湘教版八年级上册数学期末考试试题含答案

合集下载

湘教版八年级数学上册期末试卷及答案

湘教版八年级数学上册期末试卷及答案

湘教版八年级数学上册期末试卷一、选择题(每题3分,共24分)1.点A 的位置如图所示,则点A 所表示的数可能是( ) A .-2.6 B .- 2 C .-23D .1.4 2.若x <y 成立,则下列不等式成立的是( )A .x -2<y -2B .4x >4yC .-x +2<-y +2D .-3x <-3y3.下列计算正确的是( )A .(a 2)3=a 5B .a 2·a =a 3C .a 9÷a 3=a 3D .a 0=14.若一个三角形的两边长分别是3和6,则第三边长不可能是( )A .6B .7C .8D .95.使式子3-x x有意义的实数x 的取值范围是( ) A .x ≤3 B .x ≤3且x ≠0 C .x <3 D .x <3且x ≠06.下列尺规作图,能判断AD 是△ABC 边上的高的是( )7.下列说法:①“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆命题;②命题“如果两个角相等,那么它们都是直角”的逆命题为假命题;③命题“如果-a =5,那么a =-5”的逆命题为“如果-a ≠5,那么a ≠-5”,其中正确的有( )A .0个B .1个C .2个D .3个8.将一副三角板按如图所示的方式放置,则∠CAF 等于( )A .50°B .60°C .75°D .85°二、填空题(每题4分,共32分)9.实数-3,-1,0,3中,最小的数是________.10.若分式x x 2+2的值为正数,则实数x 的取值范围是________. 11.化简x 1-x +1x -1的值为________. 12.不等式3(x -1)≤x +2的正整数解是________.13.已知0<a <2,化简:a +a 2-4a +4=________.14.已知射线OM .以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB =________度. 15.已知关于x 的不等式3x +mx >-5的解集如图所示,则m 的值为________.16.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(17题8分,18题9分,19题5分,20题6分, 21,22题每题8分,23,24题每题10分,共64分)17.计算:(1)16+⎝ ⎛⎭⎪⎫-12-1×(π-1)0-|7-3|+3-27;(2)(-2)2-9+(2-1)0+⎝ ⎛⎭⎪⎫13-1;(3)(3+1)(3-1)+12;(4)⎝ ⎛⎭⎪⎫2a 2-b 2-1a 2-ab ÷a a +b.18.解不等式(组)或分式方程:(1)3x +24≥2x -13-1;(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),12x -2(x -2)≤4+3x ;(3)3x -1-2x +1=6x 2-1.19.先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷,其中x =2+1.20.如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF=CE .求证:△ABE ≌△CDF .21.某商店用1 000元购进一种水果来销售,过了一段时间,又用2 800元购进这种水果,所购进的数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克;(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的50千克按照标价的半价出售,出售完全部水果后,利润不低于3 100元,则最初每千克水果的标价至少是多少元?22.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE分别交边AB,AC于点E,D,连接BD.(1)求∠DBC的度数;(2)若BC=4,求AD的长.23.在△ABC中,点Q是BC边上的中点,过点A作与线段BC相交的直线l,过点B作BN⊥l于N,过点C作CM⊥l于M.(1)如图①,若直线l经过点Q,求证:QM=QN.(2)如图②,若直线l不经过点Q,连接QM,QN,那么(1)中的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.(提示:直角三角形斜边上的中线等于斜边的一半.)24.已知等边三角形ABC和等边三角形BDE,点D始终在射线AC上运动.(1)如图①,当点D在AC边上时,连接CE,求证:AD=CE.(2)如图②,当点D不在AC边上而在AC边的延长线上时,连接CE,(1)中的结论是否成立?并给予证明.(3)如图③,当点D不在AC边上而在AC边的延长线上时,条件中“等边三角形BDE”改为“以BD为斜边作Rt△BDE,且∠BDE=30°”,其余条件不变,连接CE并延长,与AB的延长线交于点F,求证:AD=BF.答案一、1.B 2.A 3.B 4.D 5.B 6.D 7.B 8.C二、9.-3 10.x >0 11.-112.1,2 点拨:去括号,得3x -3≤x +2,移项、合并同类项,得2x ≤5,系数化为1,得x ≤2.5,则不等式的正整数解为1,2.13.2 点拨:∵0<a <2,∴a -2<0,∴a +a 2-4a +4=a +|a -2|=a +(2-a )=2.14.6015.-12 点拨:合并同类项,得(3+m )x >-5,结合题图把系数化为1,得x >-53+m ,则有-53+m=-2,解得m =-12. 16.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.① ∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°,解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、17.解:(1)原式=4-2-3+7-3=7-4.(2)原式=4-3+1+3=5.(3)原式=3-1+2 3=2+2 3.(4)原式=⎣⎢⎡⎦⎥⎤2(a +b )(a -b )-1a (a -b )·a +b a =⎣⎢⎡⎦⎥⎤2a a (a +b )(a -b )-a +b a (a -b )(a +b )·a +b a=a -b a (a +b )(a -b )·a +b a =1a 2.18.解:(1)3x +24≥2x -13-1,去分母,得3(3x +2)≥4(2x -1)-12,去括号,得9x +6≥8x -4-12,移项,得9x -8x ≥-4-12-6,合并同类项,得x ≥-22.(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),①12x -2(x -2)≤4+3x ,② 解①,得x <2,解②,得x ≥0.故不等式组的解集为0≤x <2.(3)3x -1-2x +1=6x 2-1, 去分母、去括号,得3x +3-2x +2=6,解得x =1,经检验x =1是增根,分式方程无解.19.解:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6=x +3-4x +3·2(x +3)(x -1)2 =2x -1,当x =2+1时,原式=22+1-1= 2. 