数学动点问题及练习题附参考答案

合集下载

(完整版)初一上学期动点问题(含答案)

(完整版)初一上学期动点问题(含答案)

初一上学期动点问题练习1。

如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。

已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。

动点问题(习题及答案)

动点问题(习题及答案)

动点问题(习题)例题示范例1:如图,在梯形ABCD 中,AD∥BC,∠C=90°,AD=3 cm,DC=15 cm,BC=24 cm.点P 从A 点出发,沿A→D→C 的方向以 1 cm/s 的速度匀速运动,同时点Q 从C 点出发,沿C→B 的方向以 2 cm/s 的速度匀速运动.当其中一点到达终点时,另一点也随之停止运动.(1)连接AP,AQ,PQ,设△APQ 的面积为S(cm2),点P运动的时间为t(s),求S 与t 之间的函数关系式.(2)当t 为何值时,△APQ 的面积最大?最大值是多少?(3)△APQ 能成为直角三角形吗?如果能,直接写出t 的值;如果不能,请说明理由.林老师编辑整理林老师编辑整理【思路分析】① 研究基本图形,标注信息.315BQ C24② 分析运动状态,分段、定范围.△APQ 的面积 S(1/s) P : A 3 sD(2/s) Q : C C 12 s B总时间:0≤t ≤12,分为两段:0≤t ≤3,3<t ≤12.③ 分析几何特征,表达,设计方案求解.第 1 问,结合分段,画出对应的图形后,表达对应图形的底和高,根据公式建等式.(当 t =0 时,三角形不存在;所以 t ≠0)第 2 问,借助第 1 问的面积表达式来求解.第 3 问,由于直角所在角不确定,分类后,画出对应图形,表达,分析不变特征,设计方案求解.林老师编辑整理⎨ ⎪【过程示范】解:(1)当 0<t ≤3 时,S 1t 1515t 2 2当 3<t ≤12 时,B Q CS 115(3 2t ) 1 3(t 3)1 2t (18 t )2 2 2 t 2 9t 272 15t (0 t ≤ 3)综上: S 29t 2t27 2 (3 ≤ t ≤12)(2)当 0<t ≤3 时,S 15t,为一次函数,2林老师编辑整理林老师编辑整理∵k = 15 >0,S 随 t 的增大而增大, 2 ∴当 t =3 时,S 最大,为 45 . 2当 3<t ≤12 时,林老师编辑整理S t 2 9 t 27 ,为二次函数, 2∵a =1>0,∴图象开口向上,又∵ b2 a 9 ,3<t ≤12, 4∴当 t =12 时,S 最大,为 117.综上:当 t =12 时,S 最大,最大值为 117 cm 2.(3)0<t ≤3①当∠APQ =90°时,A P此时,AP =EQ ,即 t =3-2t ,∴t =1.②当∠PAQ =90°时,A P 此时,CQ =AD ,即 2t =3,∴ t 3 . 23<t≤12①当∠APQ=90°时,B QC 易证∠APD=∠PQC,∴△APD∽△PQC,∴t=6 或t=9.②当∠PAQ=90°时,B Q EC 易证∠PAD=∠QAE,∴△PAD∽△QAE,林老师编辑整理林老师编辑整理林老师编辑整理巩固练习1. 如图,在 Rt △ABC 中,∠B =90°,BC = 5 ,∠C =30°.点 D从点 C 出发,沿 CA 方向以每秒 2 个单位长度的速度向点 A 匀速运动,同时点 E 从点 A 出发,沿 AB 方向以每秒 1 个单位长度的速度向点 B 匀速运动,当其中一个点到达终点时, 另一个点也随之停止运动.设点 D ,E 运动的时间为 t 秒(t>0),过点 D 作 DF ⊥BC 于点 F ,连接 DE ,EF .(1)求证:AE =DF .(2)四边形 AEFD 能成为菱形吗?如果能,求出相应的 t 值; 如果不能,请说明理由.(3)当 t 为何值时,△DEF 为直角三角形?请说明理由.ABF CABCA3林老师编辑整理B C 林老师编辑整理林老师编辑整理林老师编辑整理Q PDD2.如图,在Rt△ABC 中,∠A=90°,AB=6,AC=8,D,E 分别为边AC,BC 的中点.点P 从点A 出发,沿折线AD DE EB 以每秒 3 个单位长度的速度向点B 匀速运动;点Q 也从点A 出发,沿射线AB 以每秒 2 个单位长度的速度运动,当点P 到达点B 时,P,Q 两点同时停止运动.设点P,Q 运动的时间为t 秒(t>0).(1)当点P 到达点B 时,求t 的值.(2)设△BPQ 的面积为S,当点Q 在线段AB 上运动时,求出S 与t 之间的函数关系式.(3)是否存在t 值,使PQ∥DB?若存在,求出t 的值;若不存在,请说明理由.AB E CAB E CADB EC 林老师编辑整理3.如图,在直角梯形ABCD 中,AD∥BC,∠B=90°,AD=6 cm,AB=8 cm,BC=14 cm.动点P,Q 都从点C 出发,点P 沿C→B 的方向做匀速运动,点Q 沿C→D→A 的方向做匀速运动,当其中一点到达终点时,另一点也随之停止运动.(1)求CD 的长;(2)若点P 以 1 cm/s 的速度运动,点Q 以2 2 cm/s 的速度运动,连接BQ,PQ,设△B QP的面积为S(cm2),点P,Q运动的时间为t (s),求S 与t 之间的函数关系式,并写出t的取值范围;(3)若点P 的速度仍是 1 cm/s,点Q 的速度为a cm/s,要使在运动过程中出现PQ∥DC,请直接写出a 的取值范围.A DQB P CA DB CA DB C林老师编辑整理思考小结表达线段长是动点问题解题过程中重要环节之一.表达线段长时思考方向如下:①利用s=vt,用动点走过的路程来表达;②利用动点所走路程和线段长组合,来表达新线段长;③和角度结合在一起,利用相似或三角函数来表达.林老师编辑整理【参考答案】林老师编辑整理。

