克拉通盆地的实例共28页
盆地分析(10)克拉通盆地分析

二、克拉通内盆地的分布 克拉通内盆地出现于远离板块边缘的地区, 克拉通内盆地出现于远离板块边缘的地区,其底部 远离板块边缘的地区 为大陆壳。这种盆地在各大陆上都有广泛分布。 为大陆壳。这种盆地在各大陆上都有广泛分布。 如北美洲的克拉通内盆 地有伊利诺斯、威利斯顿、 地有伊利诺斯、威利斯顿、 伊利诺斯 密歇根、哈德逊湾等大型盆 密歇根、哈德逊湾等大型盆 )。其中含大型 地(图6-4)。其中含大型 - )。 油田的盆地有伊利诺斯、 油田的盆地有伊利诺斯、威 利斯顿盆地。 利斯顿盆地。
中国大陆构造 经历了多旋回的演 经历了多旋回的演 化。古生代以来, 古生代以来, 主要表现为冈瓦那 大陆的裂解、 大陆的裂解、离散 和亚洲大陆的增生 、造山活动。 造山活动。
中国有三个主要的古地台 中朝地台、 区,即中朝地台、扬子地台 和塔里木地台。中朝地台是 和塔里木地台。 早元古代末固结的克拉通, 早元古代末固结的克拉通, 扬子地台和塔里木地台则是 晚元古代固结的克拉通。 晚元古代固结的克拉通。 中国大陆与北美、欧洲大 中国大陆与北美、 陆不同, 陆不同,不具有巨型的前寒 武纪克拉通,而是有一些微 武纪克拉通,而是有一些微 小的克拉通块体和其间由许 小的克拉通块体和其间由许 多造山带组合而成的拼贴大 陆或复合大陆, 陆或复合大陆,呈现出复杂 的镶嵌格局。 镶嵌格局。
二、克拉通内盆地的分布
南美洲有巴拉那、北亚马逊盆地等大型克拉通内盆地, 南美洲有巴拉那、北亚马逊盆地等大型克拉通内盆地,巴拉 有巴拉那 那盆地尚无工业性油气流,北亚马逊盆地有较大型油田。 那盆地尚无工业性油气流,北亚马逊盆地有较大型油田。 非洲的克拉通内盆地中, 锡尔特、伊利兹、撒哈拉、 非洲的克拉通内盆地中 , 锡尔特 、 伊利兹 、 撒哈拉 、 乍得 等盆地具大型和较大型油田。 等盆地具大型和较大型油田。 欧洲的克拉通内盆地中, 含大型油田的盆地有北海、 欧洲的克拉通内盆地中 , 含大型油田的盆地有北海 、 西北 德盆地; 德盆地; 俄罗斯克拉通内盆地中,西西伯利亚盆地具大型油田, 俄罗斯克拉通内盆地中 , 西西伯利亚盆地具大型油田 , 波 罗的盆地有油田。 罗的盆地有油田。 在澳洲的克拉通内盆地中,鲍恩、坎宁、库珀、 在澳洲的克拉通内盆地中 , 鲍恩 、 坎宁 、 库珀 、 瑟拉特等盆 地有油气田发现。 地有油气田发现。 中国的克拉通内盆地中,塔里木、四川、 中国的克拉通内盆地中 , 塔里木 、 四川 、 鄂尔多斯盆地有大 型油气田发现。 型油气田发现。
克拉通沉积盆地分析PPT

四 克拉通盆地的成因机制
• Geroge D.Clein的研究表明, 当沉降开始的时候, 古生代和中生代的克拉通盆地具有较窄的时间间 隔除此之外沉积物的堆积历史、沉积物充填体积 的变化以及区域性的角度不整合具有同时代性 (图2)。因此他们认为显生宙克拉通盆地的形成 与晚前寒武纪和晚古生代的泛大陆解体有关。泛 大陆的解体发生于580~500Ma 。其基本原理如 下:泛大陆作为一个热的透镜体引起下部地壳和 上部地幔的部分熔融, 伴随着非造山花岗岩的侵入, 侵入的花岗岩使大陆岩石圈削弱, 因此提供了一个 区域性的拉张带导致克拉通盆地的形成。
2克拉通盆地的成矿作用
