机械振动大作业-求初始激励的自由振动响应

机械振动大作业-求初始激励的自由振动响应
机械振动大作业-求初始激励的自由振动响应

图示系统中, m1=m2=m3=m, k1=k2=k3=k, 设初始位移为1, 初始速度为0, 求初始激励的自由振动响应。

要求:

(1)利用影响系数法求解刚度阵K和质量阵M,建立控制方程;(15分) (2)求解系统固有频率和基准化振型;(13分)

(3)求解对初始激励的响应(运动方程);(12分)

(4)利用软件仿真对初始激励响应曲线(Matlab,simulink,excel均可),给出仿真程序(或框图)、分析结果;尝试对m、k赋值,分析曲线变化;

(10分)

(5)浅谈对本课程的理解、体会,对授课的意见、建议;(10分)

字迹清晰,书写规整。(10分)

(1)利用影响系数法求解刚度阵K 和质量阵M ,建立控制方程;

①求解刚度矩阵K 令[]T

00

1

=X

,则弹簧变形量δ=[1 1 0]T

在此条件下系统保持平衡,按定义需加于三物块的力312111、、k k k 如图所示

根据平衡条件可得

0,,2312222121221111=-=-=-==+=+=k k k k k k k k k k k δδδ

同理,令[]T

010=X 得

k k k k k k k k k k -=-==+=-=-=3323222212,2,

令[]T

100=X 得

k k k k k k k ===-==33332313,-,0

故刚度矩阵为

②求解质量矩阵M

令[

]T

001=X 得m m m ==111,021=m ,031=m 令[]T

010=X 得012=m ,m m m ==222,032=m

令[]T 100=X 得013=m ,023=m ,m m m ==333

故质量矩阵为

③建立控制方程 应用叠加原理可得:

002020

00000

321321=???

?

?

??????????????

?----+???????????????????

?x x x k k

k k k k k x x x m m

m

(2)求解系统固有频率和基准化振型;

①求解固有频率 令

33

233322323123123

22322

222212211321312

21211211=---------m k m k m k m k m k m k m k m k m k ωωωωωωωωω

代入解得

②求解基准化振型

将ω1、ω2、ω3分别代入([K]-ω2[M]){X}=0得:

(3)求解对初始激励的响应(运动方程);对初始条件标准化:

标准坐标下的初始激励响应:

广义坐标下的初始激励响应

(4)利用软件仿真对初始激励响应曲线(Matlab,simulink,excel 均可),给出仿真程序(或框图)、分析结果;尝试对m、k赋值,分析曲线变化;

利用MATLAB对初始激励响应曲线在m=1, k=1; m=1, k=10; k=10, m=1; m=1,

k=10 四种情况下进行仿真,仿真源程序与仿真结果见附录。

当m=1,k=1时,仿真结果如图1所示,可以看出x1,x2,x3均呈现周期性变化;当m=1,k=10时,仿真结果如图2所示,1、2两图相比较可知,变化周期与k负相关;当m=10,k=1时,仿真结果如图3所示,1、3两图相比较可知,变化周期与m正相关;当m=10,k=10时,仿真结果如图4所示,1、4两图相比较可知,m、k增大倍数相同时,变化周期不变。

附录:MATLAB仿真程序

①k=1 m=1 时的初始激励响应曲线仿真

程序如下:

clear all

close all

clc

k=1;m=1;

w1=sqrt(0.198*k/m)

w2=sqrt(1.555*k/m)

w3=sqrt(3.247*k/m)

t=linspace(0,100,10000);

x1=0.543.*cos(w1.*t)+0.349.*cos(w2.*t)+0.107.*cos(w3.*t) x2=0.979.*cos(w1.*t)+0.155.*cos(w2.*t)-0.134.*cos(w3.*t) x3=0.122.*cos(w1.*t)-0.28.*cos(w2.*t)+0.059.*cos(w3.*t) plot(t,x1,'m-',t,x2,'r-',t,x3,'k-');

title('k=1 m=1时的初始激励响应曲线');

xlabel('t/s');

ylabel('x(t)/m');

legend('x1','x2','x3');