初一数学动点问题20题及答案

初一数学动点问题20题及答案

初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。

(中考数学)动点问题专题训练(含答案)

(中考数学)动点问题专题训练(含答案)

中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。

数学动点问题习题及答案

数学动点问题习题及答案

1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?2.(09河南))如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.3.如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。

⑴求抛物线的解析式;(用顶点式求得抛物线的解析式为xx 41y 2+-=)⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。

AQCDB POE CBDAαlOCBA(备用图)4. 2008浙江温州)如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有 满足要求的x 的值;若不存在,请说明理由.5、如图过A(8,0),B(0,38)两点的直线与直线x y 3=交于C点。

简单动点问题专题训练(附答案)

简单动点问题专题训练(附答案)

动点问题专题训练1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒,∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点,∴5BD =厘米.又∵8PC BC BP BC =-=,厘米,∴835PC =-=厘米,∴PC BD =.又∵AB AC =,∴B C ∠=∠, ∴BPD CQP △≌△. ····················· (4分)②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t ===厘米/秒. ················· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.·········(12分)2.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.3.(09济南)如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形 ∴3KH AD ==. ······················ 1分在Rt ABK △中,sin 454AK AB =︒== 2cos 454242BK AB =︒==················ 2分在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ············· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥∴MN DG ∥∴3BG AD ==∴1037GC =-= ····················· 4分由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,.∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△ ∴CNCMCD CG = ······················ 5分即10257t t-=解得,5017t = ······················ 6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t = ························ 7分(图①) A D C B KH (图②)A DCB G M N②当MN NC =时,如图④,过N 作NE MC ⊥于E解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535tt -=解得258t = ······················· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠,∴NEC DHC △∽△∴NC ECDC HC =即553t t-=∴258t = ························ 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025t FC C MC t ===-解得6017t = 解法二: ∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC =即1102235tt-=A DC B M N(图③) (图④)A DCB M NH E(图⑤)A DCBH NM F∴6017 t=综上所述,当103t=、258t=或6017t=时,MNC△为等腰三角形·9分4..如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AO M=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用。