简单克拉通盆地即是指稳定的克拉通盆地, 位于大陆板块内部, 包 括陆表海和狭义的简单克拉通盆地。其性质主要表现在稳定大陆板块 区内以均匀、缓慢、地势平坦、长期稳定、地形坡度很小的陆表海积 为主, 在陆表海沉积的基础上盆地深度加大, 从而形成了具有一定形 状的狭义简单克拉通盆地。 陆表海内源碳酸盐岩的沉积特征具有低能一高能一低能的基本格 局从而形成了特征岩石类型和结构构造以及生油层、储油层、盖层的 空间配置关系。 狭义简单克拉通盆地可理解为在陆表海的基础上发展起来的、比 陆表海深、沉积特征与陆表海相似的沉积盆地。其地质特征如下: (1)为近圆形、椭圆形、浅碟状盆地。陆表海一般无固定形状(2) 沉积厚度比陆表海沉积大。(3)虽然可以有一定的相变, 总体上处 于浅海相相带变化不明显, 呈渐变过渡从盆地边缘向盆地中心厚度加 大不明显。(4)现代研究资料盆地下部地慢隆起不明显, 现代地温和 古地温均不高。(4)整个石油地质特征和陆表海相似, 但沉积厚度比 陆表海大。(5)简单克拉通盆地的深度比陆表海大基本上由岩石圈 的物理性质及沉积负荷作用。 。
图5 古生代时华北板块弯曲机制及陆表海成因示 意图 Fig5 A skeleton map showing flexuring mechanism of North China plate and origin of epeiric sea,during Paleozoic a.(-O2期间,基底因张应力而呈背形,并从边 缘向中心发育浅水陆表海沉积;b.O2-C2期 间,基底因压应力而呈向形,并形成不整合 面
克拉通盆地——精选推荐

克拉通盆地克拉通盆地,在经典⼤地构造意义上是指近似刚体的⼤陆板块或稳定的地块内部发育的沉积盆地"因此克拉通盆地的特点是具有稳定的基底,沉积盖层具有相对低的沉积速率,⽽且沉积范围较⼴"这类盆地在北美!南美!⾮洲!欧洲!南极洲!澳⼤利亚等各个⼤陆板块都有⼴泛分布"中国陆上华北!扬⼦和塔⾥⽊古⽣代皆为此类沉积, 但与国外克拉通盆地相⽐⾯积较⼩.油⽓资源在不同类型盆地中的分布是极不均匀的。
克拉通盆地中含有丰富的油⽓资源,研究克拉通盆地的岩⽯圈结构与盆地含油⽓性的关系,对有效了解盆地类型的不同及其油⽓资源富集规律的差异很有帮助。
克拉通盆地区地壳厚度稳定,结晶地壳和“花岗岩层” 的厚度都相对较⼤。
克拉通盆地的基底和地壳底⾯都⽐较平缓,基地常为平缓的⼤型碟状坳陷,⼀般不存在强烈的莫霍⾯隆起,软流圈相对较深,中-新⽣代岩浆活动微弱,盆地热流值偏低。
但富含油⽓的⼤型克拉通盆地常出现与基底坳陷呈镜像对应的局部隆起。
克拉通盆地地壳具有向下增⼤的正常波速结构,可分为两层或三层。
如南美的巴拉那盆底利⽤S波的速度可将地壳分为上、下两部分:上地壳波速3600m/s,下地壳波速3650m/s,平均莫霍⾯深度在42km,上地幔以4700m/s的⾼速层为特征,延伸⾄200km。
利⽤天然地震转换波资料发现塔⾥⽊克拉通盆地地壳结构可分为三层,上地壳“花岗质”层P波速5600-6000m/s,中地壳波速6200-6700 m/s,并存在⾼速薄层,下地壳波速6500-6900 m/s,整个地壳厚度变化幅度在38-52km。
不同的克拉通盆地地震反射特征存在明显差异。
稳定的地盾区,上-中地壳反射较弱,下地壳出现成层性不好的强反射。
⽽存在活化古裂⾕或新断裂活动的克拉通盆地,反射特征与两侧地盾区明显不同,下地壳常常出现异⾼速体。
受后期地幔岩浆侵⼊影响的克拉通盆地其上地壳也可出现强反射。
克拉通盆地的上地幔常出现低速层和透明反射。
克拉通盆地沉降机理

1. 克拉通
一、基本概念