20.证明:∵AB ∥CD ,∴∠BAC =∠DCA .∵AF =CE ,∴AF +EF =EF +CE ,即AE =CF .在△ABE 和△CDF 中,⎩⎨⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF (AAS).21.解:(1)设该商店第一次购进水果x 千克,则第二次购进这种水果2x 千克.由题意得1 000x +2=2 8002x ,解得x =200.经检验,x =200是所列分式方程的解.答:该商店第一次购进水果200千克.(2)设最初每千克水果的标价是 y 元,则(200+200×2-50)·y +50×12y -1 000-2800≥3 100,解得y ≥12.答:最初每千克水果的标价至少是12元.22.解:(1)∵AB =AC ,∠A =36°,∴∠ABC =∠C =12×(180°-36°)=72°.∵DE 垂直平分AB ,∴AD =BD ,∴∠DBA =∠A =36°,∴∠DBC =∠ABC -∠ABD =36°.(2)由(1)得∠DBC =36°,∠C =72°,∴∠BDC =180°-∠C -∠DBC =72°,∴∠C =∠BDC ,∴BC =BD .∵AD =BD ,∴AD =BC =4.23.(1)证明:∵点Q 是BC 边上的中点,∴BQ =CQ .∵BN ⊥l ,CM ⊥l ,∴∠BNQ =∠CM Q =90°.又∵∠BQN =∠CQM ,∴△BQN ≌△CQM (AAS).∴QM =QN .(2)解:仍然成立.证明:延长NQ 交CM 于E ,∵点Q 是BC 边上的中点,∴BQ =CQ ,∵BN ⊥l ,CM ⊥l ,∴BN ∥CM ,∴∠NBQ =∠ECQ ,又∵∠BQN =∠CQE ,∴△BQN ≌△CQE (ASA).∴QN =QE .∵CM ⊥l ,∴∠NME =90°,∴QM =QN .24.(1)证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(2)解:成立.证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC +∠CBD =∠DBE +∠CBD ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(3)证明:如图,延长BE 至H 使EH =BE ,连接CH ,DH .∵BE =EH ,DE ⊥BH ,∴DB =DH ,∠BDE =∠HDE =30°,∴∠BDH =60°,∴△DBH 是等边三角形,∴BD =BH ,∠DBH =60°.∵△ABC 是等边三角形,∴∠ABC =60°,AB =CB .∴∠ABC +∠CBD =∠DBH +∠CBD ,即∠ABD =∠CBH .在△ABD 和△CBH 中,⎩⎨⎧AB =CB ,∠ABD =∠CBH ,BD =BH ,∴△ABD ≌△CBH (SAS),∴AD =CH ,∠A =∠HCB =∠ABC =60°,∴BF ∥CH ,∴∠F =∠ECH ,在△EBF 和△EHC 中,⎩⎨⎧∠BEF =∠HEC ,∠F =∠ECH ,BE =HE ,∴△EBF ≌△EHC (AAS),∴BF =CH ,∴AD =BF .湘教版八年级数学上册期末试卷2一、选择题(每题3分,共30分)1.若分式x 2-9x -3的值为0,则x 的值是( ) A .3 B .-3 C .±3 D .92.下列长度的三条线段能围成三角形的是( )A .1,2,3.5B .4,5,9C .20,15,8D .5,15,83.要使式子1+2x x -2有意义,则x 的取值范围是( ) A .x ≥12 B .x ≥-12 C .x ≥12且x ≠2 D .x ≥-12且x ≠24.化简a +1a 2-a ÷a 2-1a 2-2a +1的结果是( ) A.1a B .a C.a +1a -1 D.a -1a +15.如图,已知∠1=∠2,AC =AD ,添加下列条件:①AB =AE ;②BC =DE ;③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A.600x +50=450xB.600x -50=450xC.600x =450x +50D.600x =450x -507.不等式x -72+1<3x -22的负整数解有( ) A .1个 B .2个 C .3个 D .4个8.已知m =⎝ ⎛⎭⎪⎫-33×(-221),则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-59.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于点D ,则DE 的长为( ) A.13 B.12 C.23 D .不能确定10.如图,E ,D 分别是△ABC 的边AC ,BC 上的点,若AB =AC ,AD =AE ,则( )A .当∠B 为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值二、填空题(每题3分,共24分)11.计算:45-25×50=________. 12.⎝ ⎛⎭⎪⎫-120=________,⎝ ⎛⎭⎪⎫13-1=________,用科学记数法表示-0.000 005 03为__________.13.关于x 的不等式组⎩⎨⎧x >m -1,x >m +2的解集是x >-1,则m =________. 14.若317-a 与33a -1互为相反数,则3a 的值为________.15.若关于x 的分式方程3-2kx x -3=23-x-2有增根,则k =________. 16.等腰三角形的顶角大于90°,如果过它顶角的顶点作一直线能将它分成两个等腰三角形,则顶角的度数一定是________.17.如图,在△ABC 中,AB =AC ,DE 垂直平分AB 交AC 于点E ,垂足为点D .若△ABC 的周长为28,BC =8,则△BCE 的周长为________.18.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(20,21题每题6分,24,25题每题12分,其余每题10分,共66分)19.(1)计算:212+3113-513-2348;(2)已知x =2+3,y =2-3,求代数式⎝ ⎛⎭⎪⎫x +y x -y -x -y x +y ·⎝ ⎛⎭⎪⎫1x 2-1y 2的值.20.解分式方程:(1)2-x 3+x =12+1x +3; (2)2x +9x +3-1x -3=5-3x -2x .21.已知x =1是不等式组⎩⎪⎨⎪⎧3x -52≤x -2a ,3(x -a )<4(x +2)-5的解,求a 的取值范围.22.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一直线上,连接BD交AC于点F.(1)求证:△BAD≌△CAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.23.如图,AD是△ABC的角平分线.(1)若AB=AC+CD,求证:∠ACB=2∠B;(2)当∠ACB=2∠B时,AC+CD与AB的数量关系如何?说说你的理由.24.