②k=1 m=10时的初始激励响应曲线

clear all

close all

clc

k=1;m=10;

w1=sqrt(0.198*k/m)

w2=sqrt(1.555*k/m)

w3=sqrt(3.247*k/m)

t=linspace(0,100,10000);

x1=0.543.*cos(w1.*t)+0.349.*cos(w2.*t)+0.107.*cos(w3.*t) x2=0.979.*cos(w1.*t)+0.155.*cos(w2.*t)-0.134.*cos(w3.*t) x3=0.122.*cos(w1.*t)-0.28.*cos(w2.*t)+0.059.*cos(w3.*t) plot(t,x1,'m-',t,x2,'r-',t,x3,'k-');

title('k=1 m=10时的初始激励响应曲线'); xlabel('t/s');

ylabel('x(t)/m');

legend('x1','x2','x3');

③k=10 m=1时的初始激励响应曲线clear all

close all

clc

k=10;m=1;

w1=sqrt(0.198*k/m)

w2=sqrt(1.555*k/m)

w3=sqrt(3.247*k/m)

t=linspace(0,100,10000);

x1=0.543.*cos(w1.*t)+0.349.*cos(w2.*t)+0.107.*cos(w3.*t) x2=0.979.*cos(w1.*t)+0.155.*cos(w2.*t)-0.134.*cos(w3.*t) x3=0.122.*cos(w1.*t)-0.28.*cos(w2.*t)+0.059.*cos(w3.*t) plot(t,x1,'m-',t,x2,'r-',t,x3,'k-');

title('k=10 m=1时的初始激励响应曲线');

xlabel('t/s');

ylabel('x(t)/m');

legend('x1','x2','x3');

④k=10 m=10时的初始激励响应曲线

clear all

close all

clc

k=10;m=10;

w1=sqrt(0.198*k/m)

w2=sqrt(1.555*k/m)

w3=sqrt(3.247*k/m)

t=linspace(0,100,10000);

x1=0.543.*cos(w1.*t)+0.349.*cos(w2.*t)+0.107.*cos(w3.*t) x2=0.979.*cos(w1.*t)+0.155.*cos(w2.*t)-0.134.*cos(w3.*t) x3=0.122.*cos(w1.*t)-0.28.*cos(w2.*t)+0.059.*cos(w3.*t) plot(t,x1,'m-',t,x2,'r-',t,x3,'k-');

title('k=10 m=10时的初始激励响应曲线');

xlabel('t/s');

ylabel('x(t)/m');

legend('x1','x2','x3');

机械振动和机械波知识点总结与典型例题

高三物理第一轮复习《机械振动和机械波》 一、机械振动: (一)夯实基础: 1、简谐运动、振幅、周期和频率: (1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。 特征是:F=-kx,a=-kx/m (2)简谐运动的规律: ①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。 ②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。 ③振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。 ④当质点向远离平衡位置的方向运动时,质点的速度减小、动量减小、动能减小,但位移增大、回复力增大、加速度增大、势能增大,质点做加速度增大减速运动;当质点向平衡位置靠近时,质点的速度增大、动量增大、动能增大,但位移减小、回复力减小、加速度减小、势能减小,质点做加速度减小的加速运动。 ④弹簧振子周期:T= 2 (与振子质量有关,与振幅无关) (3)振幅A :振动物体离开平衡位置的最大距离称为振幅。它是描述振动强弱的物理量, 是标量。 (4)周期T 和频率f :振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为频率,单位是赫兹(Hz )。周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、单摆: (1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。 (2)单摆的特点: ○ 1单摆是实际摆的理想化,是一个理想模型; ○ 2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100 时,单摆的振动是简谐运动,其振动周期T= g L π 2。 (3)单摆的应用:○1计时器;○2测定重力加速度g=2 24T L π. 3、受迫振动和共振: (1)受迫振动:物体在周期性驱动力作用下的振动叫受迫振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 (2)共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。 ○ 2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。 4、简谐运动图象: (1)特点:用演示实验证明简谐运动的图象是一条正弦(或余弦)曲线。 (2)简谐运动图象的应用: ①可求出任一时刻振动质点的位移。 ②可求振幅A :位移的正负最大值。 ③可求周期T :两相邻的位移和速度完全相同的状态的时间间隔。 ④可确定任一时刻加速度的方向。 ⑤可求任一时刻速度的方向。 ⑥可判断某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。 πm K