数学动点问题练习(含答案)

数学动点问题练习(含答案)

动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。

当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(备用图)CEDNM CDMCEM(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE (3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME .BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.ADF CGB图1A DFADFC GE B 图2ADFC GB M ADFNDAE BEA∴∠=∠.NAE CEF∴∠=∠.ANE ECF∴△≌△(ASA).AE EF∴=.6、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△PAB为等腰三角形的t值;(2)△PAB为直角三角形的t值;(3)若AB=5且∠ABM=45 °,其他条件不变,直接写出△PAB为直角三角形的t值7、如图1,在等腰梯形ABCD中,AD BC∥,E是AB的中点,过点E作EF BC∥交CD于点F.46AB BC==,,60B=︒∠.求:(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM EF⊥交BC于点M,过M作MN AB∥交折线ADC 于点N,连结PN,设EP x=.①当点N在线段AD上时(如图2),P M N△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由A DEBFCA DEBFCA DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)解(1)如图1,过点E 作EG BC ⊥于点G . ∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG △中,60B =︒∠, ∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,, ∴PM EG ∥.∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=. 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG图1 A D E BF CG图2A D E BFCPNMG H当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=. 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。

数轴上的动点问题71题(含答案)

数轴上的动点问题71题(含答案)

数轴上的动点问题73题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则这条数轴的原点在()A.在点A,B之间B.在点B,C之间C.在点C,D之间D.在点D,E 之间2.下列说法正确的是A.在数轴上与原点的距离越远的点表示的数越大B.在数轴上-9与-7之间的有理数为-8C.任何一个有理数都可以在数轴上表示出来D.比-1大6的数是73.如图所示,圆的周长为4个单位长度.在圆的4等分点处标上0,1,2,3,先让圆周上的0对应的数与数轴的数﹣1所对应的点重合,再让数轴按逆时针方向绕在该圆上.那么数轴上的﹣2007将与圆周上的数字()重合.A.0 B.1 C.2 D.34.如图,数轴上点A,B表示的数分别为−40,50.现有一动点P以2个单位每秒的速度从点A向B运动,另一动点Q以3个单位每秒的速度从点B向A运动.当AQ=3PQ时,运动的时间为 ( )A.15秒B.20秒C.15秒或25秒D.15秒或20秒二、解答题5.如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.(1)写出数轴上点A、C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN=2CQ.设运动的时间为t(t>0)秒.3①数轴上点M、N表示的数分别是(用含t的式子表示);②t为何值时,M、N两点到原点的距离相等?6.阅读思考我们知道,在数轴上|a|表示数a所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q两点表示的数分别是﹣1和2,那么P,Q两点之间的距离就是PQ=2﹣(﹣1)=3.启发应用如图,点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0 (1)求线段AB的长;x﹣8的解,(2)如图,点C在数轴上对应的数为x,且x是方程2x+1=12①求线段BC的长;②在数轴上是否存在点P使PA+PB=BC?若存在,直接写出点P对应的数:若不存在,说明理由.7.如图,在数轴上有A、B、C、D四个点,且线段AB=4,CD=6,已知A表示的数是﹣10,C表示的数是8,若线段AB以每秒6个单位长度的速度,线段CD以每秒2个单位长度的速度在数轴上运动(A在B左侧,C在D左侧)(1)B,D两点所表示的数分别是、;(2)若线段AB向右运动,同时线段CD向左运动,经过多少秒时,BC=2;(3)若线段AB、CD同时向右运动,同时点P从原点出发以每秒1个单位长度的速度向右运动,经过多少秒时,点P到点A,C的距离相等?8.已知a、b满足(a−2)2+|ab+6|=0,c=2a+3b,且有理数a、b、c在数轴上对应的点分别为A、B、C.(1)则a=______,b=______,c=______.(2)点D是数轴上A点右侧一动点,点E、点F分别为CD、AD中点,当点D运动时,线段EF的长度是否发生变化,若变化,请说明理由,若不变,请求出其值;(3)若点A、B、C在数轴上运动,其中点C以每秒1个单位的速度向左运动,同时点A 和点B分别以每秒3个单位和每秒2个单位的速度向右运动.请问:是否存在一个常数m 使得m⋅AB−2BC不随运动时间t的改变而改变.若存在,请求出m和这个不变化的值;若不存在,请说明理由.9.如图,在数轴上有三个点A、B、C,请回答下列问题.(1)A、B、C三点分别表示什么数?它们到原点的距离分别是多少?(2)将点B向左移动3个单位长度后,三个点所表示的数中最小的数是多少?(3)将点A向右移动4个单位长度后,三个点所表示的数中最小的数是多少?