光耦参数的理解
光耦的关键参数

光耦的关键参数光耦是一种常用的电子元件,它能够将输入端的电信号转化为光信号,再通过光信号传输到输出端。
光耦的关键参数包括光电转换效率、响应时间、隔离电压、耐压等,下面将对这些关键参数逐一进行详细介绍。
光电转换效率是光耦的一个重要参数,它表示光耦在将电信号转化为光信号时的效率。
光电转换效率越高,表示光耦能够更好地将电信号转化为光信号,从而提高信号传输的质量。
光电转换效率受到光耦内部结构和材料的影响,常用的指标是电光转换效率和光电转换效率。
响应时间是光耦的另一个重要参数,它表示光耦对输入信号的响应速度。
响应时间越短,表示光耦能够更快地对输入信号进行响应,从而提高信号传输的速度。
响应时间受到光耦内部元件和电路设计的影响,通常用上升时间和下降时间来表示。
隔离电压是光耦的一项重要指标,它表示光耦能够承受的最大隔离电压。
光耦的输入端和输出端是通过光信号隔离的,隔离电压的高低直接影响到光耦在高压环境下的可靠性和安全性。
隔离电压通常使用工作电压和耐压来表示,工作电压是指光耦正常工作时的电压范围,耐压是指光耦能够承受的最大电压。
耐压是光耦的另一个重要参数,它表示光耦能够承受的最大电压。
耐压的高低直接关系到光耦在高压环境下的稳定性和可靠性。
耐压通常使用工作电压和击穿电压来表示,工作电压是指光耦正常工作时的电压范围,击穿电压是指光耦在超过耐压时发生击穿的电压。
除了以上几个关键参数外,光耦还具有一些其他参数,如工作温度范围、封装类型、引脚排列等。
工作温度范围表示光耦能够正常工作的温度范围,封装类型表示光耦的外包装形式,引脚排列表示光耦的引脚布局方式。
光耦是一种常用的电子元件,广泛应用于电力电子、通信设备、工业自动化等领域。
了解光耦的关键参数对于正确选择和应用光耦至关重要。
通过对光电转换效率、响应时间、隔离电压、耐压等关键参数的了解,可以更好地评估光耦的性能和适用范围,从而提高系统的稳定性和可靠性。
光耦的关键参数包括光电转换效率、响应时间、隔离电压、耐压等。
光耦的参数的详解

光耦的参数的详解前言光耦做为一个隔离器件早已获得广泛运用,无所不在。
一般大伙儿在第一次触碰到光耦时通常觉得找不到方向,不知道设计方案对错,伴随着碰到愈来愈多的难题,才会渐渐地有一定的感受。
文中就三个层面对光耦做讨论:光耦原理;光耦的CTR 定义;光耦的廷时。
本讨论也是有了解上的局限,但期待能协助到第一次应用光耦的朋友。
了解光耦光耦是隔离传送器件,原边给出信号,副边回路便会輸出历经隔离的信号。
针对光耦的隔离非常容易了解,这里不做讨论。
以一个简易的图(图.1)表明光耦的工作中:原边键入信号 Vin,释放到原边的发光二极管和 Ri 上造成光耦的键入电流量 If,If 驱动器发光二极管,促使副边的光敏三极管通断,回路VCC、RL 造成 Ic,Ic 历经 R L 造成 Vout,做到传送信号的目地。
原边副边立即的驱动器关系是CTR(电流量传送比),要考虑Ic≤If*CTR。
光耦一般会有两个主要用途:线形光耦和逻辑性光耦,假如了解?工作中在电源开关情况的光耦副边三极管饱和状态通断,管压力降<0.4V,Vout 等于 Vcc(Vcc-0.4V上下),Vout 尺寸只受 Vcc 尺寸危害。
这时 Ic<If*CTR,此运行状态用以传送逻辑性电源开关信号。
工作中在线形情况的光耦,Ic=If*CTR,副边三极管压力降的尺寸相当于 Vcc-Ic*R L ,Vout= Ic*R L=(Vin-1.6V)/Ri * CTR*R L ,Vout 尺寸立即与Vin 成占比,一般用以意见反馈环路里边(1.6V 是粗略地估算,具体要按器件材料,事后 1.6V 同) 。
针对光耦电源开关和线形情况能够对比为一般三极管的饱和状态变大2个情况。
因此根据剖析具体的电源电路,去除隔离要素,用剖析三极管的方式来剖析光耦是一个很合理的方式。
此方式针对事后剖析光耦的CTR 主要参数,也有延迟时间主要参数都有利于了解。