• Kober(1921)用Kratogen表示地壳较稳定部分,与造山带对应。
• Stille (1936,1941)最先使用“craton”一词,意指极其稳定的圆盾或地 盾,其为周缘地槽所环绕。
• Sloss (1988)将克拉通定义为具有厚层大陆地壳的广大区域,在几 百万至几千万年内其位置保持在海平面附近的几十米范围内。
• 美国地质研究所将克拉通定义为在漫长的地质时期保持相对稳定或 仅有微弱变形的地壳。包括地盾和地台。
• 板块构造中的克拉通主要是指大陆板块内的稳定大陆块体。
一、基本概念
2. 克拉通盆地
• 包括形成在克拉通内部和克拉通周边环境的盆地,前者即克拉通内盆 地(Interior cratonic basin),后者是指发育在克拉通边缘或靠近克拉 通边缘的盆地。
通盆地。(Cloetigh, 1988)
三、实例分析
1. 中国克拉通盆地
• 特征:平面上呈椭圆形或菱形;在剖面上呈碟状,多为复合多旋回克 拉通盆地,下伏有古裂谷或拗拉谷,上叠有前陆盆地或裂谷盆地。
• 形成机制:与超级大陆裂解有关,克拉通盆地的沉降主要与地幔柱升 降与板块开合运动有关, 随着超大陆裂解, 克拉通随之沉降, 形成克拉 通盆地。
• 关于地幔上涌(mantle diapirs) 的密歇根盆地的形成模式。
• 热的软流圈地幔岩石以底辟方式 刺穿岩石圈到达莫霍面附近,加
热下地壳导致其发生转化,由辉 长岩相变为榴辉岩。
• 当上涌地幔冷却后,盆地就在榴 辉岩负载的作用下发生沉降。
• 冷却过程中弹性岩石圈加厚,导 致岩石圈的抗弯刚度随时间逐渐 增强,这证实了热收缩机制。
期间,地壳很坚固,从而使地壳沉降减慢或 不发生沉降。
克拉通盆地

Klein等(1987)指出大型克拉通内 盆地似是在超级大陆裂解时开始的 ,具有同时性。 据此, Klein 提出了一种克拉通盆地 形成的模式: 熔融花岗岩上拱造成岩石圈拉伸(621a); 然后发生张裂,由断层控制产生沉降 (图6-21b); 最后由于花岗岩体变冷,张裂带发生 缓慢热沉降,形成碟形盆地(图 621c)。
岩建造、含煤-铝土-铁质岩建造、红层建造、陆相火山—
碎屑岩建造等。
2、沉积环境:常以大面积的浅海—滨海沉积为主,可有一 部分海陆交互相。
汇报提纲
克拉通盆地的定义和分类 克拉通盆地的构造特征 克拉通盆地的沉积特征 克拉通盆地形成机制 克拉通盆地实例分析
克拉通盆地的沉降原因
(1)岩石圈热拱起-侵蚀变薄-冷却沉降; (2)与岩石圈底部产生热柱有关的张裂作用; (3)因负荷作用(构造的、水和沉积的)而发生挠曲;由于先期张裂或扭张, 使岩石圈变薄; (4)由于火山活动使深处岩浆损耗,岩浆囊空虚,重力塌陷成盆; (5)由于岩浆侵入活动,造成岩石圈上拱或下弯; (6)由于致密物质的贯入,如超基性岩脉底碎或变冷的火成岩,在重力均衡调 整下发生沉降。 (7)由于在重力和热变质作用下发生相变,使密度增大,体积缩小,产生沉降 。 (8)板块边缘的俯冲、碰撞作用引起板内应力场变化产生挤压、伸展和走滑等 构造及沉降盆地; (9)由于构造活化作用,沿老构造再活动; (10)被动大陆边缘的蠕动,即中、下地壳塑性物质向洋逐渐蠕动,造成陆壳变 薄。
石炭纪末,塔里木板块与哈萨克斯坦--准葛尔板块最终碰撞拼贴,塔里木板块成为欧亚 大陆的一部分,古天山褶皱带形成。
克拉通盆地实例