(4)要怎样移动A、B、C三点中的两个点,才能使三个点表示的数相同?移动方法唯一吗?若不是,请任意选择一种回答,10.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.11.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m到达玩具店,再走﹣75m到达花店,又继续走了﹣50m到达文具店,最后走了25m到达公交车站牌.(1)书店距花店有多远?(2)公交车站牌在书店的什么位置?(3)若王老师在四个店各逗留10min,他的步行速度大约是每分钟26m,王老师从书店购书一直到公交车站一共用了多少时间?12.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m到达玩具店,再走﹣65m到达花店,又继续走了﹣70m到达文具店,最后走了10m到达公交车站.(1)书店距花店有多远?(2)公交车站在书店的什么位置?(3)若小明在四个店各逗留10min,他的步行速度大约是每分钟35m,小明从书店购书一直到公交车站一共用了多少时间?13.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm,木棒的左端点与数轴上的点A重合,右端点与点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A表示的数是________,点B表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.14.如图,数轴上有三个点A,B,C,请回答下列问题:(1)将点C向左移动6个单位长度后,这时点B所表示的数比点C所表示的数大多少?(2)怎样移动A,B,C中的两个点,才能使这三个点表示相同的数?有几种移法?15.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个单位长度的速度向右运动,试求几秒后点A与点C距离为12个单位长度?16.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?17.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.18.如图,已知数轴上点A,B是数轴上的一点,AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数为,经t秒后点P走过的路程为(用含t的式子表示);(2)若在动点P运动的同时另一动点Q从点B也出发,并以每秒4个单位长度的速度沿数轴向左匀速运动,问经多少时间点P就能追上点Q?(3)若M为AP的中点,N为BP的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.19.A,B两点在数轴上的位置如图所示,其中O为原点,点A对应的有理数为﹣4,点B对应的有理数为6.(1)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t>0).①当t=1时,AP的长为,点P表示的有理数为;②当PB=2时,求t的值;(2)如果动点P以每秒6个单位长度的速度从O点向右运动,点A和B分别以每秒1个单位长度和每秒3个单位长度的速度向右运动,且三点同时出发,那么经过几秒PA=2PB.20.如图,在数轴上点A表示数a,点B表示数b,点C表示数c.b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0(1)填空:a= ,b= .(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B 与C之间的距离表示为BC.则BC= .(用含t的代数式表示)(3)请问:|2AB﹣3BC|的值是否随着时间t的变化而改变?若改变,请说明理由;若不变,请求其值.21.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac 的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是.22.已知,A,B在数轴上对应的数分别用a,b表示,且(12ab+100)2+|a﹣20|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合?23.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣4,点C在数轴上表示的数是4,若线段AB以3个单位长度/秒的速度向右匀速运动,同时线段CD以1个单位长度/秒的速度向左匀速运动.(1)问运动多少秒时BC=2(单位长度)?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上,且点P不在线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.24.已知数轴上A ,B 两点对应的数分别为a ,b ,且a ,b 满足|a+20|=﹣(b ﹣13)2,点C 对应的数为16,点D 对应的数为﹣13. (1)求a ,b 的值;(2)点A ,B 沿数轴同时出发相向匀速运动,点A 的速度为6个单位/秒,点B 的速度为2个单位/秒,若t 秒时点A 到原点的距离和点B 到原点的距离相等,求t 的值; (3)在(2)的条件下,点A ,B 从起始位置同时出发.当A 点运动到点C 时,迅速以原来的速度返回,到达出发点后,又折返向点C 运动.B 点运动至D 点后停止运动,当B 停止运动时点A 也停止运动.求在此过程中,A ,B 两点同时到达的点在数轴上对应的数.25.(1)在如图所示的数轴上,把数﹣2,13,4,﹣12,2.5表示出来,并用“<“将它们连接起来;(2)假如在原点处放立一挡板(厚度不计),有甲、乙两个小球(忽略球的大小,可看作一点),小球甲从表示数﹣2的点处出发,以1个单位长度/秒的速度沿数轴向左运动;同时小球乙从表示数4的点处出发,以2个单位长度/秒的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t (秒). 请从A ,B 两题中任选一题作答.A .当t=3时,求甲、乙两小球之间的距离.B .用含t 的代数式表示甲、乙两小球之间的距离.26.如图,己知数轴上点A表示的数为8, B是数轴上—点(B在A点左边),且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数;(2)点P所表示的数;(用含t的代数式表示);(3)C是AP的中点,D是PB的中点,点P在运动的过程中,线段CD的长度是否发生化?