光耦CTR概述:1)针对工作中在线形情况的光耦要依据具体情况剖析;2)针对工作中在电源开关情况的光耦要确保光耦通断时CTR 有一定容量;3)CTR 受好几个要素危害。
高速光耦参数

高速光耦参数一、什么是光耦?光耦是一种将电信号转换成光信号,或将光信号转换成电信号的器件。
它由发光二极管(LED)、光敏二极管(PD)和隔离材料组成。
二、高速光耦的概念高速光耦是一种能够实现高速传输的光耦。
它可以用于数据传输、通信等领域。
三、高速光耦的参数1. 带宽带宽是指高速光耦能够传输的最大频率范围。
在选择高速光耦时,需要根据具体应用场景来确定所需的带宽。
2. 峰值波长峰值波长是指高速光耦发出或接收到的最大强度所对应的波长。
不同类型的高速光耦峰值波长也不同。
3. 暗电流暗电流是指在没有外部电压作用下,由于热激发等原因而产生的电流。
在选择高速光耦时,需要考虑其暗电流大小,尽量选择暗电流较小的型号。
4. 响应时间响应时间是指从输入端产生变化到输出端出现变化所需的时间。
在选择高速光耦时,需要根据具体应用场景来确定所需的响应时间。
5. 光电转换效率光电转换效率是指高速光耦将输入的光信号转换成电信号的效率。
在选择高速光耦时,需要考虑其光电转换效率大小,尽量选择效率较高的型号。
6. 工作温度范围工作温度范围是指高速光耦能够正常工作的温度范围。
在选择高速光耦时,需要考虑其工作温度范围是否符合实际应用场景。
四、高速光耦的应用1. 数据传输高速光耦可以用于数据传输领域,如局域网、广域网等。
它可以实现高速传输和长距离传输。
2. 通信高速光耦还可以用于通信领域,如电话、互联网等。
它可以实现快速稳定地传输信息。
3. 医疗设备在医疗设备中,由于存在较强的干扰源和较长的传输距离,需要使用高性能的高速光耦来保证数据传输的可靠性和稳定性。
五、高速光耦的优缺点1. 优点(1)高速传输:高速光耦可以实现高速传输和长距离传输,传输速度比电信号快得多。
(2)隔离性好:由于光信号与电信号不同,高速光耦具有良好的隔离性能,可以有效地避免干扰。
(3)稳定性好:高速光耦具有较好的稳定性能,可以保证数据传输的可靠性。
2. 缺点(1)成本较高:由于制造工艺复杂,高速光耦的成本较高。
光耦参数详解

光耦参数详解光耦(Optocoupler),也被称为光电隔离器或光电耦合器,是一种常用的电气隔离元件。
它由发光二极管(LED)、光敏晶体管(光敏三极管)和光电耦合器件组成。
光耦器件可将输入电信号转换为光信号,再将光信号转换为输出电信号,实现输入与输出之间的电气隔离。
在实际应用中,光耦器件的参数非常重要,在选型和设计过程中需要充分了解光耦参数的含义与特性。
本文将对光耦参数进行详解。
一、LED电流(IF)LED电流是指通过发光二极管的电流。
较大的LED电流可以提高器件的输出响应速度和增大耦合光功率。
通常,我们应选择适当的LED电流,确保LED工作在额定电流范围内,以提供合适的光照强度。
二、输出电压(VCEsat)输出电压指的是光敏晶体管或光敏三极管的饱和电压。
当输入光强度与电流满足一定条件时,光敏晶体管或光敏三极管的输出电压将保持在较低的水平。
输出电压越小,表示光耦器件的开关速度越快。
三、耐压(BVCEO)耐压是指光敏晶体管或光敏三极管的耐受反向电压。
它是光耦器件能够工作的最大反向电压。
在选择光耦器件时,应确保其耐压大于实际工作电压,以保证其正常、稳定的工作。
四、光电流传输比(CTR)光电流传输比是衡量光耦器件性能的重要指标。
它定义了光信号与输入电信号之间的转换效率。
光电流传输比越大,表示器件对输入光信号的转换效率越高。
五、工作温度范围(Topr)工作温度范围是指光耦器件能够正常工作的环境温度范围。
在实际应用中,应确保光耦器件的使用环境温度在工作温度范围内。
光耦参数的选择与应用需求密切相关。
在选型时,我们应根据具体使用情况,合理选择合适的光耦器件,并对参数进行综合考虑。