(4)二叠纪:塔里木盆地中央 为一个克拉通内裂谷盆地,沉 积了褐色岩屑砂岩、泥岩,下 部夹两层玄武岩、凝灰岩,厚 度数百米至3600m。此外还有大 规模基性岩墙群侵入,属大陆 裂谷玄武岩和火成岩组成。塔 西南克拉通坳陷内为潮坪与河 流三角洲相砂泥岩夹生物碎屑 灰岩,厚330--1800m。
《油气成藏机理》第六章 2. 中国克拉通盆地

第六章中国克拉通——叠合型盆地油气藏形成演化§1.地台、地盾、克拉通、克拉通盆地§2.(狭义)克拉通盆地——Williston Basin§3.(广义)克拉通边缘前陆盆地——波斯湾盆地§4.(广义)克拉通内部裂谷盆地——中生代西西伯利亚盆地——新生代渤海湾盆地§5 .中国克拉通盆地第五章中国克拉通盆地——叠合盆地油气藏形成、调整与改造一、中国克拉通(盆地)二、准噶尔盆地输导体系形成演化与油气富集、调整与改造1.区域性构造演化差异2.输导体系形成演化3.油气富集与调整改造三、川东北地区长兴组-飞仙关组油气藏物理、化学改造1.川东北地区构造演化与天然气分布及其成藏意义2.普光2大型气藏调整改造圈闭形成演化克拉通层序——中上元古界-古生界-三叠系(华北克拉通破坏后相对稳定的区域)油气成藏地质要素:(1)克拉通层序:油源岩不发育,主要发育海陆交互相煤系。
(2)前陆层系:陆相源岩不发育油气成藏过程:油气成藏过程:)2期不整合——储层与地层圈闭形成渤海湾盆地:新生代代的裂谷盆地拗陷层断陷层扬子地台内部——四川盆地四周都是山脉,类似与前陆盆地四川盆地多期造山运动形成的前缘隆起中国克拉通(盆地)——塔里木地台/克拉通塔里木克拉通破坏: (1)塔里木盆地 (2)山系中国克拉通(盆地)——塔里木盆地 56×104km2中国克拉通(盆地)——塔里木盆地克拉通层系: 基底:前震旦系变质岩; 沉积盖层:震旦系-古生界。
前陆层系:中新生界盆地结构: 呈现多期前陆的叠合盆地二、准噶尔盆地输导体系形成演化与油气藏富z集、调整与改造 1.区域性构造演化差异z2.输导体系形成演化z3.油气富集与调整改造z准噶尔盆地勘探现状:从油气输导体系分析油气聚集北缘3区块 北缘1区块北缘4区块P源区/混C精河西缘区块区块卡1中部1区块庄1 盆5征1 P源区/ 混有JJ 主/混有E中部3区块四棵树区块霍尔果斯气田J 源区伊林黑比尔 根西区块北缘2区块泉1青格里山C/P混源区 区块(气为主)中部2区块董1J/P为主 混有C中部4区块东缘区块柴窝堡区块博格达山2区块 博格达山1区块构造演化阶段的划分 压陷(前陆)盆 地阶段均衡挠曲盆 地阶段扭压-挠曲盆地 阶段 裂陷盆 地阶段YAD7YAD5SN6SN5SN4SN2EW4 EW6EW7EW8现今构 造E沉积前构造K1沉积前构造J1b沉积前构造 T沉积前构 造 P2沉积前构造Ysn5测线南缘断褶带 形成,油气 藏发生后期 调整稳定埋藏, 有利于侏罗 纪烃源岩的 成熟车-莫古隆 起形成,控 制盆地沉积 格局,生油 岩、储层分 布有效烃源 岩发育(1) 西北缘:近源强充注、复式阶梯输导、同源多期叠 加型油气聚集带050 km排1沙1庄1彩南排2成1永1 董1P1源岩 P2源岩西北缘二叠系油气系统油气输导体系不整合+断裂油气 侧向与垂向输导体系烃源岩层系: 扇体+不整合 油气汇聚输导体系P2xP2xP2xP1j P2x输导体系 (1)区域性基底浅变质火成岩不整合侧向输导通道; (2)烃源岩层系砂体与烃源岩大面积互层式组合 (3)输导体系继承性性叠加(3)输导体系继承性叠加:组合形态不变红浅11 喜山期克80燕山期现今(生气阶段)印支期J3:155Ma (生油高峰) T3:222Ma (生烃开始)P2:245MaCP1 P2+3TJ1 J2+3K1K2E350300200100海西期印支晚燕山中 燕山晚期 燕山末N-Q 地质时代 地质年龄0 (Ma)喜山晚 构造活动 油气生成输导体系 P 圈闭形成陆梁:远源强充注、复式侧向汇聚、同源多期叠加型 油气聚集带北缘3区块 北缘1区块北缘4区块北缘2区块泉1精河西缘区块区块卡1中部1区块庄1 盆5 征1中部3区块四棵树区块霍尔果斯气田伊林黑比尔 根西区块中部2区块董1中部4区块柴窝堡区块青格里山 区块东缘区块 博格达山2区块博格达山1区块输导体系:断裂、不整合、砂体构造的高效输导网络陆梁地区输导网络模式图K JP盆1井西凹陷基东断裂石西油田燕山中期J2x J1sJ1bT油藏P-C输导体系继承性性叠加:组合形态不变喜山期永1 征1 沙1夏盐3现今(J生烃高峰)永1 征1 沙1夏盐 3燕山期 印支期J1bP2w P1fK2:96MaP2w P1fK1:120MaJ1s:178Ma (P生烃高峰) T3:210Ma (P生烃开始)成藏要素与成藏作用时空有效配置CP1 P2+3TJ1 J2+3K1K2350300200100E N-Q 地质时代地质年龄 0 (Ma)海西期印支晚盆1井西凹陷油源燕山中 燕山晚期 燕山末喜山晚 构造活动 油气生成 输导体系 P 圈闭形成准噶尔盆地南缘:主要形成了一系列大中型气田北缘3区块 北缘1区块北缘4区块P源区/混C精河西缘区块区块卡1中部1区块庄1 盆5征1 P源区/ 混有JJ 主/混有E中部3区块四棵树区块霍尔果斯气田J 源区伊林黑比尔 根西区块北缘2区块泉1青格里山C/P混源区 区块(气为主)中部2区块董1J/P为主 混有C中部4区块东缘区块柴窝堡区块博格达山2区块 博格达山1区块南缘侏罗系油气系统:多断组合垂向汇聚型输导体系2000 0-2000 -4000 -6000 -8000 -10000 -12000H(m)清水背斜N1t+Q N1s E2+3a E1+2z K1-2 K1 J2J1 +Pz东湾背斜TG1N1t+Q N1s E2+3a E1+2z K1-2 K1 J2 J1 +Pz0吐谷鲁背斜N20000-2000-4000 -6000-80005km-10000 -12000H(m)CP1 P2+3 T J1 J2+3 K1K2350300海西期200印支晚100燕山中 燕山晚期 燕山末E N-Q 地质时代地质年龄 0 (Ma)喜山晚 构造活动源岩生烃呼图壁、霍尔果斯 第一排构造带输导体系 J-E圈闭形成准噶尔盆地中部地区:小型油气田北缘3区块 北缘1区块北缘4区块P源区/混C精河西缘区块区块卡1中部1区块庄1 盆5征1 P源区/ 混有JJ 主/混有E中部3区块四棵树区块霍尔果斯气田J 源区伊林黑比尔 根西区块北缘2区块泉1青格里山C/P混源区 区块(气为主)中部2区块董1J/P为主 混有C中部4区块东缘区块柴窝堡区块博格达山2区块 博格达山1区块油气输导格架:油源通道主要是中生代走滑断裂发育NNE、 NWW向 剪切断裂发育近NWW向压扭性断 裂,被新近纪盖层滑脱断 褶带叠加之上发育近NWW向压 扭性断裂,被新近 纪断褶带叠加之上北缘压扭性断褶带 中部叠加褶皱带南缘叠加断褶带油气输导格架:油源通道主要是中生代走滑断裂单断/多断组合“汇聚” 型小断距压扭性断裂,输导能力小于西北缘与南缘逆断裂中2区块断裂不发育中部2区块634.6地震反射剖面中部地区:储集体输导层形态发生变化,油气藏遭受调整永1 