若变化,说明理由,若不变,请你画出图形,并求出线段CD的长.27.已知A、B是数轴上的两个点,点A表示的数为13,点B表示的数为-5,动点P 从点B出发,以每秒4个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)BP= ,点P表示的数(分别用含t的代数式表示);(2)点P运动多少秒时,PB=2PA?(3)若M为BP的中点,N为PA的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.28.点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则点A表示的数是;(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|= ;(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点P、Q之间的距离;②设运动时间为t(单位:秒),则t为何值时,PQ=5?29.A、B、C为数轴上的三点,动点A、B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.(1)若2秒后,a、b满足|a+8|+(b﹣2)2=0,则x=,y=,并请在数轴上标出A、B两点的位置.(2)若动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z=.(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t 秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B 之间的距离为AB,且AC+BC=1.5AB,则t=.30.如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).的值;②若点P为数轴上一点,且PA﹣PB=OP,求OPAB(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?31.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD 的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.32.已知多项式2x3y﹣xy+16的次数为a,常数项为b,a,b分别对应着数轴上的A、B 两点.(1)a= ,b= ;并在数轴上画出A、B两点;(2)若点P从点A出发,以每秒3个单位长度单位的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍;(3)数轴上还有一点C的坐标为30,若点P和Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P到达C点后,再立即以同样的速度返回,运动的终点A,求点P和点Q运动多少秒时,P,Q两点之间的距离为4,并求出此时点Q的坐标.33.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.34.如图,线段 AB=24,动点 P 从 A 出发,以每秒 2 个单位的速度沿射线 AB 运动,运动时间为 t 秒(t>0),M 为 AP 的中点. (1)当点 P 在线段 AB 上运动时,①当 t 为多少时,PB=2AM ?②求2BM-BP 的值.(2)当 P 在 AB 延长线上运动时,N 为 BP 的中点,说明线段 MN 的长度不变,并 求出其值.(3)在 P 点的运动过程中,是否存在这样的 t 的值,使 M 、N 、B 三点中的一个点 是以其余两点为端点的线段的中点,若有,请求出 t 的值;若没有,请说明理 由.35.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结 合.研究数轴我们发现了许多重要的规律:若数轴上点 A 、点 B 表示的数分别为 a 、b ,则A 、B 两点之间的距离 AB= a b -,线段 AB 的中点表示的数为2a b+ . 【问题情境】如图,数轴上点A 表示的数为-2,点B 表示的数为8,点P 从点 A 出发, 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒 2个单 位长度的速度向左匀速运动,设运动时间为t 秒(t >0). 【综合运用】(1) 填空:①A 、B 两点之间的距离AB=__________,线段AB 的中点表示的数为_______; ②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为_____. (2) 求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数; (3)求当t 为何值时,PQ=12AB ; (4)若点M 为PA 的中点,点N 为PB 的中点,点 P 在运动过程中,线段MN 的长度是否发 生变化?若变化,请说明理由;若不变,请求出线段MN 的长.36.如图,已知点A 、B 、C 是数轴上三点,点C 表示的数为9,BC=6,AB=18. (1)数轴上点A 表示的数为______;点B 表示的数为______.(2)若动点P 从A 出发沿数轴匀速向右运动,速度为每秒6个单位,M 为AP 中点,设运动时间为t (t>0)秒,则数轴上点M 表示的数为____________;(用含t 的式子表示) (3)若动点P 、Q 同时从A 、C 出发,分别以6个单位长度每秒和3个单位长度每秒的速度,沿数轴匀速向右运动.N 在线段PQ t (t>0)秒,则数轴上点N 表示的数为____________(用含t 的式子表示).37.如图,点A 、B 、C 是数轴上三点,点C 表示的数为6, 4BC =, 12AB =. (1)写出数轴上点A 、B 表示的数:__________,__________.(2)动点P , Q 同时从A , C 出发,点P 以每秒4个单位长度的速度沿数轴向右匀速运动,点Q 以2个单位长度的速度沿数向左匀速运动,设运动时间为(0)t t >秒. ①求数轴上点P , Q 表示的数(用含t 的式子表示); ②t 为何值时,点P , Q 相距6个单位长度.38.已知:b是最小的正整数,且a、b满足(1)请直接写出a、b、c的值:a=__________,b=__________,c=__________.(2)数轴上a,b,c所对应的点分别为A,B,C,点M是A,B之间的一个动点,其对应的数为m,请化简.