同时,由于光耦器件的参数与性能之间存在一定关系,对于不同的应用场景,也需要灵活调整参数,以满足特定的电路要求。
需要注意的是,在设计电路时,也需要充分考虑光耦器件周围的光电磁环境,合理布局电路板,以减少光耦器件与外界的电磁干扰,确保其正常工作。
从三个方面解析光耦参数

从三个方面解析光耦参数光耦作为一个隔离器件已经得到广泛应用,无处不在。
一般大家在初次接触到光耦时往往感到无从下手,不知设计对与错,随着遇到越来越多的问题,才会慢慢有所体会。
本文就三个方面对光耦做讨论:光耦工作原理;光耦的CTR 概念;光耦的延时。
本讨论也有认识上的局限性,但希望能帮助到初次使用光耦的同事。
理解光耦光耦是隔离传输器件,原边给定信号,副边回路就会输出经过隔离的信号。
对于光耦的隔离容易理解,此处不做讨论。
以一个简单的图(图.1)说明光耦的工作:原边输入信号Vin,施加到原边的发光二极管和Ri 上产生光耦的输入电流If,If 驱动发光二极管,使得副边的光敏三极管导通,回路VCC、RL 产生Ic,Ic 经过R L 产生V out,达到传递信号的目的。
原边副边直接的驱动关联是CTR(电流传输比),要满足Ic≤If*CTR。
光耦一般会有两个用途:线性光耦和逻辑光耦,如果理解?工作在开关状态的光耦副边三极管饱和导通,管压降所以通过分析实际的电路,除去隔离因素,用分析三极管的方法来分析光耦是一个很有效的方法。
此方法对于后续分析光耦的CTR 参数,还有延迟参数都有助于理解。
光耦CTR概要:1)对于工作在线性状态的光耦要根据实际情况分析;2)对于工作在开关状态的光耦要保证光耦导通时CTR 有一定余量;3)CTR 受多个因素影响。
2.1 光耦能否可靠导通实际计算举例分析,例如图.1 中的光耦电路,假设Ri = 1k,Ro = 1k,光耦CTR= 50%,光耦导通时假设二极管压降为1.6V,副边三极管饱和导通压降Vce=0.4V。
输入信号Vi 是5V 的方波,输出Vcc 是3.3V。
V out 能得到3.3V 的方波吗?。
光耦的参数

光耦的参数一、光耦的概述光耦是一种将电信号转换为光信号或者将光信号转换为电信号的器件。
它由发光二极管(LED)和光敏晶体管(OPTO)组成,通过LED发出的光束照射到OPTO上,产生电流,从而实现电-光或者光-电转换。
二、常见的光耦参数1. 公共模式抑制比(CMRR)公共模式抑制比是指在输入信号中同时存在共模干扰和差模信号时,输出信号中差模信号与共模干扰之比。
CMRR越大,说明设备对共模噪声的抑制能力越强。
2. 隔离电压隔离电压是指在输入端和输出端之间所能承受的最大电压。
通常情况下,隔离电压越高,说明设备隔离效果越好。
3. 带宽带宽是指一个设备能够传输的最高频率范围。
通常情况下,带宽越大,说明设备传输速度越快。
4. 响应时间响应时间是指从输入信号变化到输出信号变化所需要的时间。
响应时间越短,说明设备响应速度越快。
5. 耐压耐压是指设备在工作过程中所能承受的最大电压。
通常情况下,耐压越高,说明设备的安全性能越好。
三、光耦参数的影响因素1. 温度温度对光耦的影响比较大。
当温度升高时,光耦的灵敏度会下降,同时输出信号也会有所变化。
2. 光源功率光源功率对光耦的影响也比较大。
当光源功率过低时,会导致输出信号弱化甚至消失;而当光源功率过高时,则会导致输出信号失真。
3. 工作电流工作电流对光耦的影响也比较明显。
当工作电流过低时,会导致输出信号弱化甚至消失;而当工作电流过高时,则会导致输出信号失真。
4. 入射角度入射角度也会影响光耦的性能。
通常情况下,入射角度越小,则输出信号越强;而入射角度越大,则输出信号越弱。
四、如何选择合适的光耦参数1. 根据需求确定参数范围首先需要根据实际需求,确定所需要的光耦参数范围。
比如,如果需要传输高速信号,则需要选择带宽较大的光耦;如果需要保证设备的安全性能,则需要选择隔离电压和耐压较高的光耦。