某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 950元,则第二批衬衫每件至少要售多少元?25.已知△ABC和△DEF均为等边三角形,点D在△ABC的边AB上,点F在直线AC上;(1)若点C和点F重合(如图①),求证:AE∥BC;(2)若点F在AC的延长线上(如图②),(1)中的结论还能成立吗?给出你的结论并证明.答案一、1.B2.C3.D点拨:根据二次根式和分式有意义的条件,即被开方数大于或等于0,分母不等于0,可以得到⎩⎨⎧1+2x ≥0,x -2≠0,解得x ≥-12且x ≠2.故选D. 4.A 点拨:原式=a +1a (a -1)·(a -1)2(a +1)(a -1)=1a . 5.B 6.A 7.A8.A 点拨:⎝ ⎛⎭⎪⎫-33×(-221)=233×21=27=28,因为25<28<36,所以5<28<6,故选A.9.B 点拨:过P 作PF ∥BC 交AC 于点F .由△ABC 为等边三角形,易得△APF也是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =CQ .又∵PF ∥CQ ,∴易得△PFD ≌△QCD .∴DF =DC .∵PE ⊥AF ,且PF =P A ,∴AE =EF .∴DE =DF +EF =12CF +12AF =12AC =12×1=12.10.B 点拨:∵AB =AC ,∴∠B =∠C .∵AD =AE ,∴∠ADE =∠AED =∠γ=∠CDE +∠C .由∠ADC =∠ADE +∠CDE = ∠CDE +∠C +∠CDE =2∠CDE +∠C =∠B +∠BAD ,可得2∠CDE = ∠BAD =∠α,∴∠CDE =12∠α.故当∠α为定值时,∠CDE 也为定值.二、11. 512.1;3;-5.03×10-613.-3 点拨:因为m +2>m -1,所以m +2=-1,所以m =-3.14.-2 点拨:由题知317-a =-33a -1,可得17-a =-(3a -1),∴2a =-16,∴a =-8.∴3a =-2.15.56 点拨:因为原分式方程有增根,所以增根为x =3.原分式方程化为整式方程为3-2kx =-2-2(x -3),把x =3代入,解得k =56.16.108° 点拨:在△ABC 中,设∠B =∠C =α.如图①,若AC =CD ,DA =DB ,则∠DAB =α.∴∠CDA =2α=∠CAD ,∴∠BAC =3α.由α+α+3α=180°,得α=36°,∴∠BAC =3α=108°.如图②,若AD =CD ,AD =BD ,则∠BAD =∠CAD =α,∴4α=180°,∴α=45°,∴∠BAC =2α=90°,不合题意.17.18 点拨:因为△ABC 的周长为AB +AC +BC =AB +AC +8=28,AB =AC ,所以AB =AC =10.又因为DE 垂直平分AB ,所以AE =BE .所以△BCE 的周长为BE +EC +BC =AE +EC +BC =AC +BC =10+8=18. 18.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.①∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°, 解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、19.解:(1)原式=43+3×233-433-23×43=43+23-43=2 3.(2)原式=(x +y )2-(x -y )2(x +y )(x -y )·y 2-x 2x 2y 2=4xy -(x +y )(y -x )·(y +x )(y -x )x 2y 2=-4xy . 当x =2+3,y =2-3时,原式=-44-3=-4. 20.解:(1)方程两边同乘2(x +3),得2(2-x )=x +3+2.整理,得-3x =1,所以x =-13.经检验,x =-13是原分式方程的解.(2)方程两边同乘x (x +3)(x -3),得(2x +9)(x -3)x -x (x +3)=5x (x +3)(x -3)-(3x -2)(x +3)(x -3).整理,得-12x =-18,所以x =32.经检验,x =32是原分式方程的解.21.解:∵x =1是原不等式组的解,∴⎩⎪⎨⎪⎧3-52≤1-2a ,①3(1-a )<4×(1+2)-5,② 解不等式①,得a≤1,解不等式②,得a >-43.故a 的取值范围为-43<a ≤1.22.(1)证明:∵∠BAC =∠DAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△BAD 和△CAE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE.(2)解:BD ⊥CE .理由如下:由(1)可知△BAD ≌△CAE ,∴∠ABD =∠ACE .∵∠BAC =90°,∴∠ABD +∠AFB =90°.又∵∠AFB =∠DFC ,∴∠ACE +∠DFC =90°,∴∠BDC =90°,即BD ⊥CE .23.(1)证明:延长A C 至E ,使CE =CD ,连接DE .∵AB =AC +CD ,∴AB =AE .∵AD 平分∠BAC ,∴∠BAD =∠EAD .在△BAD 与△EAD 中,⎩⎨⎧AB =AE ,∠BAD =∠EAD ,AD =AD ,∴△BAD ≌△EAD .∴∠B =∠E.∵CD =CE ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠ACB =2∠E =2∠B .(2)解:AB =AC +CD .理由:在AC 的延长线上取点F ,使CF =CD ,连接DF . ∴∠CDF =∠F ,又∵∠ACB =∠CDF +∠F ,∴∠ACB =2∠F .∵∠ACB =2∠B ,∴∠B =∠F .在△BAD 与△F AD 中,⎩⎨⎧∠B =∠F ,∠BAD =∠F AD (角平分线的定义),AD =AD ,∴△BAD ≌△F AD .∴AB =AF =AC +CF =AC +CD .24.解:(1)设第一批这种衬衫购进了x 件,则第二批购进了12x 件.根据题意,可得4 500x -10=2 10012x,解得x =30,经检验,x =30是原方程的根,且符合题意.∴12x =12×30=15(件).答:两次分别购进这种衬衫30件,15件.(2)设第二批衬衫每件的售价为m 元.第一批衬衫每件的进价为4 500÷30=150(元),第二批衬衫每件的进价为150-10=140(元),∴(200-150)×30+15(m -140)≥1 950,解得m ≥170.答:第二批衬衫每件至少要售170元.25.(1)证明:∵△ABC 与△CDE 均为等边三角形,∴BC =AC ,DC =EC ,∠B =∠BCA =∠DCE =60°,∴∠BCD =∠ACE .易得△BCD ≌△ACE ,∴∠B =∠EAC .又∵∠B =∠ACB ,∴∠EAC =∠ACB .∴AE ∥BC .(2)解:若点F 在AC 的延长线上,(1)中的结论仍然成立,即AE ∥BC . 证明:过点F 作FM ∥BC 交AB 的延长线于点M .∵△ABC 为等边三角形,∴△AFM 也是等边三角形.∴∠M =∠AFM =60°.同(1)可证△FDM ≌△FEA ,∴∠EAF=∠M=60°. ∴∠AFM=∠EAF.∴AE∥FM.又∵FM∥BC,∴AE∥BC.。