《大学物理学》机械振动练习题

《大学物理学》机械振动自主学习材料 一、选择题 9-1.一个质点作简谐运动,振幅为A ,在起始时质点的位移为2 A - ,且向x 轴正方向运动, 代表此简谐运动的旋转矢量为( ) 【旋转矢量转法判断初相位的方法必须掌握】 9-2.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( ) (A )22 2cos()3 3x t ππ=-; (B )2 22cos()33x t ππ=+ ; (C )4 22cos()33x t ππ=-; (D )4 22cos()33 x t ππ=+ 。 【考虑在1秒时间内旋转矢量转过 3 ππ+,有43 πω= 】 9-3.两个同周期简谐运动的振动曲线如图所示, 1x 的相位比2x 的相位( ) (A )落后 2 π ; (B )超前 2 π ; (C )落后π; (D )超前π。 【显然1x 的振动曲线在2x 曲线的前面,超前了1/4周期,即超前/2π】 9-4.当质点以频率ν作简谐运动时,它的动能变化的频率为( ) (A )2 ν ; (B )ν; (C )2ν; (D )4ν。 【考虑到动能的表达式为2 2 2 11sin () 2 2 k E m v kA t ω?= = +,出现平方项】 9-5.图中是两个简谐振动的曲线,若这两个简谐振动可 叠加,则合成的余弦振动的初相位为( ) (A )32 π; (B )2π ; (C )π; (D )0。 【由图可见,两个简谐振动同频率,相位相差π,所以,则合成的余弦振动的振幅应该是大减小,初相位是大的那一个】 9--1.一物体悬挂在一质量可忽略的弹簧下端,使物体略有位移, 测得其振动周期为T ,然后将弹簧分割为两半,并联地悬挂同 一物体,再使物体略有位移,测得其振动周期为'T ,则 '/T T 为( ) ()A ()B () C ()D ) s 1 -2 -

哈工大机械振动基础大作业

《机械振动基础》大作业 (2015年春季学期) 题目基于MATLAB求系统特性 姓名 学号 班级 专业机械设计制造及其自动化 报告提交日期 哈尔滨工业大学

报告要求 1.请根据课堂布置的2道大作业题,任选其一,拒绝雷同和抄袭; 2.报告最好包含自己的心得、体会或意见、建议等; 3.报告统一用该模板撰写,字数不少于3000字,上限不限; 4.正文格式:小四号字体,行距为倍行距; 5.用A4纸单面打印;左侧装订,1枚钉; 6.课程报告需同时提交打印稿和电子文档予以存档,电子文档由班 长收齐,统一发送至:。 7.此页不得删除。 评语: 成绩(15分):教师签名: 年月日

解多自由度矩阵的认识体会。二、MATLAB程序图: >> m=[]; k1=[]; k=[]; c=[]; c1=[]; for i=1:9 a=input('输入质量矩阵m:'); m(i,i)=a; end ; for j=1:9 b=input('输入刚度系数k:'); k1(1,j)=b; end for l=1:8 k(l,l)=k1(l)+k1(l+1); k(9,9)=k1(9); k(l+1,l)=-k1(l+1); k(l,l+1)=-k1(l+1); k(9,8)=-k1(9);

k(8,9)=-k1(9); end ; syms w; B=k-w^2*m %系统的特征矩阵B Y=det(B); %展开行列式 W=solve(Y); %求解wh lW=length(W); [V,D]=eig(k,m); for I=1:9 for J=1:9 V(J,I)=V(J,I)/V(5,I); end end V W 三 MATLAB结果输入输出: 程序输入内容: 输入质量矩阵m:1 输入质量矩阵m:2 输入质量矩阵m:3 输入质量矩阵m:4 输入质量矩阵m:5 输入质量矩阵m:6 输入质量矩阵m:7 输入质量矩阵m:8 输入质量矩阵m:9 输入刚度系数k:10 输入刚度系数k:11 输入刚度系数k:12 输入刚度系数k:13 输入刚度系数k:14 输入刚度系数k:15 输入刚度系数k:16 输入刚度系数k:17 输入刚度系数k:18