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动....同时,点B和点C分别以每秒2个.单位长度和5个.单位长度t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B 的速度向右运动...,假设-的值是否随着时间t的变化而改变?若变化,之间的距离表示为AB.请问:BC AB请说明理由;若不变,请求其值.39.如图1,已知在数轴上有A、B两点,点A表示的数是6-,点B表示的数是9.点P在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为t秒.t=时,点Q表示的数是;当P、Q两点相(1)AB= ;1遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为________;点T表示的数为________ ;MT=_________ .(用含t的代数式填空)40.已知: a 是最大的负整数, b 是最小的正整数,且c a b =+,请回答下列问题: (1)请直接写出a , b , c 的值, a =__________; b =__________; c =__________.(2)a , b , c 在数轴上所对应的点分别为A , B , C ,请在数轴上表示A ,B ,C 三点.(3)在(2)的情况下,点A , B , C 开始在数轴上运动,若点A 、点C 都以每秒1个单位的速度向左运动,同时,点B 以每秒5个单位长度的速度向右运动,假设t 秒过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问AB BC -的值是否随着时间t 的变化而变化?若变化,请说明理由;若不变,请求出AB BC -的值.41.已知数轴上有两点A , B ,点A 对应的数是40,点B 对应的数是80-. (1)如图1,现有两动点P , Q 分别从B , A 出发同时向右运动,点P 的速度是点Q 的速度2倍少4个单位长度/秒,经过10秒,点P 追上点Q ,求动点Q 的速度.(2)如图2, O 表示原点,动点P , T 分别从B , O 两点同时出发向左运动,同时动点Q 从点A 出发向右运动,点P , T , Q 的速度分别为5个单位长度/秒、1个单位长度/秒、2个单位长度/秒;如果点M 为线段PT 的中点,点N 为线段OQ 的中点,试说明在运动过程中等量关系2PQ OT MN +=始终成立.42.如图,数轴上点A、B所表示的数分别是4,8,(1)请用尺规作图的方法确定原点O的位置(不写做法,保留作图痕迹)(2)已知动点M从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,同时点N从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.①运动1秒后,点M表示的数是_____,点N表示的数为______②运动t秒后,点M表示的数是_____,点N表示的数为______③若线段BN=2,求此时t的大小以及相应的M所表示的数.43.43.已知,A,B在数轴上对应的数分别用a,b表示,且(12ab+100)2+|a-20|=0, P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点M从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7 个单位长度,…,点M能移动到与A 或B重合的位置吗?若都不能,请直接回答,若能,请直接指出,第几次移动与哪一点重合.44.如图,O为原点,在数轴上点A表示的数为a,点B表示的数为b,且a,b满足|a+2|+(3a+b)2=0.(1)a=________,b=_________;(2)若点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(秒).①当点P运动到线段OB上,且PO=2PB时,求t的值;②先取OB的中点E,当点P在线段OE上时,再取AP的中点F,试探究AB OPEF的值是否为定值?若是,求出该值;若不是,请用含t的代数式表示.③若点P从点A出发,同时,另一动点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,到达点O后立即原速返回向右匀速运动,当PQ=1时,求t的值.45.如图,已知数轴上的点A表示的数为6,点B表示的数为-4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数为__________;(2)当点P运动到达点A处时运动时间t为秒__________;(3)运动过程中点P表示的数的表达式为_____________;(用含字母t的式子表示)(4)当t等于多少秒时,P、C之间的距离为2个单位长度.46.46.如图,已知数轴上点B 表示的为-5,点A 是数轴上一点,且AB=12,动点P 从点A 出发,以每秒1个单位长度的速度沿数轴向右匀速运动,动点H 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t (0t >)秒. (1)写出数轴上点A 表示的数 ;(2)当动点P ,H 同时从点A 和点B 出发,运动t 秒时,点P 表示的数 ;点H 表示的数 ;(用含t 的代数式表示) (3)动点P 、H 同时出发,问点H 运动多少秒时追上点P ?47..A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离的2倍,我们就称点C 是【A ,B 】的和谐点.例如:图1中,点A 表示的数为-1,点B 表示的数为2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学动点问题及练习题附参考答案
专题一:建立动点问题的函数解析式
函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重
要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件
地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动
点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考
试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立
函数解析式。