湘教版八年级数学上册期末试卷及答案【完整版】

湘教版八年级数学上册期末试卷及答案【完整版】

湘教版八年级数学上册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.化简二次根式 22a a +-) A 2a --B 2a --C 2a -D 2a -4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解 6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1 8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D10.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO 的周长是()A.10 B.14 C.20 D.22二、填空题(本大题共6小题,每小题3分,共18分)1123=________.2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.因式分解:a2-9=_____________.4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。

湘教版八年级数学上册期末测试卷及答案【完美版】

湘教版八年级数学上册期末测试卷及答案【完美版】

湘教版八年级数学上册期末测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a -- C .2a - D .-2a -4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A.10 B.12 C.16 D.187.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b+的结果是________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=________.6.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、N在BC上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2450x x--=;(2)22210x x--=.2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=.3.解不等式组:3221152x xx x-<⎧⎪++⎨<⎪⎩,并把解集表示在数轴上;4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65∠=︒,求FGC∠的度数.ACB∠=︒,28ABC6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、A5、C6、C7、D8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、13、3m ≤.4、135°5、26、32°三、解答题(本大题共6小题,共72分)1、(1)x 1=5,x 2=-1;(2)121313,22x x +-==. 2、3x ,3 3、31x -<<4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)略;(2)78°.6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。

湘教版八年级数学上册期末考试卷(含答案)

湘教版八年级数学上册期末考试卷(含答案)

湘教版八年级数学上册期末考试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =__________.3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩(2)410211x y x y -=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 13分,求3a-b+c 的平方根.4.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE . 1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、B5、D6、A7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、-53、14、﹣2<x<25、26、40°三、解答题(本大题共6小题,共72分)1、(1)42xy=⎧⎨=⎩;(2)61xy=⎧⎨=-⎩.2、11a-,1.3、3a-b+c的平方根是±4.4、()1略;()2BEF67.5∠=.5、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

