三角形四心及向量复习
向量与三角形的四心

向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
二、四心与向量的结合(1)⇔=++0OC OB OA O 是ABC ∆的重心.证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O⇔=++⎩⎨⎧=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ⎪⎪⎩⎪⎪⎨⎧++=++=⇔33321321yy y y x x x x⇔O 是ABC ∆的重心.证法2:如图 OC OB OA ++2=+= ∴2= ∴D O A 、、三点共线,且O 分AD为2:1 ∴O 是ABC ∆的重心(2)⇔⋅=⋅=⋅O 为ABC ∆的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足. 0)(=⋅=-⇔⋅=⋅ ⊥⇔ 同理⊥,⊥⇔O 为ABC ∆的垂心(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O OC c OB b OA a ⇔=++0为ABC ∆的内心. 证明:b c 、 分别为AC AB 、方向上的单位向量, ∴b ACc AB+平分BAC ∠,(λ=∴AO b c +),令c b a bc++=λ ∴c b a bc ++=(b ACc AB+) 化简得0)(=++++AC c AB b OA c b a∴0=++OC c OB b OA aB CDB CD(4==⇔O 为ABC ∆的外心。
典型例题:例1:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心中点. 分析:如图所示ABC ∆,E D 、分别为边AC BC 、的2=+ ∴λ2+=+=AD AP λ2=∴ AP ∴//AD∴点P 的轨迹一定通过ABC ∆的重心,即选C .例2:(03全国理4)O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P满足++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( B )A .外心B .内心C .重心D .垂心分析:分别为方向上的单位向量,+平分BAC ∠,∴点P 的轨迹一定通过ABC ∆的内心,即选B .例3:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心分析:如图所示AD 垂直BC ,BE 垂直AC , D 、E 是垂足. +⋅+B CDC+=-=0∴点P 的轨迹一定通过ABC ∆的垂心,即选D .练习:1.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:λ=+,则λ的值为( )A .2B .23 C .3 D .6 2.若ABC ∆的外接圆的圆心为O ,半径为1,=++,则=⋅( )A .21B .0C .1D .21- 3.点O 在ABC ∆内部且满足022=++OC OB OA ,则ABC ∆面积与凹四边形ABOC 面积之比是( )A .0B .23C .45D .34 4.ABC ∆的外接圆的圆心为O ,若OC OB OA OH ++=,则H 是ABC ∆的( )A .外心B .内心C .重心D .垂心5.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+ 222+=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心6.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(m ++=, 则实数m =7.(06陕西)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC→| =12 , 则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形C .等腰非等边三角形D .等边三角形8.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形练习答案:C 、D 、C 、D 、D 、1、D 、C。
三角形的四心与平面向量知识点总结

三角形的四心与平面向量知识点总结
三角形的四心与平面向量是一个关于平面几何的较为深奥的概念,它的概念要求学生
具备一定的几何知识,掌握这一概念对于学习几何领域的深入学习是十分有用的。
三角形的四心指的是在特定三角形ABC内构成特殊位置
三个点I(三角形BC边AB中点),J(三角形AC边BC中点),K(三角形AB边AC
中点),四点ABCIK组成的四边形,四边形的面积等于三角形的三分之一,此四边形称为BCIK三角形的四心.
此外,三角形的四心还有一个与平面向量密切相关的概念,在三角形的四心中,任
意三个角的夹角均为60°,在三角形四心ABCIK任意三点构成的三角形内构成平行四边形,平行四边形内两条边构成的三角形含有相同的角,平行四边形内两条边所在平面垂直于BCIK三角形的两条边,BCIK三角形的两条边构成的平面是BCIK三角形的平面向量.
