函数微分学第五章介绍多元函数微分学的基本概念和理论。
首先讲述多元函数的极限与连续性,包括多元函数极限的定义和连续函数的性质。
然后引入偏导数的概念和性质,包括偏导数的定义和偏导数的运算法则。
最后,介绍多元函数的全微分和多元函数的隐函数定理等重要的多元微分学理论。
第六章多元函数积分学第六章介绍多元函数积分学的基本概念和理论。
首先讲述重积分的概念和性质,包括二重积分和三重积分的计算方法和应用。
高等数学第二版教材朱士信

高等数学第二版教材朱士信高等数学是大部分理工科学生必修的一门学科,它是对大学数学的深入拓展和延伸,旨在培养学生的数学思维和解决问题的能力。
《高等数学第二版》是朱士信编写的教材,本文将对该教材的内容进行介绍和评价。
第一章微积分微积分是高等数学的基础,也是本教材的开篇内容。
从导数和微分的概念开始讲解,朱士信教授通俗易懂地解释了数学的符号表示和定义,为学生打下了良好的数学基础。
在介绍微分的同时,教材还伴随着大量的例题和练习题,帮助学生巩固知识,提高解题能力。
第二章积分学积分学是微积分的重要组成部分,也是学生掌握数学应用的关键。
朱士信教授在本章中详细介绍了不定积分、定积分以及它们的性质和应用。
通过实例和图表的呈现,学生更易于理解并掌握积分学。
此外,教材还提供了大量的练习题和习题答案,供学生在课后进行巩固和反思。
第三章微分方程微分方程是高等数学的一大难点,朱士信教授在本章中通过引入微分方程的概念和解法,详细讲解了常微分方程和偏微分方程的基本理论和应用。
他采用逐步推导的方式,让学生从简单到复杂地理解和解决微分方程问题。
教材中的习题也特别注重培养学生的独立思考和解决问题的能力。
第四章数列和级数数列和级数是数学中重要的概念和方法,也是应用数学的基础。
朱士信教授在本章中给出了数列和级数的定义、性质和求和公式,并通过具体的案例进行了说明。
教材中的习题种类繁多,既有基础的计算题,也有拓展的应用题,有助于学生提高数学思维和应用能力。
第五章多元函数微积分多元函数微积分是高等数学中的重要内容,也是对学生数学思维和分析能力的一次挑战。
朱士信教授在本章中系统讲解了多元函数的导数和微分、多元函数的积分和曲线积分,以及应用到物理、化学等相关学科中的例题。
该章节的内容布局合理,难度逐渐加深,有助于学生逐步掌握和应用多元函数微积分。
总结《高等数学第二版》是一本经典的高等数学教材,朱士信教授的讲解深入浅出,通俗易懂,适合广大理工科学生学习和参考。
04高数——多元函数积分学知识点速记
多元函数积分学1、不定积分1)原函数定义定义在某区间I 上的函数()f x ,若对I 的一切x ,均有()()F x f x '=,则称()F x 为()f x 在区间I 上的原函数。
若函数()f x 存在原函数,则()f x 就有无穷多个原函数,可表示为()F x C +。
2)不定积分定义函数()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰。
若()F x 是()f x 的一个原函数,则()()d f x x F x C =+⎰(C 为任意常数)3)不定积分计算:①第一类换元积分法:设()f u 具有原函数()F u ,而()u x ϕ=可导,则有()()()()d d f x x x f u u F x C ϕϕϕ'==+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰②第二类换元积分法:设()x t ϕ=在区间[],αβ上单调可导,且()0t ϕ'≠,又设()()f t t ϕϕ'⎡⎤⎣⎦具有原函数()F t ,则有()()()()()1d d f x x f t t t F t c F x Cϕϕϕ-'⎡⎤==+=+⎡⎤⎣⎦⎣⎦⎰⎰式中,()1x ϕ-为()x t ϕ=的反函数。
高 数多元函数积分学知识点速记③分部积分法:设()u x ,()v x 可微,且()() d v x u x ⎰存在,由公式()d d d uv u v v u =+得到分部积分公式d d u v uv v u=-⎰⎰2、定积分1)两点规定:①当a b =时,()d 0b a f x x =⎰;②当a b >时,()()d d b a a b f x x f x x =-⎰⎰2)积分上限函数及其导数①()d xa f x x ⎰为积分上限函数,记作()()d x ax f x x Φ=⎰,经常写成如下形式()()()d xa f t t a x xb Φ=≤≤⎰②积分上限函数的导数()()()d x a x f t t f x '⎡⎤'Φ==⎢⎥⎣⎦⎰()a xb ≤≤③()()()()()()()d g x h x f t t f g x g x f h x h x '⎡⎤''==⋅-⋅⎡⎤⎡⎤⎣⎦⎣⎦⎢⎥⎣⎦⎰3、定积分的应用旋转体的体积:设由曲线()y f x =,直线x a =,x b =以及x 轴围成的平面图形,绕x 轴旋转一周而生成的旋转体的体积,则()2πd b x aV f x x =⎡⎤⎣⎦⎰平行截面面积为已知的立体的体积:设立体由曲面S ,以及平面x a =、x b =所围成,且对于[],a b 上任一点x 作垂直截面,截得的面积()A A x =为x 的连续函数,则()d bc V A x x =⎰4、二重积分1)二元函数(),f x y 在闭区域D 上的二重积分,记作(),d D f x y σ⎰⎰2)(),d f x y σ⎰⎰表示以曲面(),z f x y =为顶,以区域D 为底,以D 的边D界为准线,母线平行于 Oz 轴的柱面围成的曲顶柱体的体积。
高等数学(数二