高中物理选修3-4机械振动练习题典型题带答案

高中物理机械振动练习题 一.选择题(共25小题) 1.如图所示,PQ为一竖直弹簧振子振动路径上的两点,振子经过P点时的加速度大小为6m/s2,方向指向Q点;当振子经过Q点时,加速度的大小为8m/s2,方向指向P点。若PQ之间的距离为14cm,已知振子的质量为1kg,则以下说法正确的是() A.振子经过P点时所受的合力比经过Q点时所受的合力大B.该弹簧振子的平衡位置在P点正下方7cm处C.振子经过P点时的速度比经过Q点时的速度大D.该弹簧振子的振幅一定为8cm 2.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m的小球,若升降机在匀速运行过程中突然停止,并以此时为零时刻,在后面一段时间内传感器显示弹簧弹力F随时间t变化的图象如图乙所示,g为重力加速度,忽略一切阻力,则() A.升降机停止前在向上运动B.0~t1和时间内小球处于失重状态,t1~t2时间内小球处于超重状态 C.t2~t3的时间内弹簧弹性势能变化量等于重力势能变化量D.t3~t4时间内小球向下运动,加速度减小 3.如图所示图线Ⅰ、图线Ⅱ为两单摆分别做受迫振动的共振曲线,下列判断正确的是()A.若摆长为1m的单摆在地球上做受迫振动,则其共振曲线为图线Ⅰ B.若图线Ⅱ是单摆在地球上做受迫振动的共振曲线,则该单摆摆长约为0.5m C.若两单摆分别在月球上和地球上做受迫振动,则图线Ⅰ一定是在月球上的单摆的共振曲线 D.若两单摆是在地球上同一地点做受迫振动,则两单摆摆长之比h1:h2=25:4 4.如图所示,水平弹簧振子以坐标原点O为水平位置,沿x轴在M、N之间做简谐运动,其运动方程为x=5sin(2πt+)cm,则() A.t=0.5s时,振子的位移最小B.t=1.5s时,振子的加速度最小 C.t=2.25s时,振子的速度沿x轴负方向D.t=0到t=1.5s的时间内,振子通过的路程为15cm 5.甲、乙两位同学分别使用图中左图所示的同一套装置,观察单摆做简谐运动时的振动图象,已知两人实验时所用的摆长相同,落在同一木板上的细砂分别形成的曲线如图N1、N2所示。下面关于两图线相关的分析,正确的是()

《机械振动与噪声学》习题集与答案

《机械振动噪声学》习题集 1-1 阐明下列概念,必要时可用插图。 (a) 振动; (b) 周期振动和周期; (c) 简谐振动。振幅、频率和相位角。 1-2 一简谐运动,振幅为 0.20 cm,周期为 s,求最大的速度和加速度。 1-3 一加速度计指示结构谐振在 82 Hz 时具有最大加速度 50 g,求其振动的振幅。 1-4 一简谐振动频率为 10 Hz,最大速度为 4.57 m/s,求其振幅、周期和最大加速度。 1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。即: A cos n t+ B cos (n t+ ) = C cos (n t+ ' ),并讨论=0、/2 和三种特例。 1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大 1-7 计算两简谐运动x1 = X1 cos t和x2 = X2 cos ( +

) t之和。其中 << 。如发生拍的现象,求其振幅和 拍频。 1-8 将下列复数写成指数A e i 形式: (a) 1 + i3(b) 2 (c) 3 / (3 - i ) (d) 5 i (e) 3 / (3 - i ) 2 (f) (3 + i ) (3 + 4 i ) (g) (3 - i ) (3 - 4 i ) (h) ( 2 i ) 2 + 3 i + 8 2-1 钢结构桌子的周期= s,今在桌子上放W = 30 N 的重 物,如图2-1所示。已知周期的变化= s。求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。 2-2 如图2-2所示,长度为L、质量为m 的均质刚性杆由两根刚 度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。 2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面 作纯滚动,它的圆心O用刚度为k的弹簧相连,求系统的振动 微分方程。 图2-1 图2-2 图2-3