湘教版数学八年级上册期末测试卷及答案(共4套)

湘教版数学八年级上册期末测试卷及答案(共4套)

湘教版数学八年级上册期末测试卷(一)(时间:120分分值:150分)一、选择题:(每小题4分,共40分)1.(4分)若,则2a+b﹣c等于()A.0 B.1 C.2 D.32.(4分)已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙 B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲3.(4分)解不等式中,出现错误的一步是()A.6x﹣3<4x﹣4 B.6x﹣4x<﹣4+3 C.2x<﹣1 D.4.(4分)不等式的正整数解有()A.2个B.3个C.4个D.5个5.(4分)如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<16.(4分)的相反数是()A.﹣B.C.﹣D.7.(4分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和58.(4分)已知a<b,则化简二次根式的正确结果是()A.B.C.D.9.(4分)已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c10.(4分)如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.二、填空题:(每小题4分,共32分)11.(4分)用不等式表示“6与x的3倍的和大于15”.12.(4分)不等式的最大正整数解是,最小正整数解是.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是.14.一个负数a的倒数等于它本身,则=;若一个数a的相反数等于它本身,则﹣5+2=.15.(4分)比较大小:﹣3﹣2.16.(4分)如果最简二次根式与是同类二次根式,那么a=.17.(4分)与的关系是.18.(4分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题:(共6小题,共78分)19.(32分)计算:(1);(2);(3);(4).20.(8分)x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.21.(10分)先化简,再求值:(﹣)÷,其中x=2.22.(10分)解方程组,并求的值.23.(10分)已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.24.(8分)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.参考答案:一、选择题。

湘教版八年级数学上册期末测试卷(及参考答案)

湘教版八年级数学上册期末测试卷(及参考答案)

湘教版八年级数学上册期末测试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .9.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.若23(1)0m n -++=,则m -n 的值为________. 4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再求值:(x+y )(x-y )-(4x 3y-8xy 3)÷2xy ,其中x=-1,y=12.3.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.-+的平方根.(1)求a,b,c的值;(2)求3a b c4.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、D5、D6、B7、D8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、42、(3,7)或(3,-3)3、445、56、16三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3x x ==.2、223x y -+,14-. 3、(1)a=5,b=2,c=3 ;(2)±4.4、(1)略;(2)10.5、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

湘教版八年级数学上册期末测试题(附参考答案)

湘教版八年级数学上册期末测试题(附参考答案)

湘教版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每题3分,共36分。

每小题只有一个选项符合题目要求。

1. 计算:a 2−5aa−5=( )A.a-5 B.a+5C.5 D.a2.如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是( )A.-√2B.√2C.√5D.π3.下列各组线段中,不能构成三角形的是( )A.1,2,3 B.2,3,4C.3,4,5 D.4,5,64.如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的度数是( )A.90°B.80°C.60°D.40°5.如图,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线OC是∠AOB的平分线,请说明此做法的依据是( )A.SAS B.ASAC.AAS D.SSS6.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB =6,DE=3,则AC的长是( )A.8 B.6C.5 D.47.如图,在△ABC中,AC>BC,分别以点A,B为圆心,以大于12AB的长为半径画弧,两弧交于点D,E,经过点D,E作直线分别交AB,AC于点M,N,连接BN,下列结论正确的是( )A.AN=NC B.AN=BNC.MN=12BC D.BN平分∠ABC8.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A.2+xx−y B.2xx−yC.2+xxy D.x2x+y9.已知a-1>0,则下列结论正确的是( )A.-1<-a<a<1 B.-a<-1<1<a C.-a<-1<a<1 D.-1<-a<1<a10.若关于x的不等式组{4(x−1)>3x−1,5x>3x+2a的解集为x>3,则a的取值范围是( )A.a>3 B.a<3C.a≥3 D.a≤311.如图,在等边三角形ABC中,D,E分别是BC,AC的中点,P是线段AD上的一个动点,当△PCE的周长最小时,点P的位置在( )A .A 点处B .D 点处C .AD 的中点处D .△ABC 三条高的交点处12.在正数范围内定义一种运算 “※”,其规则为a ※b =1a +1b ,如2※4=12+14,根据这个规则,方程3※(x -1)=1的解为( ) A .x =52 B .x =-1 C .x =12D .x =-3二、填空题:本题共6个小题,每小题3分,共18分。