三角形的四心与平面向量让学生熟悉一些它不同于其他几何图形所具有的形态特征,
有助于更深入地了解几何相关的知识,学习者不仅可以学习三角形的四心,还可以将其结
合实际的问题,学习如何用四心确定三角形的面积等相关的实际问题.。
向量与三角形四心结合(纯干货)

三角形的“四心”与向量的完美结合知识概述:三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一、知识点总结1)O 是ABC ∆的重心=++⇔; 若O 是ABC ∆的重心,则,31ABC AOB AOC BOC S S S S ∆∆∆∆===故;,=++ 1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2)O 是ABC ∆的垂心OA OC OC OB OB OA ⋅=⋅=⋅⇔; 若O 是ABC ∆(非直角三角形)的垂心,则,tan :tan :tan ::C B A S S S AOB AOC BOC =∆∆∆故tan tan tan =⋅+⋅+⋅C B A3)O 是ABC ∆的外心)222OC OB OA ====⇔或 若O 是ABC ∆的外心,则C B A AOB AOC BOC S S S AOB AOC BOC 2sin :2sin :2sin sin :sin :sin ::=∠∠∠=∆∆∆ 故02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A 4)O 是内心ABC ∆的充要条件是0=⋅=⋅=⋅引进单位向量,使条件变得更简洁。
如果记,,的单位向量为321,,e e e ,则刚才O 是ABC ∆内心的充要条件可以写成0)()()(322131=+⋅=+⋅=+⋅e e OC e e OB e e OAO 是ABC ∆内心的充要条件也可以是0=++OC c OB b OA a若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆ 故sin sin sin =++=++C B A c b a 或;||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);知识点一、将平面向量与三角形内心结合考查【例 1】:O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P满足OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心 (B )内心 (C )重心 (D )垂心【解答】:因为是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又=-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.练习:在直角坐标系xOy 中,已知点A(0,1)和点B(–3, 4),若点C 在∠AOB 的平分线上,且||2OC =,则OC =_________________.【解答】:点C 在∠AOB 的平线上,则存在(0,)λ∈+∞使()||||OA OBOC OA OB λ=+=34(0,1)(,)55λλ+-=39(,)55λλ-,而||2OC=,可得3λ=,∴()55OC =-.【例2】:三个不共线的向量,,OA OB OC 满足()||||AB CA OA AB CA ⋅+=(||BA OB BA ⋅+||CB CB ) =()||||BC CA OC BC CA ⋅+= 0,则O 点是△ABC 的( )A. 垂心B. 重心C. 内心D. 外心解:||||AB CA AB CA +表示与△ABC 中∠A 的外角平分线共线的向量,由()||||AB CAOA AB CA ⋅+= 0知OA 垂直∠A 的外角平分线,因而OA 是∠A 的平分线,同理,OB 和OC 分别是∠B 和∠C 的平分线,故选C .【例3】:已知O 是△ABC 所在平面上的一点,若aOA bOB cOC ++= ,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心 解:∵OB OA AB =+,OC OA AC=+,则()a b c OA bAB cAC++++= 0,得()||||bc AB ACAO a b c AB AC =+++. 因为||AB AB 与||AC AC 分别为AB 和AC 方向上的单位向量,设||||AB ACAP AB AC =+,则AP 平分∠BAC. 又AO 、AP 共线,知AO 平分∠BAC.同理可证BO 平分∠ABC ,CO 平分∠ACB ,所以O 点是△ABC 的内心.【方法总结】:这道题给人的印象当然是“新颖、陌生”是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。
三角形四心向量形式知识总结