(完整版)机械振动习题答案

机械振动测验 一、 填空题 1、 所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大 值和③极小值而往复变化。 2、 一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。 3、 XXXX 在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而 系统对外界影响的反应,称为振动系统的⑦响应或输出。 4、 常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、 环境预测 5、 按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类, 振动分为:③简谐振动、④周期振动和⑤瞬态振动。 6、 ①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。 7、 在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势 能,阻尼元件③耗散振动能量。 8、 如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。 9、 常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。 10、 系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无 关。 二、 试证明:对数衰减率也可以用下式表示,式中n x 是经过n 个循环后的振幅。 1 ln n x x n δ=

三、 求图示振动系统的固有频率和振型。已知12m m m ==,123k k k k ===。

北京理工大学1996年研究生入学考试理论力学(含振动理论基础)试题 自己去查双(二)自由度振动 J,在平面上在弹簧k的限制下作纯滚动,如图所示,四、圆筒质量m。质量惯性矩 o 求其固有频率。

五、物块M质量为m1。滑轮A与滚子B的半径相等,可看作质量均为m2、半径均 为r的匀质圆盘。斜面和弹簧的轴线均与水平面夹角为β,弹簧的刚度系数为k。 又m1 g>m2 g sinβ , 滚子B作纯滚动。试用能量法求:(1)系统的微分方程;(2)系统的振动周期。

高一物理 机械运动、位移 典型例题

高一物理机械运动、位移典型例题 [例1]甲、乙、丙三架观光电梯,甲中乘客看一高楼在向下运动;乙中乘客看甲在向下运动;丙中乘客看甲、乙都在向上运动.这三架电梯相对地面的运动情况是[] A.甲向上、乙向下、丙不动 B.甲向上、乙向上、丙不动 C.甲向上、乙向上、丙向下 D.甲向上、乙向上、丙也向上,但比甲、乙都慢 [分析]电梯中的乘客观看其他物体的运动情况时,是以自己所乘的电梯为参照物.甲中乘客看高楼向下运动,说明甲相对于地面一定在向上运动.同理,乙相对甲在向上运动,说明乙对地面也是向上运动,且运动得比甲更快.丙电梯无论是静止,还是在向下运动,或以比甲、乙都慢的速度在向上运动,丙中乘客看甲、乙两电梯都会感到是在向上运动. [答] B、C、D. [例2]下列关于质点的说法中,正确的是[] A.体积很小的物体都可看成质点 B.质量很小的物体都可看成质点 C.不论物体的质量多大,只要物体的尺寸跟物体间距相比甚小时,就可以看成质点 D.只有低速运动的物体才可看成质点,高速运动的物体不可看作质点 [分析] 一个实际物体能否看成质点,跟它体积的绝对大小、质量的多少以及运动速度的高低无关,决定于物体的尺寸与物体间距相比的相对大小.例如,地球可称得上是个庞然大物,其直径约为1.28×107 m,质量达到6×1024kg,在太空中绕太阳运动的速度每秒几百米.由于其直径与地球离太阳的距离(约1.5×1011m)相比甚小,因此在研究地球的公转运动时,完全可以忽略地球的形状、大小及地球自身的运动,把它看成一个质点. [答] C.

