受电弓原理介绍
受电弓原理介绍

受电弓原理介绍Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT第三节受电弓原理介绍受电弓主要功能是从额定电压DC1500V接触网上获取电源,向整个列车电气系统供电,同时还通过列车的再生制动系统将列车的动能转换为电能回馈给接触网供给其它在线列车的使用,起到双向传递枢纽的作用。
受电弓在刚性接触网和柔性接触网的线路上均能适用,在整个车辆速度范围内,受电弓有良好的动力学特性能,能够保证在各种轨道和速度下与接触网具有良好的接触状态和接触稳定性。
它在气路上的特别设计保证了它降弓时有明显的迅速下降和平稳下降两个阶段。
B2型车采用的是SBF920型单臂式受电弓。
(1)受电弓结构图10 SBF920型单臂式受电弓结构示意图单臂式受电弓主要特性有:重量轻,设计简单,维护少,卓越的接触性能以及安全的操作。
底架:底架由封闭的矩形空心钢管焊接而成。
底架上装有以下部件:支撑下支架轴承座,上支架及下支架缓冲垫,运输挂钩,降弓后支撑弓头的支撑弹簧,升弓装置,连接杆,气动降弓机构,绝缘子,高压连接板,休息位置指示器,锁钩支撑座,气动设备。
下支架:下支架由无缝钢管焊接而成,其底板位于底架上。
下支架上装有以下部件:装有升弓装置钢绳驱动的凸轮,气动降弓机构驱动的杠杆,平行导杆,减震器,上支架安装座。
上支架:上支架为无缝铝管的焊接结构,十字形钢缆连接结构使框架具有一定的横向稳定性。
上支架装有以下部件:弓头,连接杆,减振器,上升限位装置,受电头支撑轴。
连接杆:连接杆由一根用碳钢圆管制成的连接管和两个分别带有左旋及右旋螺纹的轴承座和两套绝缘轴承组成。
通过转动连接管,可调节和微调受电弓的几何形状。
弓头:弓头安装在一根位于上支架上的轴上,叶片弹簧用于悬承被固定在托架盒内的集电板。
平行导向滑环确保碳滑板与接触网的平行工作。
每个碳滑板的单个悬承可实现最大的接触特性,将磨损尽量减至最小。
悬承架在水平和竖直力异常大时保护弓头的叶片弹簧,防止其毁坏。
受电弓工作原理

受电弓工作原理受电弓是电力机车、电力动车组和有轨电车等电气牵引车辆上的重要部件,它的作用是通过接触网吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电,下面将从接触网、受电弓结构和工作过程等方面详细介绍受电弓的工作原理。
接触网是电气牵引车辆供电系统的重要组成部分,它一般由一根或多根导线组成,悬挂在架空设备上,为电气牵引车辆提供电能。
接触网一般由铜、铝等材料制成,具有良好的导电性能和机械强度。
电气牵引车辆行驶时,受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。
受电弓的结构一般由受电弓支架、受电弓杆、受电弓头、接触板等部件组成。
受电弓支架一般安装在电气牵引车辆的车顶上,通过受电弓杆与受电弓头相连接,受电弓头上安装有接触板。
当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电。
当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
接触板与接触网之间的接触面积较大,接触压力较大,能够保证良好的导电性能。
受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。
受电弓的工作过程一般分为接触、牵引和分离三个阶段。
在接触阶段,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
在牵引阶段,受电弓吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
在分离阶段,受电弓通过受电弓支架和受电弓杆与接触网分离,完成电能的传输。