三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心⇔=++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++ ⇔G 为ABC ∆的重心.2.O 是ABC ∆的垂心⇔⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S A OBA OC BOC ::::=∆∆∆故0OC C tan OB B tan OA A tan =++3.O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222O O O ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOBAOC BOC =∠∠∠=∆∆∆::::故C 2sin B 2sin A 2sin =++4.O是内心ABC ∆的充要条件是|CB ||CA |(|BC ||BA |(AC|AB |(=⋅=⋅=⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成0)e e (O C )e e (O B )e e (O A 322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 。
若O 是ABC ∆的内心,则c b a S S S A OB A OC BOC ::::=∆∆∆故C sin B sin A sin c b a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(一)将平面向量与三角形内心结合考查例1.O是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心AB 的单位向量设AB 与AC方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略)) 例3.(湖南)P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的(D)A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅得.即0,0)(=⋅=-⋅即则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心. 证明 作图如右,图中=+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将GE GC GB =+代入GC GB GA ++=0,得+=0⇒2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略)) 例6 若O 为ABC ∆内一点,0OA OB OC ++=,则O 是ABC ∆ 的()A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++= 得OB OC OA +=- ,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=,由平行四边形性质知12OE OD =,2OA OE=,同理可证其它两边上的这个性质,所以是重心,选D 。
高三数学-专题复习-向量专题(1)向量与三角形四心内心、外心、重心、垂心(附向量知识点)

高三数学-三角形四心与向量关系 -内心、外心、重心、垂心(附向量知识点)一、三角形四心知识点(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
二、向量知识点☆零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行☆单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a|=1☆平行向量(共线向量):方向相同或相反的非零向量平行向量也称为共线向量☆向量加法AB BC u u u r u u u r =AC u u ur 向量加法有“三角形法则”与“平行四边形法则”:AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.☆实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的☆两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =☆平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底☆平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y r r ,1212a b x x y y rr (2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r,则a b r r ,02121 y y x x☆向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质☆两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r 与b r 的数量积(或内积) 规定0a r r☆向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影☆数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r 方向上的投影的乘积☆向量的模与平方的关系:22||a a a a r r r r☆乘法公式成立:2222a b a b a b a b r r r r r r r r ;2222a ba ab b r r r r r r 222a a b b r r r