[例3]下列各种情况,可以把研究对象(黑体者)看作质点的是[] A. 研究小木块的翻倒过程 B. 讨论地球的公转 C. 解释微粒的布朗运动 D. 计算整列列车通过某一路标的时间 [误解一] 小木块体积小,远看可视为一点;作布朗运动的微粒体积极小,当然是质点,故选(A)、(C)。 [误解二] 列车作平动,车上各点运动规律相同,可视为质点,故选(D)。 [正确解答] 讨论地球的公转时,地球的直径(约1.3×104km)和公转的轨道半径(约1.5×108km)相比要小得多,因而地球上各点相对于太阳的运动差别极小,即地球的大小和形状可以忽略不计,可把地球视为质点,故选(B)。 [错因分析与解题指导] 物理研究中常建立起一些理想化的模型,它是物理学对实际问题的简化,也叫科学抽象。它撇开与当前观察无关的因素和对当前考察影响很小的次要因素,抓住与考察有关的主要因素进行研究、分析、解决问题,质点就是一个理想化的模型。[误解一] 以为质点是指一个很小的点。但在小木块的翻倒过程中,木块各点绕一固定点转动,各点运动情况不同,不可看作质点。至于作布朗运动的粒子,尽管体积极小,仍受到来自各个方向上的液体分子(具有更小体积)的撞击,正是这种撞击作用的不平衡性使之作无规则运动,也不可把布朗运动粒子视为质点。[误解二]以为火车在铁道上的运动为平动,可视为质点。而本题实际考察的是经过某路标的时间,就不能不考察它的长度,在这情况中不能视其为质点。 [例4]关于质点的位移和路程的下列说法中正确的是[] A. 位移是矢量,位移的方向即质点运动的方向 B. 路程是标量,即位移的大小 C. 质点沿直线向某一方向运动,通过的路程等于位移的大小 D. 物体通过的路程不等,位移可能相同 [误解]选(A),(B)。

机械振动学习题解答大全

机械振动习题解答(四)·连续系统的振动 连续系统振动的公式小结: 1 自由振动分析 杆的拉压、轴的扭转、弦的弯曲振动微分方程 22 222y y c t x ??=?? (1) 此式为一维波动方程。式中,对杆,y 为轴向变形,c =;对轴,y 为扭转 角,c ;对弦,y 为弯曲挠度,c 令(,)()i t y x t Y x e ω=,Y (x )为振型函数,代入式(1)得 20, /Y k Y k c ω''+== (2) 式(2)的解为 12()cos sin Y x C kx C kx =+ (3) 将式(3)代入边界条件,可得频率方程,并由此求出各阶固有频率ωn ,及对应 的振型函数Y n (x )。可能的边界条件有 /00, 0/0p EA y x Y Y GI y x ??=??? ?'=?=????=???? 对杆,轴向力固定端自由端对轴,扭矩 (4) 类似地,梁的弯曲振动微分方程 24240y y A EI t x ρ??+=?? (5) 振型函数满足 (4)4420, A Y k Y k EI ρω-== (6) 式(6)的解为 1234()cos sin cosh sinh Y x C kx C kx C kx C kx =+++ (7) 梁的弯曲挠度y (x , t ),转角/y x θ=??,弯矩22/M EI y x =??,剪力 33//Q M x EI y x =??=??。所以梁的可能的边界条件有 000Y Y Y Y Y Y ''''''''======固定端,简支端,自由端 (8) 2 受迫振动 杆、轴、弦的受迫振动微分方程分别为 222222222222(,) (,), (,) p p u u A EA f x t t x J GI f x t J I t x y y T f x t t x ρθθ ρρ??=+????=+=????=+??杆:轴:弦: (9) 下面以弦为例。令1 (,)()()n n n y x t Y x t ?∞==∑,其中振型函数Y n (x )满足式(2)和式(3)。代入式(9)得 1 1 (,)n n n n n n Y T Y f x t ρ??∞ ∞ ==''-=∑∑ (10) 考虑到式(2),式(10)可改写为 21 1 (,)n n n n n n n Y T k Y f x t ρ??∞ ∞ ==+=∑∑ (11) 对式(11)两边乘以Y m ,再对x 沿长度积分,并利用振型函数的正交性,得 2220 (,)l l l n n n n n n Y dx Tk Y dx Y f x t dx ρ??+=???