高等数学(数二>一.重点知识标记高等数学科目大纲章节知识点题型重要度等级高等数学第一章函数、极限、连续1 .等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★2 .函数连续的概念、函数间断点的类型3 .判断函数连续性与间断点的类型★★★第二章一元函数微分学1 .导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系★★★★2 .函数的单调性、函数的极值讨论函数的单调性、极值★★★★3.闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★第三章一元函数积分学1 .积分上限的函数及其导数变限积分求导问题★★★★★2 .有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★第四章多元函数微分学1 .隐函数、偏导数、的存在性以及它们之间的因果关系2 .函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系★★3 .多元复合函数、隐函数的求导法求偏导数,全微分★★★★★第五章多元函数积分学1. 二重积分的概念、性质及计算2.二重积分的计算及应用★★第六章常微分方程1.一阶线性微分方程、齐次方程,2.微分方程的简单应用,用微分方程解决一些应用问题★★★★一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则>、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理>,这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。
二、微分学部分:主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。
一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。
(超级总结吐血推荐)考研数学二经典知识点题型技巧总结(高数线代)综合网上及个人线代心得
高等数学(数二>一.重点知识标记高等数学科目大纲章节知识点题型重要度等级高等数学第一章函数、极限、连续1 .等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★2 .函数连续的概念、函数间断点的类型3 .判断函数连续性与间断点的类型★★★第二章一元函数微分学1 .导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系★★★★2 .函数的单调性、函数的极值讨论函数的单调性、极值★★★★3.闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★第三章一元函数积分学1 .积分上限的函数及其导数变限积分求导问题★★★★★2 .有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★第四章多元函数微分学1 .隐函数、偏导数、的存在性以及它们之间的因果关系2 .函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系★★3 .多元复合函数、隐函数的求导法求偏导数,全微分★★★★★第五章多元函数积分学1. 二重积分的概念、性质及计算2.二重积分的计算及应用★★第六章常微分方程1.一阶线性微分方程、齐次方程,2.微分方程的简单应用,用微分方程解决一些应用问题★★★★一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则>、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理>,这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。
二、微分学部分:主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。
一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。
多元函数积分学课件
解析
首先将二重积分拆分为两个定积 分,然后分别进行计算。
答案
$frac{4}{9}$
答案
$-frac{1}{6}$
解析
同样拆分二重积分,然后进行计 算。
例题2
计算$int_{0}^{1}int_{0}^{y}(x y)dxdy$
三重积分习题与解析
例题1
计算 $int_{0}^{1}int_{0}^{1}int_{0}^{x}xydzdxdy $
传导问题。
在几何中的应用
曲面面积和体积计算
积分可以用来计算曲面的面积和三维物体的体积,这在几何学中 非常重要。
曲线积分
在几何学中,曲线积分被用来计算曲线长度、面积和线段上的变化 量。
参数曲线和曲面
参数曲线和曲面可以用积分表示,这有助于研究几何对象的形状和 性质。
在工程中的应用
流体动力学
在航空航天、船舶和车辆设计中 ,积分被用来计算流体动力学效 应,如压力分布、速度场和流线 。
多元函数积分学课件
目 录
• 多元函数积分学概述 • 多元函数积分的计算方法 • 多元函数积分的几何意义 • 多元函数积分的性质与定理 • 多元函数积分的应用 • 多元函数积分习题与解析
01
多元函数积分学概述
定义与性质
定义
多元函数积分学是研究多元函数的积 分及其性质的一门学科,其基础概念 包括二重积分、三重积分、曲线积分 和曲面积分等。
计算步骤
首先确定积分区域,然后选择合适的 积分次序,最后根据定积分的计算公 式进行计算。
曲线上的第一类曲线积分计算
定义
第一类曲线积分是计算曲线上的函数值 与其对应的参数的乘积的积分,即求曲 线上的一个物理量(如质量、热量等) 的分布情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
y=x2. 即 x y的.
y=x2 y=x
1x
故里层对 x 积分的下限为y, 上限为 y . 而该射线的变化范围是[0, 1].