r☆向量的夹角:已知两个非零向量a r与b r ,作OA uu u r =a r , OB uuu r =b r ,则∠AOB= (001800 )叫做向量a r与b r 的夹角cos =cos ,a ba b a b • •r r r r r r当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r 与其它任何非零向量之间不谈夹角这一问题补充: 线段的定比分点设,,,,分点,,设、是直线上两点,点在P x y P x y P x y P P P 11122212ll 上且不同于、,若存在一实数,使,则叫做分有向线段P P P P PP P 1212P P P P P P P P 12121200所成的比(,在线段内,,在外),且x x x y y y P P P x x x y y y12121212121122 ,为中点时, 如:,,,,,, ABC A x y B x y C x y 112233则重心的坐标是, ABC G x x x y y y 12312333三、三角形四心与向量关系典型例题:例1:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足)( , ,0 ,则点P 的轨迹一定通过ABC 的( )A .外心B .内心C .重心D .垂心 分析:如图所示ABC ,E D 、分别为边AC BC 、的中点.2 2 2 // 点P 的轨迹一定通过ABC 的重心,即选C .例2:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足, ,0 ,则点P 的轨迹一定通过ABC 的( B )A .外心B .内心C .重心D .垂心分析:分别为方向上的单位向量,平分BAC ,点P 的轨迹一定通过ABC 的内心,即选B .例3:O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足, ,0 ,则点P 的轨迹一定通过ABC 的( )A .外心B .内心C .重心D .垂心分析:如图所示AD 垂直BC ,BE 垂直AC , D 、E 是垂足.BC=0点P 的轨迹一定通过ABC 的垂心,即选D .三、四心与向量的结合(1) 0OC OB OA O 是ABC 的重心.证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O0OC OB OA)()()(0)()()(321321y y y y y y x x x x x x33321321y y y y x x x x O 是ABC 的重心. 证法2:如图OC OB OA 02 OD OA OD AO 2D O A 、、三点共线,且O 分AD 为2:1 O 是ABC 的重心(2) OA OC OC OB OB OA O 为ABC 的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)( AC OB 同理BC OA ,AB OC O 为ABC 的垂心(3)设a ,b ,c 是三角形的三条边长,O 是 ABC 的内心BCDB CDO c b a 为ABC 的内心.证明:bc 、分别为方向上的单位向量,bc平分BAC , (AO bc),令c b a bcc b a bc (bACc AB) 化简得0)( AC c AB b OA c b a0 OC c OB b OA a(4O 为ABC 的外心。
专题08 三角形”四心“向量形式的充要条件(教师版)-2024年高考二级结论速解技巧

OCA 的面积分别记作 Sc , Sa , Sb ,则有关系式 Sa ⋅OA + Sb ⋅OB + Sc ⋅OC = 0 .因图形和奔驰车的 logo 很相
似,常把上述结论称为“奔驰定理”.已知 ABC 的内角 A,B,C 的对边分别为 a,b,c,若满足
1 2
a
⋅
h2
,
S
OA=C
1 2
b
⋅
h3
,
S
OA=B
1 2
c
⋅
h1
,
因为
S△OBC
⋅
OA
+
S△OAC
⋅
OB
+
S△OAB
⋅
OC
= 0 ,则
1 2
a
⋅
h2
⋅
OA
+
1 2
b
⋅
h3
⋅
OB
+
1 2
c
⋅
h3
⋅
OC =0
,即
a ⋅ h2 ⋅ OA + b ⋅ h3 ⋅ OB + c ⋅ h1 ⋅ OC =0 ,又因为 a ⋅ OA + b ⋅ OB + c ⋅ OC =0 ,所以 h=1 h=2 h3 ,所以点 P 是△ABC 的内
内的一点,∠BAC,∠ABC,∠ACB 分别是的△ABC 三个内角,以下命题正确的有( )
A.若 OA + 2OB + 3OC = 0 ,则 SA : SB : SC = 1: 2 : 3
B.若 O=A
高中数学高考数学专题复习三角形四心的向量问题
三角形“四心”的相关向量问题一.知识梳理:四心的概念介绍:(1) 重心:中线的交点,重心将中线长度分成2:1; (2) 垂心:高线的交点,高线与对应边垂直;(3) 内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等; (4) 外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。