三、应用求图形面积的方法建立函数关系式。

专题二:动态几何型压轴题
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所
以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特
殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,
近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此
问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

(一)点动问题。

(二)线动问题。

(三)面动问题。

二、解决动态
几何问题的常见方法有:
2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;
研究特殊情况下的函数值。

专题三:双动点问题
点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图
形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.其中以灵活多变而著称的
双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读
者欣赏.1以双动点为载体,探求函数图象问题。

2以双动点为载体,探求
结论开放性问题。

3以双动点为载体,探求存在性问题。

4以双动点为载体,探求函数最值问题。

双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信
息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动
和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运
动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。

专题四:函数中因动点产生的相似三角形问题
专题五:以圆为载体的动点问题
动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,
题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的
有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。

例1.如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1
个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD
方向以每秒2个单位长的速度移动,当B,E,F三点共线时,两点同时停
止运动.设点E移动的时间为t(秒).(1)求当t为何值时,两点同
时停止运动;
(2)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写
出t的取值范围;(3)求当t为何值时,以E,F,C三点为顶点的三角
形是等腰三角形;(4)求当t为何值时,∠BEC=∠BFC.
A
EODF
B
C
例2.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,BC
上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;
当M点在
(2)设BM某,梯形ABCN的面积为y,求y与某之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时某的值.
AD
N
BM
C
例3.如图,在梯形ABCD中,AD∥BC,AD3,DC5,AB42,∠B动
45.点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运
动.设运动的时间为t秒.(09年济南中考)(1)求BC的长。