故外层对 y 的积分下限为0, 上限为1.
1
y
(xy)dx d0ydyy (xy)dx
设一平面薄板, 所占区域为D , 面密度 (x,
y) 0 连续. (x, y) D. 求该平面薄板的质量M.
(i)如图 用曲线将D分成 n 个小区域 D1, D2,…, Dn ,
y
Di
Di的面积记作 i .
D
0
x
y Di
D
0
x
由于(x, y) 0 连续, 从而当Di很小时, (x, y) 在Di上的变化不大, 可近似看作(x, y)在Di上
截面是平面x= x0上 的, 以z=f (x0, y)为 曲边的曲边梯形.
z
z=f (x0, y)
y
y2(x0)
由定积分的几何意义,
A(x) y2(x0)
0
y1(x0)
y1(x0)
f(x0,y)d,y
0
一,般 A(x)y2(x) f(x,y)d.y y1(x)
z=f (x, y)
y=y2(x)
D
注1. 公式 f(x,y)d b[y2(x)f(x,y)d]d y x
D
a y1(x)
虽是在条件 f (x, y) 0下得到的, 但对一般的
f (x, y)都成立, 只须D是x—型区域即可.
注2. 习惯上常将右端的二次积分记作
dx b
y2(x)
f(x,y)dy
a
y1(x)
即
f(x,y)d bdxy2(x)f(x,y)dy a y1(x)
如图
y
y = f (x)
f ( i)
其中 i[xi, xi+1],
xi = xi+1 xi , 表小区
间[xi, xi+1]的长, f ( i)
xi表示小矩形的面积.
0 a xi i xi+1 b x
一、例
1.求曲顶柱体的体积V.
z
设有一立体. 其底面是
xy 面上的区域D, 其侧面为
母线平行于 z 轴的柱面, 其
即, D: y1(x) y y2(x), a x b
y
y = y2(x)
称为x—型区域. 特别情形是
A
E
D
A、B退缩成一点, E、F退 缩成一点.
B y = y1(x) F
0a
bx
由几何意义知, f(x,y)d表示 zf(以 x,y)为,顶
D
以D为底的曲顶柱体体积V. 如图.
过点x0作平面x= x0,
c
x1(y)
y d
E
x=x1(y) D
x=x2(y)
c
F
0
x
(3)若D既是 x—型区域, 又是 y—型区域. 比如
y
y
y
0ห้องสมุดไป่ตู้
x0
x0
x
等等, 则既可先对 x 积分, 又可先对 y 积分. 此时,
bdy x 2(x)f(x,y)d yddx y 2(y)f(x,y)dx f (x, y)d
a y 1(x)
z = f (x,y)
0
x Di
y
D
Di
(ii)由于Di很小, z = f (x,y)连续, 小曲顶柱体
可近似看作小平顶柱体.
( i , i) Di .
z = f (x,y)
小平顶柱体的高 = f ( i , i). 若记 i = Di的面积.
则小平顶柱体的体积
= f ( i , i) i 小
D
b
[
y2(x)
f(x,y)dy]dx
a y1(x)
(2)类似, 若D: x1(y) x x2(y), c y d, 称为 y —型区域,
则二重积分可化为先对 x, 再对 y 的二次积分.
即
f
(x,
y)d
d
[
x2(y)
f(x,y)dx]dy
c x1(y)
D
dy d
x2(y)
f(x,y)dx
f(x,y)df(,)|D|
D
3. 二重积分的几何意义设 x, y 在 D上可积, 则
(i) 当z=f (x, y)0时, f (x,y)d曲顶柱体的. 体积
D
(ii) 当z= f (x, y)<0时, f(x,y)d(曲顶柱体的)体
D
(iii)若 D D 1 D 2,且 D 1,D 2 无公 ,在 共 D 1 上 f(内 x,y)0 点 ,
是不变的. 从而可用算均匀薄板的质量的方法算出
Di这一小块质量的近似值.