● 与“重心”有关的向量问题【命题1】 已知G 是ABC △所在平面上的一点,若0GA GB GC ++=,则G 是ABC △的重心.如图⑴.A'A【命题2】已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心.【解析】由题意()AP AB AC λ=+,当(0)λ∈+∞,时,由于()AB AC λ+表示BC 边上的中线所在直线的向量,所以动点P 的轨迹一定通过ABC △的重心,如图⑵.● 与“垂心”有关的向量问题【命题3】P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的垂心.【解析】由PA PB PB PC ⋅=⋅,得()0P B P A P C ⋅-=,即0P B C A ⋅=,所以PB CA ⊥.同图⑴图⑵理可证PC AB ⊥,PA BC ⊥.∴P 是ABC △的垂心.如图⑶.【命题4】已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的垂心.【解析】由题意cos cos AB AC AP AB B AC C λ⎛⎫⎪=+ ⎪⎝⎭, 由于0cos cos AB AC BC AB B AC C ⎛⎫⎪+⋅= ⎪⎝⎭, 即0cos cos AB BC AC BC BC CB AB BAC C⋅⋅+=-=,所以AP 表示垂直于BC 的向量,即P 点在过点A 且垂直于BC 的直线上,所以动点P 的轨迹一定通过ABC △的垂心,如图⑷.【命题5】若H 为ABC △所在平面内一点,且222222HA BC HB CA HC AB +=+=+ 则点H 是ABC △的垂心 证明:2222HA HB CA BC -=-()()HA HB BA CA CB BA ∴+∙=+∙得()0HA HB CA CB BA +--∙= 即()0HC HC BA +∙= AB HC ∴⊥图⑶ 图⑷A同理,AC HB BC HA ⊥⊥, 故H 是△ABC 的垂心 与“内心”有关的向量问题【命题6】已知I 为ABC △所在平面上的一点,且AB c =,AC b =,BC a = .若0aIA bIB cIC ++=,则I 是ABC △的内心.【解析】∵IB IA AB =+,IC IA AC =+,则由题意得()0a b c IA bAB c AC ++++=,∵AB AC bAB cAC AC AB AB AC AC AB AB AC ⎛⎫⎪+=⋅+⋅=⋅⋅+ ⎪⎝⎭, ∴bc AB AC AI a b c AB AC ⎛⎫ ⎪=+ ⎪++⎝⎭.∵AB AB 与AC AC 分别为AB 和AC 方向上的单位向量,∴AI 与BAC ∠平分线共线,即AI 平分BAC ∠.同理可证:BI 平分ABC ∠,CI 平分ACB ∠.从而I 是ABC △的内心,如图⑸.【命题7】已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC λ⎛⎫ ⎪=++ ⎪ ⎪⎝⎭uu u r uuu r uu u r uu r uu u r uuu r ,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的内心. 【解析】由题意得AB AC AP AB AC λ⎛⎫⎪=+ ⎪⎝⎭,∴当(0)λ∈+∞,时,AP 表示BAC ∠的平分图⑸图⑹B。
高三数学-专题复习-向量专题(1)向量与三角形四心内心、外心、重心、垂心(附向量知识点)
高三数学-三角形四心与向量关系-内心、外心、重心、垂心(附向量知识点)「、三角形四心知识点(1) 重心——中线的交点:重心将中线长度分成2 : 1 ;(2) 垂心一一高线的交点:高线与对应边垂直;(3) 内心一一角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4) 外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
二、向量知识点☆零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行☆单位向量:模为1个单位长度的向量向量a0为单位向量I a0|= 1.☆平行向量(共线向量):方向相同或相反的非零向量平行向量也称为共线向量一uuu UULT uuur☆向量加法AB BC = AC向量加法有“三角形法则”与“平行四边形法则”:uuu uur uuur uuu uuu uuuAB BC CD L PQ QR AR,但这时必须“首尾相连”.☆实数与向量的积:①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下:(I) a a ;(U)当0时,入a的方向与a的方向相同;当0时,入a的方向与a的方向相反;当0时,a 0,方向是任意的☆两个向量共线定理:向量b与非零向量a共线有且只有一个实数,使得b = a☆平面向量的基本定理:如果0(2是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数i , 2使:a 心 2e 2,其中不共线的向量©(2叫做表示这一平面内所有向量的一组 基底☆平面向量的坐标运算:uuu⑵若 A X i , y i , B X 2, y 2,则 AB x ? X i , y 2 y i⑶若a :=(x,y), 则 a =( x, y)⑷若a 冷% r ,b r r x 2, y 2,贝U a//b x 』2 X2% 0⑸若a冷% r ,br rx 2, y 2,贝U a b ,X iX 2y i y 