湘教版八年级数学上册期末试卷及参考答案

湘教版八年级数学上册期末试卷及参考答案

湘教版八年级数学上册期末试卷及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 6.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC8.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.若代数式1x x -有意义,则x 的取值范围为__________. 3.因式分解:a 2-9=_____________.4.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:2211(1)m mm m+--÷,其中m=3+1.3.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、B5、C6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、 0x ≥且1x ≠.3、(a+3)(a ﹣3)4、ab5、x ≤1.6、12三、解答题(本大题共6小题,共72分)1、(1)1010x y =⎧⎨=⎩(2)64x y =⎧⎨=⎩2、3、(1)略;(2)△ABC 的周长为5.4、(1) 65°;(2) 25°.5、略.6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学期末考试试卷一.选择题:(每小题4分,满分40分,请将正确答案的序号填写在选择题的答题栏内)1.在下列各数中,无理数是( )A.0 B.C.D.72.若x>y,则下列不等式成立的是( )A.x﹣3<y﹣3 B.x+5>y+5 C.<D.﹣2x>﹣2y3.若等腰三角形底角为72°,则顶角为( )A.108°B.72°C.54°D.36°4.当x=2015时,分式的值是( )A.B.C.D.5.已知△ABC中,2(∠B+∠C)=3∠A,则∠A的度数是( )A.54°B.72°C.108°D.144°6.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A. B. C. D.7.不等式组的最小整数解是( )A.0 B.﹣1 C.1 D.28.如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有( )A.1对B.2对C.3对D.4对9.已知关于x的方程的解为x=1,则a等于( )A.0.5 B.2 C.﹣2 D.﹣0.510.若a=1+,b=1﹣,则代数式的值为( )A.3 B.±3 C.5 D.9二.填空题:(每小题3分,满分24分,请将答案填写在填空题的答题栏内)11.化简:﹣=__________.12.计算:5÷×所得的结果是__________.13.金园小区有一块长为18m,宽为8m的长方形草坪,计划在草坪面积不变的情况下,把它改造成正方形,则这个正方形的边长是__________m.14.已知不等式2x+★>2的解集是x>﹣4,则“★”表示的数是__________.15.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是__________.16.如图,在△ABC中,∠A=30°,∠B=50°,延长BC到D,则∠ACD=__________°.17.如图,在△ADC中,AD=BD=BC,∠C=30°,则∠ADB=__________.18.A、B两地相距60km,甲骑自行车从A地到B地,出发1h后,乙骑摩托车从A地到B 地,且乙比甲早到3h,已知甲、乙的速度之比为1:3,则甲的速度是__________.三.解答题:(请写出主要的推导过程)19.解不等式组并将其解集在数轴上表示出来.20.已知x=+1,y=﹣1,求的值.21.已知:2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.22.若不等式组的解集为﹣2<x<3,求a+b的值.23.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC 的度数.24.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?25.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?参考答案一.选择题:(每小题4分,满分40分,请将正确答案的序号填写在选择题的答题栏内)1.在下列各数中,无理数是( )A.0 B.C.D.7【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是整数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、是无理数,选项错误;D、7是整数,是有理数,选项错误.故选C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.若x>y,则下列不等式成立的是( )A.x﹣3<y﹣3 B.x+5>y+5 C.<D.﹣2x>﹣2y【考点】不等式的性质.【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A错误;B、不等式的两边都加5,不等号的方向不变,故B正确;C、不等式的两边都除以3,不等号的方向不变,故C错误;D、不等式的两边都乘以﹣2,不等号的方向改变,故D错误;故选:B.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.若等腰三角形底角为72°,则顶角为( )A.108°B.72°C.54°D.36°【考点】等腰三角形的性质;三角形内角和定理.【专题】计算题.【分析】根据三角形内角和定理和等腰三角形的性质,可以计算其顶角的度数.【解答】解:∵等腰三角形底角为72°∴顶角=180°﹣(72°×2)=36°故选D.【点评】根据三角形内角和定理和等腰三角形的性质来计算.4.当x=2015时,分式的值是( )A.B.C.D.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式==,当x=2015时,原式=.故选C【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.5.已知△ABC中,2(∠B+∠C)=3∠A,则∠A的度数是( )A.54°B.72°C.108°D.144°【考点】三角形内角和定理.【分析】根据三角形内角和定理和已知条件得出方程,解方程即可.【解答】解:∵2(∠B+∠C)=3∠A,∠A+∠B+∠C=180°,∴2(180°﹣∠A)=3∠A,解得:∠A=72°.