总之,受电弓是电气牵引车辆上的重要部件,它通过与接触网保持接触,吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电,具有良好的导电性能和机械强度。
受电弓工作原理

受电弓工作原理
受电弓是电力机车接收电能的重要组成部分,它能够实现电力机车与电气化铁路之间的无线传输电能。
受电弓的主要工作原理是通过接触轨道上的架空线,将架空线上的直流或交流电能传输到电力机车上,以供电力机车运行。
下面将详细介绍受电弓的工作原理。
第一步:受电弓碰触架空线
当电力机车行驶到电气化铁路上时,受电弓的头部会碰触架空线,将架空线上的电能传输到电力机车的接触线上。
而架空线则是铁路电气化系统中的主要组成部分,其承担着将电能从发电站输送到电力机车的重要任务。
第二步:将电能传输到接触线
当受电弓碰触架空线后,架空线上的电能会通过受电弓的导电部件传送到电力机车的接触线上,其实现了电能的传输和连接。
受电弓的导电部件通常由碳刷、铜接线和钢丝绳等组成,以确保电能的顺畅传输。
第三步:将电能传输到牵引电机
当电能传输到电力机车的接触线上后,再通过变压器将电能进行调整,以适应电力机车牵引电机的工作需要。
牵引电机通常采用交流电机,其能够将电能转化为机械能,从而推动电力机车行驶。
综上所述,受电弓是电力机车在电气化铁路上接收电能的关键组成部分,其工作原理是通过接触架空线,将架空线上的电能传输到电力机车上,并通过变压器将电能进行调整,最终驱动电力机车牵引电机的工作,推动电力机车行驶。
高速铁路受电弓的工作原理

高速铁路受电弓的工作原理
1.升弓
压缩空气经电空阀均匀进入传动气缸,气缸活塞压缩气缸内的降弓弹簧,此时升弓弹簧使下臂杆转动,抬起上框架和滑板,受电弓匀速上升,在接近接触线时有一缓慢停滞,然后迅速接触接触线。
2.降弓
传动气缸内的压缩空气经受电弓缓冲阀迅速排向大气,在降弓弹簧的作用下,克服升弓弹簧的作用力,使受电弓迅速下降,脱离接触网。
为保证牵引电流的顺利流通,受电弓和接触线之间必须有一定的接触压力。
弓网实际接触压力由以下四部分组成:
(1)静态接触压力。
受电弓升弓系统施加于滑板,使之向上的垂直力为静态接触压力(一般为70 N或90 N)。
(2)动态接触压力。
接触悬挂本身存在弹性差异,接触线在受电弓抬升作用下会产生不同程度的上升,从而使受电弓在运行中产生上下振动,使受电弓产生一个与其本身换算质量相关的上下交变的动态接触压力。
(3)气动力。
受电弓在运行中受空气流作用会产生一个随速度增加而迅速增加的气动力。
(4)阻尼力。
受电弓各关节在升降弓过程中会产生阻尼力。
弓网接触压力能直观地反映受电弓滑板和接触线间的接触情况,它必须符合正态分布规律,在一定范围内波动。
如果太小,会增加离线率;如果太大,会使滑板和接触线间产生较大的机械磨耗。
为保证受电弓具有可靠的受流质量,应尽量减小受电弓的归算质量,增加接触悬挂的弹性均匀性。
滑板的质量和机电性能对受流质量影响很大。
受电弓工作原理

受电弓工作原理
1 接收电弓工作原理
接收电弓是一种电力设备,它能将高压电力转化为低压电力,也
可以改变电力的方向及大小。
它的运行原理很简单:通过电磁屏蔽的
原理,以及主动连接的原理,将高压电能转换为低压电能,实现电能
输出。
1.1 电磁屏蔽原理
接收电弓是一个磁混合肖特基电动机,其结构由发电机、接收电
弓和直流调节电路组成。
发电机顶端和发电机底部之间有一组变压器。
为了确保低压电源的安全供电,在变压器和发电机之间必须安装一组
接收电弓。
它由两个磁极和一个电阻组成。
一个磁极是静态的,另一
个极板由发电机产生的高频磁场驱动,它会动态屏蔽变压器的高压电场。
1.2 主动连接原理
接收电弓采用电磁吸力原理,其两个极板可自动产生连接电流,
从而控制电源线在一定范围内,将电源线成一定比例的电流,达到输