2☆向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和 性质☆两个向量的数量积:rr r已知两个非零向量a 与b ,它们的夹角为,则a • b = I a 丨・丨b 丨cos叫做a 与b 的数量积(或内积)规定o$ 0rr☆数量积的几何意义:a • b 等于a 的长度与b 在a 方向上的投影的乘积ra若r br by2y1卷X1yy y1X1r bra☆向量的投影:I cos€R ,称为向量b 在a 方向上的投影 投影的绝对值称为射影☆向量的模与平方的关系: r r r 2 r 2 a a a | a |☆乘法公式成立: a br 2 r r r a 2a bb☆向量的夹角:已知两个非零向量 a 与b , uun r uuu r作O A = a , O B = b ,贝AOB=(0°1800 )叫做向量a 与b 的夹角y2卷r r 2 r 2 r r r 2 a b a 2a b br r c r r c r当且仅当两个非零向量a 与b 同方向时,B =0°,当且仅当a 与b 反方向时9 =180 0,同时0与其 它任何非零向量之间不谈夹角这一问题 补充: 线段的定比分点x i x 2X i,p 为P i P 2中点时, y i y 21y设 P X i ,y i ,P 2 X 2,y 2,分点 Px , y ,设R 、P 2是直线I 上两点,P 点在I 上且不同于R 、 P 2,若存在一实数,使 P i PPP 2,则叫做P 分有向线段RP 2所成的比(0,P 在线段P 1P 2内,0,P 在RP 2外),且 如: ABC ,A X i ,y i ,B X 2,y ?C X 3,y 3则ABC 重心G 的坐标是X i X 2 X 3y i y 2 y 33cos = cosrarb 9. rax 1 x 2 2 y i y 2 2—b 2 y2三角形四心与向量关系典型例题: 例1 : O是平面上一定点,A、B、C是平面上不共线的三个点,动点分析:如图所示ABC , D、E分别为边BC、AC的中点.AB AC 2AD OP OA 2 ADOP OA AP AP 2 AD AP〃AD点P的轨迹一定通过ABC的重心,即选C .AB AC平分BAC ,AB AC 满足OP OA (AB AC),0, ,则点P的轨迹一定通过ABC的(A .外心B .内心C .重心D .垂心OP 例2 : O是平面上一定点,A、B、C是平面上不共线的三个点,OA(AB AC、AC),0, ,则点P的轨迹一定通过ABC的(B动点满足A .外心B .内心C .重心D .垂心分析:ABMAC分别为AB、AC方向上的单位向量,ACOP点P的轨迹一定通过ABC的内心,即选例3: O是平面上一定点,OA (AB ACB.AB cosB),AC cosCA、B、0,是平面上不共线的三个点, 动点,则点P的轨迹一定通过ABC的(满足A .外心B .内心C .重心D .垂心分析:如图所示AD垂直BC , BE 垂直AC ,D、E是垂足.AB ACAB cosB)BCAC cosCB D=AB BC AC BCAB cosB AC cosC三、四心与向量的结合证法 1:设 O(x, y), A(x 「yj B (X 2, y 2),C(X 3, y 3)证法2 :如图AO 2ODO 是ABC 的重心(2)OA OB OB OC OC OA O 为 ABC 的垂心. 证明:如图所示O 是三角形ABC 的垂心, BE 垂直 AC ,AD 垂直BC E 是垂足.OA OB OB OC OB(OA OC) OB CA 0 OB AC 同理OA BC ,OC AB O 为 ABC 的垂心 (3)设a,b ,c 是三角形的三条边长,0是 ABC 的内心 AC BC cosC| AC | cosC点P 的轨迹一定通过 ABC 的垂心,即选D .(1 ) OA OB OCO 是ABC 的重心.OA OB OC 0(X i x) (y i y)(X 2 x) (X 3 x) 0 y) (y 3y) 0(y 2X i X 2 X 33 % y 2 y 33O 是ABC 的重心.OA OB OC OA2ODA 、0、D 三点共线, 且O 分AD 为2 :AB BC cosBBC + BC =0aOA bOB cOC 0 O 为 ABC 的内心.证明: AB 、、AC 分别为ABAC 方向上的单位向量,c b aOA bOB cOC 0(4) OA OB OC O 为 ABC 的外心。
三角形”四心”的向量表示汇总
文_
教育教学
46三角形的重心,外心,内心,垂心这四心与
向量之间有着密切的联系。
下面对三角形四心的向
量表示进行总结并证明。
一、三角形重心的向量表示
点P 为△ABC 的重心
⇔(D 为BC 中
点)
⇔
证明:
D 为BC 中点
P 为△ABC
的重心
注:点P 为△ABC
的重心的
另一种证法:
“充分性”:已知点P 为△ABC 的重心
以PB,PC 为邻边作平行四边形PBEC,对角线PE 交BC 于D ∵平行四边形PBEC 对角线互相平分∴∵点P 为△ABC
的重心“必要性”:反之亦成立∴点P 为△ABC 的重心二、三角形外心的向量表示1.点P 为△ABC 的外心.2.点O 为△ABC
的外心 证明:设D 为AB 中点,E 为BC 中点,F 为AC 中点O 是△ABC
的外心同理,三、三角形内心的向量表示1.若,则点P 的轨迹经过△ABC 的内心。
证明:∵,分别为,方向上的单位向量∴点P 在∠BAC 的角平分线上∴点P 的轨迹经过△ABC 的内心2.