机械振动大作业——简支梁的各情况分析

机械振动大作业 姓名:徐强 学号:SX1302106 专业:航空宇航推进理论与工程 能源与动力学院 2013年12月

简支梁的振动特性分析 题目:针对简支梁、分别用单、双、三、十个自由度以及连续体模型,计算其固有频率、固有振型。单、双、三自由度模型要求理论解;十自由度模型要求使用李兹法、霍尔茨法、矩阵迭代法、雅可比法、子空间迭代法求解基频;连续体要求推导理论解,并通过有限元软件进行数值计算。 解答: 一、 单自由度简支梁的振动特性 如图1,正方形截面(取5mm ×5mm )的简支梁,跨长为l =1m ,质量m 沿杆长均匀分布,将其简化为单自由度模型,忽略阻尼,则运动微分方程为0=+? ?kx x m ,固有频率ωn = eq eq m k ,其中k 为等效刚度, eq m 为等效质量。因此,求出上述两项即可知单自由度简支梁的固有 频率。 根据材料力学的结果,由于横向载荷F 作用在简支梁中间位置而 引起的变形为)(2 24348EI F -)(x l x x y -=(2 0l x ≤≤), 48EI F -3max l y =为最大挠 度,则: eq k =δF = 348EI l 梁本身的最大动能为: )(224348EI F - )(x l x x y -==)(223 max 43x l l x y - T max =2×dx x y l m l 2 20)(21? ?? ?????=2max 351721?y m ) (

如果用eq m 表示简支梁的质量等效到中间位置时的大小,它的最大动能可表示为: T max =2max 21 ?y m eq 所以质量为m 的简支梁,等效到中间位置的全部质量为: m m eq 35 17= 故单自由度简支梁横向振动的固有频率为: ωn = eq eq m k = 3 171680ml EI m k 图1 简支梁的单自由度模型 二、 双自由度简支梁的振动特性 如图2,将简支梁简化为双自由度模型,仍假设在简支梁中间位置作用载荷,根据对称性,等效质量相等,因此只要求出在3/l 处的等效质量即可。在6/l 至2/l 之间积分,利用最大动能进行质量等效,略去小量得: m m eq 258≈ 所以,质量矩阵为: ??????=→ 1001258m m 双自由度简支梁的柔度矩阵:

高考复习——《机械振动》典型例题复习

九、机械振动 一、知识网络 二、画龙点睛 概念 1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。 (2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。 (3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动 (1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。 (2)振动形成的原因 ①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。 振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。 (4)简谐运动的力学特征 ①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。 ②动力学特征:回复力F与位移x之间的关系为 F=-kx 式中F为回复力,x为偏离平衡位置的位移,k是常数。简谐运动的动力学特征是判断物体是否为简谐运动的依据。 ③简谐运动的运动学特征 a=-k m x 加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。 简谐运动加速度的大小和方向都在变化,是一种变加速运动。简谐运动的运动学特征也可用来判断物体是否为简谐运动。 例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。 证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得 x0=mg/k 当振子向下偏离平衡位置x时,回复力为 F=mg-k(x+x0) 则F=-kx 所以此振动为简谐运动。 3、振幅、周期和频率 ⑴振幅 ①物理意义:振幅是描述振动强弱的物理量。 ②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。 ③单位:在国际单位制中,振幅的单位是米(m)。

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案) 一、机械振动选择题 1.甲、乙两弹簧振子,振动图象如图所示,则可知() A.甲的速度为零时,乙的速度最大 B.甲的加速度最小时,乙的速度最小 C.任一时刻两个振子受到的回复力都不相同 D.两个振子的振动频率之比f甲:f乙=1:2 E.两个振子的振幅之比为A甲:A乙=2:1 2.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中() A.甲的最大速度大于乙的最大速度 B.甲的最大速度小于乙的最大速度 C.甲的振幅大于乙的振幅 D.甲的振幅小于乙的振幅 3.甲、乙两单摆的振动图像如图所示,由图像可知 A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3 C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等 4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为() A.T=2GM l B.T=2 l GM