出低压电的目的。
当电流改变时,接收电弓的磁场也以相应的比例增
加或减小,从而保持输出的低压电的稳定性。
1.3 工作原理总结
接收电弓的工作原理是通过电磁屏蔽和主动连接的原理将高压电能转换为低压电能,实现电能的输出。
接收电弓的可靠性较高,高压电场屏蔽比较完善,可以确保低压电源的安全供电。
同时,能够自动调节电源输出,使其保持稳定性,以满足电力系统的对电能供应的要求。
城市轨道交通车辆受电弓介绍

(二)受电弓的工作原理 1. 电气系统 受电弓的电气系统包括高压电流电路和低压控制电路两大部分。 受电弓是车辆的受流部件。受电弓升起后与接触网接触,从接触网上集取电流,并将电
1-底架2-下臂杆3-上臂杆 4-液压阻尼器 5-拉 杆 6-平衡杆 7-气囊 8-受电弓控制箱
受电弓控制开关
(一)受电弓的控制 受电弓的上升或者下落,可以由司机通过受电弓控制开关“PCS”进行操作。该开关有四个位置来控制
受电弓的四条列车线。司机操纵台上受电弓控制开关PCS如图2-4所示。
升弓前需把两个接地隔离开关均打到“受电弓”位;且未插入车间电源插头。对受电弓的控制采用硬 线控制方式。采用硬线控制时,其升降弓由降双弓、升前弓降后弓、升双弓、升后弓降前弓四位置开关 控制,列车共设置升前弓列车线、降前弓列车线、升后弓列车线、降后弓列车线实现各种升降弓组合控 制。设置压力开关,当受电弓升弓到位或降弓到位时,能输出其状态。每个受电弓的状态显示在司机室 的HMI上,并在司机室上设置指示灯显示整个列车 受电弓状态。
流传送到车辆电气系统。接触网的电流首先由滑板流入受电弓弓头,然后依次经过上框架 、下臂杆后流入底架,最后经连接在受电弓底架上的车顶母线导入车辆电气系统,这是受 电弓的高压电流电路。 受电弓的控制电路的主令电器是司机室的升弓和降弓按钮,控制电路电源经过升/降弓按 钮及一系列控制环节,最终使受电弓电磁阀线圈得电或失电,从而控制受电弓气路的充气 或排气,实现对受电弓的控制。 司机按下升弓按钮,如果所有控制条件均满足,受电弓电磁阀电磁线圈控制电路导通, 将会使电磁阀线圈得电,从而使电磁阀阀口打开,使压缩空气进入受电弓气路部分。降弓 时,按下降弓按钮,将使受电弓电磁阀失电,从而关闭向受电弓气路供气的通路,同时打 开受电弓气囊的排气通路,使得受电弓降弓。
受电弓原理介绍

受电弓原理介绍Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第三节受电弓原理介绍受电弓主要功能是从额定电压DC1500V接触网上获取电源,向整个列车电气系统供电,同时还通过列车的再生制动系统将列车的动能转换为电能回馈给接触网供给其它在线列车的使用,起到双向传递枢纽的作用。
受电弓在刚性接触网和柔性接触网的线路上均能适用,在整个车辆速度范围内,受电弓有良好的动力学特性能,能够保证在各种轨道和速度下与接触网具有良好的接触状态和接触稳定性。
它在气路上的特别设计保证了它降弓时有明显的迅速下降和平稳下降两个阶段。
B2型车采用的是SBF920型单臂式受电弓。
(1)受电弓结构图10 SBF920型单臂式受电弓结构示意图单臂式受电弓主要特性有:重量轻,设计简单,维护少,卓越的接触性能以及安全的操作。
底架:底架由封闭的矩形空心钢管焊接而成。
底架上装有以下部件:支撑下支架轴承座,上支架及下支架缓冲垫,运输挂钩,降弓后支撑弓头的支撑弹簧,升弓装置,连接杆,气动降弓机构,绝缘子,高压连接板,休息位置指示器,锁钩支撑座,气动设备。
下支架:下支架由无缝钢管焊接而成,其底板位于底架上。
下支架上装有以下部件:装有升弓装置钢绳驱动的凸轮,气动降弓机构驱动的杠杆,平行导杆,减震器,上支架安装座。
上支架:上支架为无缝铝管的焊接结构,十字形钢缆连接结构使框架具有一定的横向稳定性。
上支架装有以下部件:弓头,连接杆,减振器,上升限位装置,受电头支撑轴。