故选:B.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A. B. C. D.【考点】在数轴上表示不等式的解集.【分析】本题根据数轴可知x的取值为:﹣1≤x<4,将不等式变形,即可得出关于x的不等式组.把各个选项的解的集合写出,进行比较就可以得到.【解答】解:依题意得这个不等式组的解集是:﹣1≤x<4.A、无解,故A错误;B、解集是:﹣1≤x<4,故B正确;C、解集是:x>4,故C错误;D、解集是:﹣1<x≤4,故D错误;故选:B.【点评】考查不等式组解集的表示方法.实心圆点包括该点,空心圆圈不包括该点,>向右、<向左.7.不等式组的最小整数解是( )A.0 B.﹣1 C.1 D.2【考点】一元一次不等式组的整数解.【专题】计算题;一元一次不等式(组)及应用.【分析】求出不等式组的解集,确定出最小的整数解即可.【解答】解:不等式组整理得:,解得:﹣<x≤4,则不等式组的最小整数解是0,故选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有( )A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】根据平行的性质及全等三角形的判定方法来确定图中存在的全等三角形共有三对:△ABC≌△DCB,△ABE≌△CDE,△BFE≌△CFE.再分别进行证明.【解答】解:∵AB∥EF∥DC,∴∠ABC=∠DCB,在△ABC和△DCB中,∵,∴△ABC≌△DCB(SAS);在△ABE和△CDE中,∵,∴△ABE≌△CDE(AAS);在△BFE和△CFE中,∵,∴△BFE≌△CFE.∴图中的全等三角形共有3对.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.已知关于x的方程的解为x=1,则a等于( )A.0.5 B.2 C.﹣2 D.﹣0.5【考点】分式方程的解.【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含a的新方程,解此新方程可以求得a的值.【解答】解:把x=1代入方程得:=,解得:a=﹣0.5;经检验a=﹣0.5是原方程的解;故选D.【点评】此题考查了分式方程的解,关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后再解答.10.若a=1+,b=1﹣,则代数式的值为( )A.3 B.±3 C.5 D.9【考点】二次根式的化简求值.【分析】首先把所求的式子化成的形式,然后代入数值计算即可.【解答】解:原式====3.故选A.【点评】本题考查了二次根式的化简求值,正确对所求的式子进行变形是关键.二.填空题:(每小题3分,满分24分,请将答案填写在填空题的答题栏内)11.化简:﹣=.【考点】分式的加减法.【专题】计算题.【分析】直接根据分式的加减法则进行计算即可.【解答】解:原式==.故答案为:.【点评】本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.12.计算:5÷×所得的结果是1.【考点】二次根式的乘除法.【分析】由于二次根式的乘除运算是同级运算,从左到右依次计算即可.【解答】解:原式=×=1.【点评】此题考查的是二次根式的乘除法运算;由于后两项互为倒数,有些同学往往先将它们约分,从而得出结果为5的错误结论,需注意的是同级运算要从左到右依次计算.13.金园小区有一块长为18m,宽为8m的长方形草坪,计划在草坪面积不变的情况下,把它改造成正方形,则这个正方形的边长是12m.【考点】算术平方根.【专题】计算题;实数.【分析】设这个正方形的边长是xm,根据题意列出方程,利用平方根定义开方即可得到结果.【解答】解:设这个正方形的边长是xm,根据题意得:x2=18×8=144,开方得:x=12(负值舍去),则这个正方形的边长是12m,故答案为:12【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.14.已知不等式2x+★>2的解集是x>﹣4,则“★”表示的数是10.【考点】不等式的解集.【分析】设“★”表示的数a,则不等式是2x+a>2,解不等式利用a表示出不等式的解集,则可以得到一个关于a的方程,求得a的值.【解答】解:设“★”表示的数a,则不等式是2x+a>2,移项,得2x>2﹣a,则x>.根据题意得:=﹣4,解得:a=10.故答案是:10.【点评】主要考查了一元一次不等式组解集的求法,解答此题的关键是掌握不等式的性质,在不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式两边同乘或同除一个正数或式子,不等号的方向不变在不等式两边同乘或同除一个负数或式子,不等号的方向改变.15.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是80.【考点】一元一次不等式的应用.【分析】假设以后几天平均每天完成x土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300﹣60=240土方,利用剩下的工程所用的时间不能超过3天,则列不等式方程≤3,解得x即可知以后平均每天至少完成多少土方.【解答】解:设以后几天平均每天完成x土方.由题意得:3x≥300﹣60解得:x≥80答:以后几天平均至少要完成的土方数是80土方.故答案为:80.【点评】此题主要考查了一元一次不等式的应用,解本类工程问题,主要是找准正确的工程不等式(如本题≤3以天数做为基准列不等式).16.如图,在△ABC中,∠A=30°,∠B=50°,延长BC到D,则∠ACD=80°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=30°,∠B=50°,∴∠ACD=∠A+∠B=30°+50°=80°.故答案为:80.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.17.如图,在△ADC中,AD=BD=BC,∠C=30°,则∠ADB=60°.【考点】等腰三角形的性质.【分析】首先利用等腰三角形的性质得到∠C=∠BDC,利用三角形的外角的性质得到∠A和∠ABD的度数,从而确定∠ADB的度数.【解答】解:∵BD=BC,∠C=30°,∴∠C=∠BDC=30°,∴∠ABD=∠C+∠BDC=60°,∵AD=BD,∴∠A=∠DBA=60°,∴∠ADB=180°﹣∠A﹣∠DBA=60°,答案为:60°.【点评】本题考查了等腰三角形的性质,解答过程中两次运用“等边对等角”,难度不大.18.A、B两地相距60km,甲骑自行车从A地到B地,出发1h后,乙骑摩托车从A地到B 地,且乙比甲早到3h,已知甲、乙的速度之比为1:3,则甲的速度是10km/h.