2. 选择合适的品牌和型号在确定所需参数范围后,可以根据品牌和型号进行筛选。
通常情况下,知名品牌和口碑好的型号更为可靠。
p3554 光耦参数

光耦参数1. 引言光耦(Optocoupler)是一种能够将电气信号转换为光信号并传输的器件。
它由发光二极管(LED)和光敏晶体管(Phototransistor)组成,通过光的反射或透射来实现输入和输出之间的电气隔离。
在很多应用中,光耦能够提供安全、稳定和快速的电气隔离,因此在电子领域得到广泛应用。
本文将介绍光耦的参数及其意义,并对各个参数进行详细解释。
2. 光耦参数2.1 输入端参数2.1.1 输入电流(IF)输入电流是指流经发光二极管的电流,通常以毫安(mA)为单位。
输入电流决定了发光二极管产生的光强度,较大的输入电流会导致更亮的发光效果。
2.1.2 输入功率(Pd)输入功率是指输入端所需的功率,通常以瓦特(W)为单位。
输入功率与输入电流之间存在以下关系:Pd = IF * Vf其中Vf为发光二极管的正向工作电压。
2.2 输出端参数2.2.1 输出电流传输比(CTR)输出电流传输比是指输出电流与输入电流之间的比值,通常以百分比表示。
CTR是光耦的重要参数之一,它表示了光耦的转换效率。
较高的CTR意味着更高的输出电流,因此在设计中需要选择合适的CTR以满足应用需求。
2.2.2 最大输出电压(VCEO)最大输出电压是指光敏晶体管能够承受的最大输出端电压。
超过最大输出电压可能会导致器件损坏,因此在设计中需要确保输出端电压不超过VCEO。
2.2.3 最大耐受功率(Pc)最大耐受功率是指光敏晶体管能够承受的最大功率。
超过最大耐受功率可能会导致器件损坏,因此在设计中需要确保输入和输出功率不超过Pc。
2.3 响应时间响应时间是指光耦从接收到输入信号到产生相应输出信号所需的时间。
响应时间包括上升时间和下降时间两部分。
2.3.1 上升时间(tr)上升时间是指光敏晶体管从低电平到高电平的转换时间。
较小的上升时间意味着光敏晶体管能够更快地响应输入信号。
2.3.2 下降时间(tf)下降时间是指光敏晶体管从高电平到低电平的转换时间。
光耦参数详解范文

光耦参数详解范文光耦是一种将输入信号和输出信号以光线的形式进行隔离的电子器件。
它由一个光气室和一个光敏元件组成,通过控制输入信号使光源发出或屏蔽光线,从而控制输出信号的产生。
光耦的参数是评价其性能和适用范围的重要指标,下面对光耦的一些主要参数进行详细解释。
1.隔离电压:光耦的隔离电压是指在光气室中光线没有透过时,输入端和输出端之间可以承受的最大电压。
隔离电压越大,说明光耦具有更好的隔离效果,可以抵御更高的电压干扰。
2.电传导电流:电传导电流是指在光源未发光时,由于电耦合产生的输入端到输出端的电流。
电传导电流越小,表示光耦的隔离效果越好,输入信号不会通过电耦合效应影响输出信号。
3.触发电流:触发电流是指在光源发光时,输入端需要提供的最小电流值来触发光敏元件。
触发电流越大,说明光敏元件对光的敏感性越低,需要更大的驱动电流才能正常工作。
4.输出电流:输出电流是指光耦的输出端可以提供的最大电流值。
输出电流越大,表示光耦可以驱动更大负载的电路。
5.饱和电压降:光耦的饱和电压降是指在输出电流达到最大值时,输入端和输出端之间的电压降。
饱和电压降越小,表示光耦在负载较大时能够提供更稳定的电压输出。
6.堵塞电流:堵塞电流是指在光源未发光时,输出端到输入端存在的电流。
堵塞电流越小,表示光耦的隔离效果越好,基本可以忽略漏电流。
7.响应时间:响应时间是指光耦在输入信号变化后,输出信号达到稳定状态所需要的时间。
响应时间越短,表示光耦的响应速度越快,适用于高频率的信号传输。
8.工作温度范围:工作温度范围是指光耦能够正常工作的温度范围。
光耦应在规定的温度范围内工作,超出该范围可能会导致光耦的性能下降或损坏。