连接杆:连接杆由一根用碳钢圆管制成的连接管和两个分别带有左旋及右旋螺纹的轴承座和两套绝缘轴承组成。
通过转动连接管,可调节和微调受电弓的几何形状。
弓头:弓头安装在一根位于上支架上的轴上,叶片弹簧用于悬承被固定在托架盒内的集电板。
平行导向滑环确保碳滑板与接触网的平行工作。
每个碳滑板的单个悬承可实现最大的接触特性,将磨损尽量减至最小。
悬承架在水平和竖直力异常大时保护弓头的叶片弹簧,防止其毁坏。
高铁受电弓工作原理

高铁受电弓工作原理
高铁受电弓是高速列车接触网供电系统中的重要部件,它通过接触网接收电能,然后
传输到列车的牵引、辅助设备上,是高铁列车正常运行的关键。
高铁受电弓的工作原理是
怎样的呢?下面我们将详细介绍。
高铁受电弓的主要部件包括受电弓主体、伸缩装置、接触轮组、电动传动机构等。
当
高铁列车行驶时,受电弓通过伸缩装置将接触轮组与接触网接触,然后通过电动传动机构
调整接触轮组的位置,以确保高铁列车与接触网之间始终保持合适的接触压力和接触面积。
这样,通过接触网传送过来的电能就能够通过接触轮组传输到列车的电气设备上。
高铁受电弓的工作原理可以分为两个主要过程:受电过程和接触过程。
在受电过程中,受电弓通过受电机构感应接触网上的电压,然后通过接触系统将电压传递到列车的牵引系统、辅助设备上。
而在接触过程中,受电弓通过伸缩装置、电动传动机构调整接触轮组的
位置,使其与接触网保持良好的接触状态,确保电能传输的安全可靠。
高铁受电弓的工作原理还涉及到接触网的供电系统。
高铁列车行驶时,接触网通过供
电系统提供电能,而受电弓则负责将接触网上的电能传输到列车上。
高铁受电弓的工作原
理不仅涉及到受电弓本身的工作原理,还包括与接触网供电系统之间的配合和协调。
高铁受电弓的工作原理是通过受电机构感应接触网上的电压,然后通过接触系统将电
压传递到列车的牵引系统、辅助设备上,同时通过伸缩装置、电动传动机构调整接触轮组
的位置,确保与接触网保持良好的接触状态,以确保电能传输的安全可靠。
高铁受电弓的
工作原理是高铁列车正常运行的关键,对于高铁运输的安全和稳定起着至关重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节受电弓原理介绍
受电弓主要功能是从额定电压 DC1500V接触网上获取电源,向整个列车电气系统供电,同时还通过列车的再生制动系统将列车的动能转换为电能回馈给接触网供给其它在线列车的使用,起到双向传递枢纽的作用。
受电弓在刚性接触网和柔性接触网的线路上均能适用,在整个车辆速度范围内,受电弓有良好的动力学特性能,能够保证在各种轨道和速度下与接触网具有良好的接触状态和接触稳定性。
它在气路上的特别设计保证了它降弓时有明显的迅速下降和平稳下降两个阶段。
B2型车采用的是
SBF920型单臂式受电弓
(1)受电弓结构
图10 SBF920型单臂式受电弓结构示意图
单臂式受电弓主要特性有:重量轻,设计简单,维护少,卓越的接触性能以及安全的操作。
底架:底架由封闭的矩形空心钢管焊接而成。
底架上装有以下部件:支撑下支架轴承座,上支架及下支架缓冲垫,运输挂钩,降弓后支撑弓头的支撑弹簧,升弓装置,连接杆,气动降弓机构,绝缘子,高压连接板,休息位置指示器,锁钩支撑座,气动设备。
下支架:下支架由无缝钢管焊接而成,其底板位于底架上。
下支架上装有以下部件:装有升弓装置钢绳驱动的凸轮,气动降弓机构驱动的杠杆,平行导杆,
减震器,上支架安装座。
上支架:上支架为无缝铝管的焊接结构,十字形钢缆连接结构使框架具有一定的横向稳定性。
上支架装有以下部件:弓头,连接杆,减振器,上升限位装置,受电头支撑轴。
连接杆:连接杆由一根用碳钢圆管制成的连接管和两个分别带有左旋及右旋螺纹的轴承座和两套绝缘轴承组成。
通过转动连接管,可调节和微调受电弓的几何形状。