征1 沙1夏盐3地 深度 岩性GOI (%)层 (m) 剖面0 10 20 30地 深度 岩性 层 (m) 剖面0 10GOI (%) 20 304320中部古隆起掀斜J1bP2w P1fK2:96MaP2w P1fK1:120Ma中部古隆起形成阶段J1s:178Ma (P生烃高峰)T3:210Ma (P生烃开始)J1s2243504400古油水界面4385m 庄1井4380古油水界面4365m庄101井CP1 P2+3 TJ1 J2+3 K1K2 E350 300200100海西期 印支晚 燕山中燕山晚期燕山末J末遭破 坏N-Q 地质时 地代质年0 龄(Ma) 喜山晚构造活动源岩生烃输导体系 P圈闭形成J1s2243604340叠合型盆地油气富集规律(1)构造相对稳定、继承性发展构造区域有利 于油气富集保存——侧向高度汇聚型:西北缘、陆梁隆起(2)多期构造叠合区域导致油气调整、改造:垂向中等汇聚型与侧向调整型:盆地中部三、川东北地区长兴组-飞仙关组油气藏物理、化学改造1.川东北地区构造演化与天然气分布及其成藏意义(1)构造活动与油气输导、汇聚(2)构造活动、圈闭演化与油气充注与保存2.普光2大型气藏调整改造(1)圈闭形成演化古油藏充注→原油裂解气(2)TSR改造第六章中国克拉通——叠合型盆地油气藏形成演化§1.地台、地盾、克拉通、克拉通盆地§2.克拉通边缘前陆盆地——波斯湾盆地§3.克拉通内部裂谷盆地——中生代西西伯利亚盆地——新生代渤海湾盆地§4.克拉通内部坳陷型盆地——Williston Basin§5.中国克拉通盆地第六章中国克拉通盆地——叠合盆地油气藏形成、调整、改造与破坏一、中国克拉通(盆地)二、准噶尔盆地输导体系形成演化与油气富集、调整与改造1.区域性构造演化差异2.输导体系形成演化3.油气富集与调整改造三、四川盆地油气藏形成、调整、改造与破坏1.四川盆地——多次构造运动的叠合盆地2.前陆冲断带油气藏的破坏3.前渊凹陷古油藏的化学改造—普光气藏的形成与改造旋回运动事件重要的地质影响时间运动方式地层剥蚀褶皱成山,变质,伴固结成基底,发育安宁河、龙四川盆地周缘山系——不同期次构造运动形成,具有各自的构造线方向四川盆地周缘山系——不同期次构造运动形成,具有各自的构造线方向1. 四川盆地——多次构造运动的叠合盆地不同期次构造层系在平面上的复合,垂向上的叠置。
克拉通盆地的成因

克拉通盆地的成因George de V.Klein Albert T.Hsui;项才【期刊名称】《地质科技情报》【年(卷),期】1989()1【摘要】构造沉降曲线表明,伊利诺斯、密执安和威利斯顿(Williston)盆地都由裂谷作用过程中初始断裂控制的机械沉降和随后的热沉降而形成。
伊利诺斯盆地的热沉降约开始于525Ma,密执安盆地约520~460Ma,威利斯顿盆地约530~500Ma。
在伊利诺斯盆地,与阿勒格尼—海西造山运动对应的前陆挠曲沉降造成了该盆地的第二个沉降幕(中密西西比世至早二叠世)。
由于年代明确的二叠纪黄长煌斑岩的侵入,推断伊利诺斯盆地在二叠纪有过再生的裂谷作用,这些侵入岩通常与裂谷作用有关。
这些克拉通盆地的形成过程仍有争议。
过去的研究者提出,地壳底部的地幔相变、火成侵入后(地壳)均衡的非补偿剩余质量的机械沉降、地幔羽侵入地壳或区域热变质事件是盆地产生的原因。