以上是一些光耦的主要参数,不同类型的光耦会有一些特殊的参数。
在选择光耦时,需要根据具体的应用需求选择合适的参数,以获得最佳的性能和可靠性。
总结起来,光耦的参数对于保障信号隔离的效果、增强电路稳定性和提高性能都起到非常重要的作用,因此在设计和选择光耦时,需要充分考虑这些参数的特点和限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光耦参数的理解
摘要:分析光耦各个指标参数的含义,以及日常设计中的注意事项,涉及CTR和延时。
关键字:光耦 CTR 延时
1 引言
光耦作为一个隔离器件已经得到广泛应用,无处不在。
一般大家在初次接触到光耦时往往感到无从下手,不知设计对与错,随着遇到越来越多的问题,才会慢慢有所体会。
本文就三个方面对光耦做讨论:光耦工作原理;光耦的CTR概念;光耦的延时。
本讨论也有认识上的局限性,但希望能帮助到初次使用光耦的同事。
1 理解光耦
光耦是隔离传输器件,原边给定信号,副边回路就会输出经过隔离的信号。
对于光耦的隔离容易理解,此处不做讨论。
以一个简单的图(图.1)说明光耦的工作:原边输入信号Vin,施加到原边的发光二极管和Ri上产生光耦的输入电流If,If驱动发光二极管,使得副边的光敏三极管导通,回路VCC、RL产生Ic,Ic经过R L产生Vout,达到传递信号的目的。
原边副边直接的驱动关联是CTR(电流传输比),要满足Ic≤If*CTR。
图.1
光耦一般会有两个用途:线性光耦和逻辑光耦,如果理解?
工作在开关状态的光耦副边三极管饱和导通,管压降<0.4V,Vout约等于Vcc(Vcc-0.4V 左右),Vout大小只受Vcc大小影响。
此时Ic<If*CTR,此工作状态用于传递逻辑开关信号。
工作在线性状态的光耦,Ic=If*CTR,副边三极管压降的大小等于Vcc-Ic*R L,Vout= Ic*R L =(Vin-1.6V)/Ri * CTR*R L,Vout大小直接与Vin成比例,一般用于反馈环路里面 (1.6V是粗略估计,实际要按器件资料,后续1.6V同) 。
对于光耦开关和线性状态可以类比为普通三极管的饱和放大两个状态。
比较项目光耦三极管
电路图
前级电流If(=(Vin-1.6)/Ri)Ib(=(Vin-0.6)/Ri)
电流限制条件
Ic ≤ CTR*If Ic ≤β* Ib
理解:If确定,光耦副边电流通道大小
确定,实际的Ic不能大于该通道
理解:Ib确定,三极管副边电流通道大
小确定,实际的Ic不能大于该通道饱和/开关状态
当R L阻值大时,Vcc/R L < CTR*If
光耦导通时,Vout ~= 0 V
当R L阻值大时,Vcc/R L <β* Ib
三极管导通时,Vout ~= 0 V 放大/线性状态
当R L阻值小时,Vcc/R L > CTR*If
此时,光耦副边会提高光敏三极管的导
通压降,限制实际的Ic在电流通道内
(Ic = CTR*If)。
光耦导通时,Vout输
出大小与Vin有线性关系。
当R L阻值小时,Vcc/R L >β* Ib
此时,三极管会提高管压降,限制实际
的Ic在电流通道内(Ic =β* Ib)。
三
极管导通时,Vout输出大小与Vin有线
性关系。
所以通过分析实际的电路,除去隔离因素,用分析三极管的方法来分析光耦是一个很有效的方法。
此方法对于后续分析光耦的CTR参数,还有延迟参数都有助于理解。
2光耦CTR
概要:1)对于工作在线性状态的光耦要根据实际情况分析;2)对于工作在开关状态的光耦要保证光耦导通时CTR有一定余量;3)CTR受多个因素影响。
2.1 光耦能否可靠导通实际计算
举例分析,例如图.1中的光耦电路,假设 Ri = 1k,Ro = 1k,光耦CTR= 50%,光耦导通时假设二极管压降为1.6V,副边三极管饱和导通压降Vce=0.4V。
输入信号Vi是5V的方波,输出Vcc是3.3V。
Vout能得到3.3V的方波吗?