若,则O 为△ABC 的内心。
证明: 设则E 在∠BAC 的外角平分线上∴O 在∠BAC 的角平分线上同理O 在∠ABC 的角平分线上, 也在∠ACB 的角平分线上(作者单位:四川省雅安市雅安中学)参考文献[1]王波《也谈三角形四心的统一表达形式》数学通讯.2010年第8期三角形”四心”的向量表示汇总
陆竞怡。
高中数学平面向量与三角形的“四心”
培优专题1 平面向量与三角形的“四心”三角形的内心、外心、垂心与重心问题,尤其是与平面向量相结合后,学生考查时感觉比较棘手,错误率较高,甚至无从下手。
因此,本讲将对与“四心”有关的知识进行总结归纳,借助典型例题说明解题要领。
知识点1 三角形的内心1、内心的定义:三个内角的角平分线的交点(或内切圆的圆心).如图,点P注:角平分线上的任意点到角两边的距离相等 2、常见内心的向量表示:(1)||||||0AB PC BC PA CA PB ++=(或0aPA bPB cPC ++=)其中,,a b c 分别是ABC ∆的三边AC AB BC 、、的长 (2)(),(0,)||||AB ACAP AB AC λλ=+∈+∞,则P 点的轨迹一定经过三角形的内心 (注:向量()AB AC ABACλ+(0λ≠)所在直线过ABC ∆内心(是BAC ∠角平分线所在直线))3、破解内心问题,主要是利用了平面向量的共线法,通过构造与角平分线共线的向量,即两个单位向量的和向量。
拓展:是平面上一定点,,,是平面上不共线的三个点,动点满足,证明的轨迹一定通过的内心. 【解析】证明:、分别表示与、方向相同的单位向量, 的方向与的角平分线方向一致; 又,; 的方向与的角平分线方向一致, 点的轨迹一定通过的内心.知识点2 三角形的外心1、外心的定义:三角形三边的垂直平分线的交点(或外接圆的圆心)注:外心到三角形各顶点的距离相等. 2、常用外心的向量表示:(1)222||||||OA OB OC OA OB OC ==⇔==(2)()()()0OA OB AB OB OC BC OA OC AC +⋅=+⋅=+⋅= 变形:P 为平面ABC 内一动点,若()()()()()()0OA OB PB PA OB OC PC PB OA OC PC PA +⋅−=+⋅−=+⋅−=,则O 为三角形的外心3、破解外心问题,关键是运用平面向量的加减法和数量积的运算,结合数量积的运算律从而得到三角形的外心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形四心及向量复习
三角形的四心
三角形的重心是三角形三条中线的交点(一般G 表示)。
三角形的重心的性质
☆1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
☆4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为
((X1+X2+X3)/3,(Y1+Y2+Y3)/3);[空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3 ]
5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。
6.重心是三角形内到三边距离之积最大的点。
☆7. P 为△ABC 所在平面上任意一点,点G 是△ABC 重心的充要条件是:
()3PA PB PC PG ++=
☆8.0GA GB GC G ABC ++=⇔ 是的重心
三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心)(一般O 表示) 。
三角形的外心的性质
1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.
2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。
3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合.
4.OA=OB=OC=R ,(O A O B O C O ABC ==⇔ 是的外心)
5.∠BOC=2∠BAC ,∠AOB=2∠ACB ,∠COA=2∠CBA
☆6.S △ABC =abc/4R
7. ()()()O A O B BA O B O C C B O C O A AC O ABC +⋅=+⋅=+⋅⇔ 为的外心
三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)(一般I 表示). 三角形的内心的性质
1.三角形的三条角平分线交于一点,该点即为三角形的内心
2.三角形的内心到三边的距离相等,都等于内切圆半径r
☆3.r=2S △ABC /(a+b+c), S △ABC =[(a+b+c)r]/2 (r 是内切圆半径)
4.在Rt △ABC 中,∠C=90°,r=(a+b-c)/2.
5.∠BIC = 90 °+∠A/2 ∠BIA = 90 °+∠C/2 ∠AIC = 90 °+∠B/2
☆6. P 为△ABC 所在平面上任意一点,点I 是△ABC 内心的充要条件是:
()()PI a PA b PB c PC a b c =++++ .