弓头:弓头安装在一根位于上支架上的轴上,叶片弹簧用于悬承被固定在托架盒内的集电板。
平行导向滑环确保碳滑板与接触网的平行工作。
每个碳滑板的单个悬承可实现最大的接触特性,将磨损尽量减至最小。
悬承架在水平和竖直力异常大时保护弓头的叶片弹簧,防止其毁坏。
整体的平衡使得弓头能够在接触网上自由转动。
平行导杆:当受电弓进行升弓或降弓时,平行导杆可防止弓头失稳翻转。
升弓装置:受电弓通过驱动弹簧的作用升起并对接触网施加压力。
升弓机构通过驱动钢缆和安装在下支架上的凸轮动作。
液压减震器:液压减振器通过上支架、下支架之间的减振器实现振荡衰减。
它保证了碳滑板和接触网之间的良好接触。
减振器适合的工作温度在-40至80 摄氏度之间。
气动降弓机构:受电弓降弓是依靠固定在底架和下支架的杠杆之间气动降弓机构来完成。
受电弓下降通过装在气压缸里的压缩弹簧实现,通过下支架上的触
发臂上的活塞和活塞杆起作用。
如果气缸受到压缩空气的压力,则压缩弹簧会被活塞压缩,此时受电弓可升弓。
升弓和降弓时间通过两个节流阀进行调节。
若要调整受电弓的降弓位置,可以调整下支架的触发接头上的螺丝。
如果没有压缩空气可以利用,受电弓可以使用气动脚踏泵升弓。
底架和上支架间的轴承:受电弓装备有免维护,油脂润滑周期长的深沟滚珠球轴承。
每套轴承都装配有两个滚珠球轴承在加工好的轴上,轴承间的间隙填满了油脂。
轴承外端安装了两个金属保护盖,避免机械损伤。
电气设备:所有的轴承位置均通过分流导线进行旁路处理,以防止电流流经轴承。
分流导线由一根柔软镀锡铜线和终端线耳组成,在接线板上涂上含铜的导电脂,使分流导线和支架之间有更好的导电性能。
气动设备:气动设备由连接到气压缸的压缩空气供应线路组成。
气路中安装了两个节流阀,用于调节升弓和降弓速度。
降弓位置传感器:降弓位置传感器安装在底架的绝缘板上,当受电弓在降弓
位置时,传感器感应到上支架管并将信号传输到 VCU中,可在HMI屏上看到已降弓的图标。
(2)受电弓主要参数:
Aflr M 21U" A
图12升弓回路电路图
列车激活后,升弓允许继电器(=31-K205)得电,13-14、33-34常开触点闭合。
升弓时:按下升弓按钮(=21-S02)后,升弓保持继电器(=21-K205)得电,13-14、23-24常开触点闭合;升弓保持回路自锁,升弓阀(=21-Y01)得电, 气路图(图13)中U03处气路导通,气压大于2bar则能驱动气动设备将受电弓升起。
降弓时:按下降弓按钮(=21-S01),降弓继电器(=21-K210)得电,21-22、
21-32常闭触点断开;升弓保持回路断开,升弓保持继电器(=21-K205)、升弓阀(=21-丫01 )均失电;气路图(图13)中U03处气路截断排气,受电弓降下。
三北线列车牵引系统不同于三号线,采用的是车控式,即动力车上装置一台牵引逆变机组,驱动本节车上四个牵引电机,四个牵引电机完全并联运行。
这种方式的优点是:可以使动力车的主电路、控制电路和运行监控系统的构成比较简洁。
由于电路的节点数最少,可以有效减少故障点,有利于驱动系统工作可靠性的提高。
缺点是:同一车辆的轮径差有严格的限制;同时要求相应的牵引电机的转
矩--转速特性和转差率保持比较严格的一致;而且,由于运行中不可避免的轴重转移的影响,车辆两端的两个转向架所对应的轮轨粘着特性必然不一致,电机的输出转矩必须小于粘着特性最差的那个轮轨关系的限制,由于四个牵引电机是完
全并联工作,为了避免空转和打滑,这样就要求四个电机都按最差粘着限制的要求输出转矩,不利于最大牵引力的发挥,影响整车的运行性能。
三北线列车辅助系统采用的是分布式布置,集中式供电。
其优点是:
1、管理容易;
2、维护方便;
3、成本低;
4、使用效率高;
5、使用环境可以控制,适合辅助逆变器运行,使用寿命长;
6、可靠度高。
由于6台辅助逆变器为并联
运行,将故障的风险分散开来,是目前最可靠供电方式之一。