(ii)即, ( i , i) Di , 以 ( i , i)作为Di 这一小
片薄板的面密度. 从而,
第 i 片薄板的质量 mi ( i , i) i
n
(iii)故, 平面薄板的质量 M(i,i)i
i1
(iv) 若记 m 1in{aD ix 的直 }, 径
在 D 2 上 f(x,y)0 ,则
f(x ,y )d f(x ,y )d f(x ,y )d
D
D 1
D 2
= (D1上曲顶柱体体积) (D2上曲顶柱体体积)
一般 ,f(x,y)d表示各小曲顶 的柱 代体 数 . 体 和积
D
三、二重积分的计算
1. 直角坐标系下二重积分的计算.
由二重积分的几何意义知, 当f (x, y)0时,
D
D
特别: (i) 若在D上f (x, y)0, 则
f(x,y)d0
D
(ii) f(x,y)d| f(x,y)|d
D
D
这是因为 | f (x, y)| f (x, y) | f (x, y) |
积分后即得.
性质6. 若在D上 m f (x, y) M, 则
mDf(x,y)dM|D|
D
性质7. 设 f (x, y) C(D), 则(,)D, 使得
例1.求 (xy)d ,其 D 由 中 yx2 和 yx围 . 成
D
y
解: 先画区域D的图形.
法1. 先对y积分. 为确定
y=x2 y=x
累次积分的上、下限.
作与y轴同向的射线, 从 下至上穿过D.
0x
x
则y是由下方的曲线y=x2变到上方的曲线y=x的.
里层积分的下限为x2, 上限为x.
由于该射线变化范围是[0, 1].
c x 1(y)
D
当用某次序算二重积分不好算时, 可改换积分次序,
可能好算.
(4)若D的形状较复杂, 既不是 x—型区域, 也不是 y—型区域.
则可用一些平行于 x 轴
y
和平行于 y 轴的直线将
D2
其分成若干块, 使每一块
D1
D
或为x—型, 或为 y—型,
D3
分块积. 如图
0
x
f( x ,y ) d f( x ,y ) d f( x ,y ) d f( x ,y ) d
其中Di的直径是指Di中相距最远的两点的距离.
如图
n
x
则Vl i0m i1f(i,i)i,
y Di
其中 ( i , i) Di , i = Di 的面积.
2. 非均匀分布物体的质量
(1)平面薄板的质量 M. 当平面薄板的质量是均匀分布时, 有, 平面薄板的质量 = 面密度×面积. 若平面薄板的质量不是均匀分布的. 这时, 薄板的质量不能用上述公式算, 应 如何算该薄板的质量M?
曲顶柱体体积
f ( i , i)
Di
( i , i)
n
(iii)因此, 大曲顶柱体的体积 Vf(i,i)i
i1
分割得越细, 则右端的近似值越接近于精确
值V, 若分割得"无限细", 则右端近似值会无
限接近于精确值V.
也就是
n
Vlim
f(i,i)i
i1
(iv) 记m 1in{aD x i的直 },径
D
D 1
D 2
D 3
(5) 设D: y1(x) y y2(x), a x b, 为 x —型区域. 其中y2(x)为分段函数. 如图
则
f(x,y)d bdxy2(x)f(x,y)dy
a y1(x)
D
由于y2(x)是分段函数, 里 y 层积分上限无法确定用
y = 2(x)
哪一个表达式. 故应将 D分成D1, D2, 分块积分.
f (x, y)d曲顶柱体的V体积
D
如图
y A(x)
若点x处截面面积为A(x),
则体积
0ax
x
b
V a A(x)dx.
考 虑 f(x,y)d ,其 z 中 f(x,y)0 ,连 . 续
D
(1)设积分区域D是由两条平行于y轴的直线x=a, x=b
及两条曲线 y = y1(x), y = y2(x)围成. 如图
其中“ ”称为二重积分符号, D称为积分区域, f
(x,y)称为被积函数, d称为面积元素, x, y称为积分
n
变量. 和式f (i,i)i称为积分. 和 i1
注1. 定积分
二重积分
b
n
f(x)dxlim
a
0i1
f(i)xi
n
Df(x,y)dl i0 m i1f(i,i)i
区别在将小区间的长度 xi 换成小区域的面积 i, 将一元函数 f (x)在数轴上点 i 处的函数值 f (i)换 成二元函数 f (x, y)在平面上点(i, i)处的函数值 f (i, i). 可见, 二重积分是定积分的推广.