【考点】分式方程的应用.【分析】本题的等量关系是路程=速度×时间,根据“甲骑自行车从A地出发到B地,出发1h 后,乙骑摩托车从A地到B地,且乙比甲早到3h”可知:甲比乙多用了4小时,可根据此条件列出方程求解.【解答】解:设甲的速度为xkm/h,则乙的速度为3xkm/h,依题意,有+4,解这个方程,得x=10,经检验,x=10是原方程的解,当x=10时,3x=30.答:甲的速度为10km/h,乙的速度为30km/h.故答案为:10km/h【点评】此题考查分式方程的应用问题,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.三.解答题:(请写出主要的推导过程)19.解不等式组并将其解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:不等式组,解①得:x≥﹣3,解②得:x<4,则不等式组的解集为﹣3≤x<4.【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.已知x=+1,y=﹣1,求的值.【考点】分式的化简求值;二次根式的化简求值.【分析】由条件可得x+y,x﹣y,xy的值,再把以上数值代入化简的结果即可.【解答】解:由题意得:x+y=2,x﹣y=2,xy=1,原式====4.【点评】本题考查了含有二次根式的分式化简求值,在其求值过程要注意:先把分式化简后,再把分式中未知数对应的值代入求出分式的值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.已知:2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.【考点】立方根;平方根;算术平方根.【专题】计算题;实数.【分析】(1)利用立方根,算术平方根的定义求出x与y的值即可;(2)把x与y的值代入原式,求出平方根即可.【解答】解:(1)依题意,解得:;(2)x2+y2=36+64=100,100的平方根是±10.【点评】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.22.若不等式组的解集为﹣2<x<3,求a+b的值.【考点】解一元一次不等式组.【分析】首先解不等式组,利用a和b表示出不等式组的解集,然后得到关于a和b的方程组,从而解答a、b的值,代入求解.【解答】解:由得∴解得∴a+b=﹣1.【点评】本题考查了不等式组的解法以及二元一次方程组的解法,正确利用a和b表示出不等式组的解集是关键.23.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC 的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】由∠B=75°,∠C=45°,利用三角形内角和求出∠BAC.又AE平分∠BAC,求出∠BAE、∠CAE.再利用AD是BC上的高在△ABD中求出∠BAD,此时就可以求出∠DAE.最后利用三角形的外角和内角的关系可以求出∠AEC.【解答】解:方法1:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,∴∠BAC=60°,∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC=×60°=30°,∵AD是BC上的高,∴∠B+∠BAD=90°,∴∠BAD=90°﹣∠B=90°﹣75°=15°,∴∠DAE=∠BAE﹣∠BAD=30°﹣15°=15°,在△AEC中,∠AEC=180°﹣∠C﹣∠CAE=180°﹣45°﹣30°=105°;方法2:同方法1,得出∠BAC=60°.∵AE平分∠BAC,∴∠EAC=∠BAC=×60°=30°.∵AD是BC上的高,∴∠C+∠CAD=90°,∴∠CAD=90°﹣45°=45°,∴∠DAE=∠CAD﹣∠CAE=45°﹣30°=15°.∵∠AEC+∠C+∠EAC=180°,∴∠AEC+30°+45°=180°,∴∠AEC=105°.答:∠DAE=15°,∠AEC=105°.【点评】此题主要考查了三角形的内角,外角以及和它们相关的一些结论,图形比较复杂,对于学生的视图能力要求比较高.24.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?【考点】一元一次不等式的应用.【分析】(1)设该公司购进甲型显示器x台,则购进乙型显示器(50﹣x)台,根据两种显示器的总价不超过77000元建立不等式,求出其解即可;(2)由甲型显示器的台数不超过乙型显示器的台数可以建立不等式x≤50﹣x与(1)的结论构成不等式组,求出其解即可.【解答】解:(1)设该公司购进甲型显示器x台,则购进乙型显示器(50﹣x)台,由题意,得1000x+2000(50﹣x)≤77000解得:x≥23.∴该公司至少购进甲型显示器23台.(2)依题意可列不等式:x≤50﹣x,解得:x≤25.∴23≤x≤25.∵x为整数,∴x=23,24,25.∴购买方案有:①甲型显示器23台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台.【点评】本题考查了列一元一次不等式解实际问题的运用,一元一次不等式的解法的运用,方案设计的运用,解答时根据条件的不相等关系建立不等式是关键.25.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【分析】(1)求出EC=DB,∠B=∠C,根据SAS推出△BED≌△CFE,根据全等三角形的性质得出DE=EF即可;(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC,求出∠DEB+∠FEC=110°,即可得出答案;(3)根据等腰直角三角形得出∠DEF=90°,求出∠B=90°,∠C=90°,根据三角形内角和定理即可得出答案.【解答】(1)证明:∵AD+EC=AB=AD+DB,∴EC=DB,又∵AB=AC,∴∠B=∠C,在△BED和△CFE中∴△BED≌△CFE,∴DE=EF,∴△DEF是等腰三角形;(2)解:∵∠A=40°,∴∠B=∠C=70°,∵由(1)知△BED≌△CFE,∴∠BDE=∠FEC,∴∠DEB+∠FEC=∠DEB+∠BDE=180°﹣∠B=110°,∴∠DEF=180°﹣(∠DEB+∠FEC)=70°;(3)解:∵若△DEF是等腰直角三角形,则∠DEF=90°,∴∠DEB+∠BDE=90°,∴∠B=90°,因而∠C=90°,∴△DEF不可能是等腰直角三角形.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质,三角形内角和定理的应用,能灵活运用性质进行推理是解此题的关键.。

相关文档
最新文档