AD(2)当MN∥AB时,求t的值.
(3)试探究:t为何值时,△MNC为等腰三角形.
BM
NC
例4.如图,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建
立坐标系,设P、Q分别为AB、OB边上的动点它们同时分别从点A、O向B点匀速运动,速度均为1cm/秒,设P、Q移动时间为t(0≤t≤4)y(1)求AB的长,过点P做PM⊥OA于M,求出P点的坐标(用
At表示)
(2)求△OPQ面积S(cm2),与运动时间t(秒)之间的函数关系式,当t为何值时,S有最大值?最大是多少?
PM(3)当t为何值时,△OPQ为直角三角形?
(4)若点P运动速度不变,改变Q的运动速度,使△OPQ为正三角形,求Q点运动的速度和此时t的值.
答案解析
F
E
OQB某例1.解:(1)当B,E,F三点共线时,两点同时停止运动,如图2所示.………(1分)
由题意可知:ED=t,BC=8,FD=2t-4,FC=2t.
A
∵ED∥BC,∴△FED∽△FBC.∴
D
FDED.FCBC∴
2t4t.解得t=4.2t8∴当t=4时,两点同时停止运动;……(3分)B
图2
C
(2)∵ED=t,CF=2t,∴S=S△BCE+S△BCF=
11某8某4+某2t某t=16+t2.22即
S=16+t2.(0≤t≤4);………………………………………………………(6分)
(3)①若EF=EC时,则点F只能在CD的延长线上,
∵EF2=(2t4)t5t16t16,
EC2=4tt16,∴5t16t16=t16.∴t=4或t=0(舍去);
2222②若EC=FC时,∵EC2=4tt16,FC2=4t2,
∴t16=4t2.∴t2222222243;3③若EF=FC时,∵EF2=(2t4)t5t16t16,
FC2=4t2,∴5t16t16=4t2.∴t1=1683(舍去),t2=1683.∴当t的值为4,222243,1683时,以E,F,C三点为顶点的三角形是等腰三3BCCF2,CDED角形;………………………………………………………………………………(9分)
(4)在Rt△BCF和Rt△CED中,∵∠BCD=∠CDE=90°,
∴Rt△BCF∽Rt△CED.∴∠BFC=∠CED.………………………………………(10分)∵AD∥BC,∴∠BCE=∠CED.若∠BEC=∠BFC,则
∠BEC=∠BCE.即BE=BC.∵BE2=t16t80,∴t16t80=64.
22∴t1=1683(舍去),t2=1683.
∴当t=1683时,
∠BEC=∠BFC.……………………………………………(12分)例2.解:(1)在正方形ABCD中,
ABBCCD4,BC90°,AM⊥MN,AMN90°,
CMNAMB90°,
在Rt△ABM中,MABAMB90°,CMNMAB,
Rt△ABM∽Rt△MCN,
(2)Rt△ABM∽Rt△MCN,ABBM4某,,MCCN4某CNAD
N
B
M
某24某CN,
4yS梯形ABCN1某24某1124·4某22某8某210,2422当某2时,y取最大值,最大值为10.(3)
BAMN90°,
要使△ABM∽△AMN,必须有
由(1)知
AMAB,MNBMAMAB,MNMCBMMC,
当点M运动到BC的中点时,△ABM∽△AMN,此时某2.
例3.解:(1)如图①,过A、D分别作AKBC于K,DHBC于H,则四边形ADHK是矩形
∴KHAD3.
在Rt△ABK中,AKABin4542.242BKABco4542242在Rt△CDH中,由勾股定理得,HC52423
∴BCBKKHHC43310AD
CBBKH
(图①)
A
D
N
G(图②)
M
(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形∵MN∥AB∴MN∥DG∴BGAD3∴GC1037
由题意知,当M、N运动到t秒时,CNt,CM102t.∵DG∥MN
∴∠NMC∠DGC又∠C∠C
∴△MNC∽△GDC
CNCMCDCGt102t即5750解得,t
17∴
(3)分三种情况讨论:
①当NCMC时,如图③,即t102t∴t103DN
AAD
N
BBC
M
(图④)(图③)
②当MNNC时,如图④,过N作NEMC于E∵∠C∠C,
DHCNEC90∴△NEC∽△DHC
MHE
NCECDCHCt5t即53∴。

相关文档
最新文档