☆7. 0a IA b IB c IC I ABC ++=⇔ 是的内心,也可以写成
0A B A C B A B C C A C B IA IB IC I A B C A B A C B A B C C A C B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⋅-=⋅-=⋅-=⇔ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
是的内心. 8. (欧拉定理)⊿ABC 中,R 和r 分别为外接圆为和内切圆的半径,O 和I 分别为其外心和内心,则222OI R Rr =-.
9. (内角平分线分三边长度关系)△ABC 中,∠A 、∠B 、 ∠C 的内角平分线分别交BC 、AC 、AB 于Q 、P 、R , 则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.
10. I 为三角形的内心,A 、B 、C 分别为三角形的三个顶点,延长AI 交BC 边于N ,则有AI:IN=AB:BN=AC:CN=(AB+AC):BC
11. △ABC ,其内切圆与BC,CA,AB 分别切于D,E,F 三点,则有
AE=AF,BF=BD,CD=CE;AE+BF+CD=三角形周长的一半 ☆12.()()0||||
AB AC AP AB AC λλ=+≠ ,则动点P 必过△ABC 的内心 ()1212()=()0||||||||
AB AC BA BC O I O A O B O AB AC BA BC λλλλ=++++> 为任意一定点,、,则I 为△ABC 的内心
三角形的垂心是三角形三边上的高的交点(通常用H 表示)。
三角形的垂心的性质
1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外
2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心
3.垂心H 关于三边的对称点,均在△ABC 的外接圆上
4.△ABC 中,有六组四点共圆(三个顶点、三个垂足、垂心),有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF
5. H 、A 、B 、C 四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为垂心组)。
6.△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆。
7.在非直角三角形中,过H 的直线交AB 、AC 所在直线分别于P 、Q ,则 AB/AP·tanB+ AC/AQ·tanC=tanA+tanB+tanC
8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。
9.设O ,H 分别为△ABC 的外心和垂心,则∠BAO=∠HAC ,∠ABH=∠OBC ,∠BCO=∠HCA 。
10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。
12.三角形外心O 、重心G 和垂心H 三点共线,且OG:GH=1:2,此直线称为三角形的欧拉线。
其向量式13
O G O H =
☆13. ==HA HC HA HB HB HC H ABC ⋅⋅⋅⇔ 是的垂心 ☆14.222222
HA BC HB CA HC AB H ABC +=+=+⇔ 为的垂心,向量式一样成立 ☆15. 设△ABC 的外心为O ,则点H 为△ABC 的垂心的充要条件是OC OB OA OH ++=
三角形的旁心指三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心。
三角形的旁心的性质:
1.三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。
2.每个三角形都有三个旁心,旁心到三边的距离相等。
特例:
1.等腰直角三角形ABC ,()00A ,
,()01B ,,()10C ,
垂心()00H ,,重心2233G ⎛⎫ ⎪⎝⎭,,内心1122I ⎛-- ⎝⎭,外心1122O ⎛⎫ ⎪⎝⎭,
2.等边三角形⇔重心、内心、外心、垂心重合(此时成为中心) 等边三角形内切圆半径
r =,外接圆半径R =
三角形面积公式: 1.12a S ah =
2.S =☆
3.1
2sin S ab C =
☆4.()1
24abc S r a b c R ==++ ,r 、R 为△ABC 内切圆、外接圆半径
向量复习:
1.定比分点公式:()111,P x y ,()222,P x y ,点(),P x y ,其中12(1)P P PP λλ=≠- ,则有
12
12
11x x y y x y λλλλ++==++,
2.向量共线:()11=,a x y ,()22=,b x y
⑴向量a 、b (0b ≠ )共线⇔()R a b λλλ∃∈= ,使此时取值唯一
⑵向量a 、b 共线⇔22,+R a b λμλμλμ∃∈≠= 且0,使 ⑶向量a 、b 共线⇔1221x y x y =
3.向量垂直:()11=,a x y ,()22=,b x y
向量a b ⊥ ⇔12120x x y y +=,一般取0,0a b ≠≠
4.向量的平方的活用 AB AB = 、()()2
22AB AB PB PA P ==- 为任意一点 5.向量与几何结合。