北美、欧洲、非洲和南美的克拉通盆地具有相同的形成时代(约550~500Ma)、沉积物堆积史、沉积充填体积随时间的变化以及区际不整合的时代也是相同的。
它们相同的形成时代说明克拉通盆地的产生与晚前寒武纪超级大陆的解体相对应。
在与超级大陆解体相应的伸展构造作用期间,该超级大陆象热透镜一样使下地壳和上地幔发生部分熔融并继之以非造山花岗岩的侵位。
非造山花岗岩及其它部分熔融侵入岩的侵入使大陆岩石圈变弱。
这样就造成了一个局部的区域伸展带,并使这些非造山花岗岩?【总页数】5页(P18-22)【关键词】克拉通盆地;盆地沉积;裂谷作用;海西造山运动;热沉降;沉积充填;早二叠世;不整合;沉积物堆积;前陆【作者】George de V.Klein Albert T.Hsui;项才【作者单位】【正文语种】中文【中图分类】P5【相关文献】1.鲁西中生代盆地演化、迁移特征及构造控制因素、形成背景研究/鲁西铜石岩体的锆石SHRIMP U-Pb年龄及其地质意义/粤北下庄铀矿田鲁溪--仙人嶂辉绿岩脉的地球化学特征与成因/赣南车步辉长岩体的地质地球化学特征及其意义/中国克拉通盆地油气勘探/深海沉积物中的碲异常 [J],2.塔里木盆地克拉通内古隆起的成因机制与构造类型 [J], 何登发;周新源;杨海军;管树巍;张朝军3.华北克拉通胶莱盆地马山地区早白垩世粗面英安岩岩石成因 [J], 何登洋;邱昆峰;于皓丞;黄雅琪;丁正江;申颖4.渤海湾盆地石臼坨东428潜山构造成因解析:华北克拉通破坏的深度揭示 [J], 王宇;陈昭旭;李法坤;周琦杰;袁菁莲;徐春强;郭玲莉;刘永江;王光增;刘博;李三忠;关庆彬;蒋立伟5.克拉通盆地类型及成因机制综述 [J], 刘波;钱祥麟;王英华因版权原因,仅展示原文概要,查看原文内容请购买。
克拉通盆地的实例PPT课件

2021/6/7
12
克拉通盆地的实例
(5)侏罗一早第三纪 可能由于板内均衡调整,形成
克拉通内部沉降型拗陷。侏罗系 全盆基本为内陆河湖相碎屑岩夹 煤层。
白垩系以红色砂岩、砾岩为主 ,厚数百米至 1470 m,在塔西 南有海相沉积。
下第三系为含膏盐红色碎屑岩 ,塔西南有海相沉积。
2021/6/7
13
克拉通盆地的实例
(6)晚第三纪一第四纪 始新世末印度板块与欧亚大 陆的碰撞,造成大面积板内受 到挤压、抬升。由于天山、昆 仑山等迅速抬升造成克拉通内 活化山前盆地和山间盆地发育 ,塔里木盆地南北两间就发育 了这类盆地。
2021/6/7
14
第四节 克拉通盆地的实例
5、鄂尔多斯盆地:中朝地台西部,为太古界和下元古界变质基底。 中晚元古代时,该区发育克拉通边缘的拗拉槽。贺兰拗拉槽是秦祁海槽三 叉裂谷系伸入中朝地台的一支。 古生代时,该区是中朝地台古生代克拉通盆地的一部分。早古生代时,该 区大部为克拉通内部拗陷,沉积了 400~800 m厚的寒武系-中奥陶统台地相 碳酸盐岩。西南缘克拉通边缘沉积了碎屑岩和碳酸盐岩,厚逾 4000或5000m。 加里东运动,秦祁海槽封闭,鄂尔多斯及其西、南缘隆升并遭受剥蚀。
第三纪时,盆内大部隆起,周 缘产生地堑系。
2021/6/7
16
第四节
5、鄂尔多斯盆地 盆地有中上元古界、下古生界
、石炭-二叠系、三叠系延长组 、侏罗系延安组等五套生烃岩。 前两者以生气为主,中生界以生 油为主。主要圈闭类型为大面积 的岩性和地层圈闭。已发现奥陶 系顶面风化壳大型地层气藏、二 叠系的构造-岩性型气田、三叠 系和侏罗系的构造岩性型和岩性 型油藏。后两者储层皆为砂岩, 它们多为低渗透,岩相厚度变化 大,油藏面积小。