我们来算算:If = (Vi-1.6V)/Ri = 3.4mA
副边的电流限制:Ic’≤ CTR*If = 1.7mA
假设副边要饱和导通,那么需要Ic’ = (3.3V – 0.4V)/1k = 2.9mA,大于电流通道限制,所以导通时,Ic会被光耦限制到1.7mA, Vout = Ro*1.7mA = 1.7V
所以副边得到的是1.7V的方波。
为什么得不到 3.3V的方波,可以理解为图.1光耦电路的电流驱动能力小,只能驱动1.7mA的电流,所以光耦会增大副边三极管的导通压降来限制副边的电流到1.7mA。
解决措施:增大If;增大CTR;减小Ic。
对应措施为:减小Ri阻值;更换大CTR光耦;增大Ro阻值。
将上述参数稍加优化,假设增大Ri到200欧姆,其他一切条件都不变,Vout能得到3.3V 的方波吗?
重新计算:If = (Vi – 1.6V)/Ri = 17mA;副边电流限制Ic’≤ CTR*If = 8.5mA,远大于副边饱和导通需要的电流(2.9mA),所以实际Ic = 2.9mA。
所以,更改Ri后,Vout输出3.3V的方波。
开关状态的光耦,实际计算时,一般将电路能正常工作需要的最大Ic与原边能提供的最小If之间 Ic/If的比值与光耦的CTR参数做比较,如果Ic/If ≤CTR,说明光耦能可靠导通。
一般会预留一点余量(建议小于CTR的90%)。
工作在线性状态令当别论。
2.2 CTR受那些因素影响
上一节说到设计时要保证一定CTR余量。
就是因为CTR的大小受众多因素影响,这些因素之中既有导致CTR只离散的因素(不同光耦),又有与CTR有一致性的参数(壳温/If)。
1)光耦本身:以8701为例,CTR在Ta=25℃/If=16mA时,范围是(15%~35%)
说明8701这个型号的光耦,不论何时/何地,任何批次里的一个样品,只要在Ta=25℃/If=16mA这个条件下,CTR是一个确定的值,都能确定在15%~35%以内。
计算导通时,要以下限进行计算,并且保证有余量。
计算关断时要以上限。
2)壳温影响:
Ta=25℃条件下的CTR下限确定了,但往往产品里面温度范围比较大,比如光耦会工作在(-5~75℃)下,此种情况下CTR怎么确定?还是看8701的手册:有Ta-CTR关系图:
从图中看出,以25度的为基准,在其他条件不变的情况下,-5度下的CTR是25度下的0.9倍左右,75度下最小与25度下的CTR持平。
所以在16mA/(-5~75℃)条件下,8701的CTR最小值是15%*0.9 = 13.5%
3) 受If影响。
假设如果实际的If是3.4mA,那么如何确定CTR在If=3.4mA / Ta=(-5~75℃)条件下的最小CTR值。
查看8701的If-CTR曲线。
图中给出了三条曲线,代表抽取了三个样品做测试得到的If-CTR曲线,实际只需要一个样品的曲线即可。
注:此图容易理解为下限/典型/上限三个曲线,其实不然。
大部分图表曲线只是一个相对关系图,不能图中读出绝对的参数值。
计算:选用最上面一条样品曲线,由图中查出,If=16mA时CTR大概28%,在If=3.4mA 时CTR大概在46%。
3.4mA是16mA时的46%/28% = 1.64倍;
所以,在If=3.4mA / (-5~75℃),CTR下限为 13.5% * 1.64 = 22.2%
以上所有分析都是基于8701的,其他光耦的特性曲线需要查用户手册,分析方法一样。
3光耦延时
上述CTR影响到信号能不能传过去的问题,类似于直流特性。
下面主要分析光耦的延时特性,即光耦能传送多快信号。
涉及到两个参数:光耦导通延时t plh和光耦关断延时t phl,以8701为例:在If=16mA/Ic=2mA时候,关断延时最大0.8uS,导通延时最大1.2uS。
所以用8701传递500k 以上的开关信号就需要不能满足。
下图是一个实测的延时波形(ch4原边(红),ch2副边(绿))
图.2
对于t p参数的设计更应该考虑余量,因为t p参数也受其他因素影响较多。
1) 受温度影响
8701的Ta-If特征曲线:温度升高,开关延时都会增大。
图.3
2) 受原边If大小影响
8701的tp-If特征曲线:If增大,关断延时减小,开通延时增大
图.4
3) 受副边Ic大小影响
8701的tp-R L特征曲线:R L减小,导通延时增大明显
图.5
针对具体电路的特点,计算最大延时时也是采用与CTR一样的方法,通过器件资料给定特定环境下的准确范围,然后逐一通过三个曲线确定具体电路下的光耦最大延时。
注:同一个型号的光耦CTR/延时特性是一致的,不同光耦的延时特性不尽相同,所以需要根据所用光耦的用户手册来确定。