C .T = 2πGM r l D .T =2πl r GM 5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( ) A . 212 ()x x g L π- B . 212 ()2x x g L π- C . 212 ()4x x g L π- D . 212 ()8x x g L π- 6.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( ) A .丙球最先到达D 点,乙球最后到达D 点 B .甲球最先到达D 点,乙球最后到达D 点 C .甲球最先到达 D 点,丙球最后到达D 点 D .甲球最先到达D 点,无法判断哪个球最后到达D 点 7.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。以钢球的平衡位置为坐标原点,竖直向上为正方向建立x 轴,当钢球在振动过程中某一次经过平衡位置时开始计时,钢球运动的位移—时间图像如图2所示。已知钢球振动过程中弹簧始终处于拉伸状态,则( ) A .1t 时刻钢球处于超重状态

高中物理机械振动知识点总结

一. 教案内容: 第十一章机械振动 本章知识复习归纳 二. 重点、难点解读 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线 方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表

机械振动学试题库

《机械振动学》课程习题库 第一章 1.1 何谓机械振动?表示物体运动特征的物理量有哪些? 1.2 按产生振动的原因分为几类?按振动的规律分为几类? 1.3 何谓线性系统、机械系统和等效系统? 1.4 如何理解瞬态振动、稳态振动、自由振动、强迫振动、纵向振动。横向振动、扭转振 动、参数振动和非线性振动? 1.5 写出频率、角频率、相位、幅值、有阻尼固有频率,并说明意义,注明单位值。 1.6 如何理解粘性阻尼系数、等效阻尼、临界阻尼系数、欠阻尼和过阻尼? 1.7 振动对机械产品有哪些影响? 1.8 利用振动原理而工作的机电设备有哪些?试举例说明。 1.9 重温非简谐的周期性振动傅里叶级数,时间函数为f(t),其周期为T ,表达式为: )s i n c o s ()(1 0t n b t n an a t f n n ωω++=?∞ = 式中:?= T dt t f T a 0 0)(1 ?=T n tdt n t f T a 0 cos )(2 ω ?=T n tdt n t f T b 0 sin )(2 ω 注:《手册》P9 1.10将下图所示的f(t)展成傅立叶级数。 参考答案:()∑∞== =5.2.1sin 1 440t n p t f n p b n b n n n ωππ 傅氏级数为奇数时,,当为偶数时,当 f(t) P 0 -P π/ω 2π/ω 3π/ω 4π/ω t

1.11今有一简谐位移x(t)(mm),其表达式为:()=8sin(24 -),3 x t t π 求: 1. 振动的频率和周期; 2. 最大位移、最大速度和最大加速度; 3. t=0时的位移、速度和加速度; 4. t=1.5s 时的位移、速度和加速度。 参考答案:24rad/s ,3.82Hz ,0.2618s ;192mm/s ,4608mm/s 2;-6.9282mm ,96mm/s ,3990.65 mm/s 2 ;-3.253mm ,175.4mm/s ,1874 mm/s 2 1.12一振动体作频率为50Hz 的简谐振动,测得其加速度为80 m/s 2 ,求它的位移幅值和 速度幅值。 参考答案:0.8/mm ,254.34mm/s 。 1.13 一简谐振动的频率为10Hz ,最大速度4.57m/s ,求它的振幅、周期和最大加速度。 参考答案:0.073m ,0.1s ,287.9m/s 2 1.14 求图中刚性杆的振动系统中自由度的数目,并规定出该系统中所用的广义坐标系。 1.15 分析如图所示的机械系统,试求所需的自由度数目,并规定出该系统中所用的坐标系。 1.16 在对所示机械系统进行分析时,试求所用到的自由度数目,并规定一套系统振动分析时所用到的广义坐标系。 题1.14 图 题1.15 图

机械振动 知识点总结

机械振动 1、判断简谐振动的方法 简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。特征是:F=-kx,a=-kx/m. 要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。 然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。 2、简谐运动中各物理量的变化特点 简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系: 如果弄清了上述关系,就很容易判断各物理量的变化情况 3、简谐运动的对称性 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。 理解好对称性这一点对解决有关问题很有帮助。 4、简谐运动的周期性 5、简谐运动图象 简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。 6、受迫振动与共振 (1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 位移x 回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2

机械振动大作业-求初始激励的自由振动响应

图示系统中, m1=m2=m3=m, k1=k2=k3=k, 设初始位移为1, 初始速度为0, 求初始激励的自由振动响应。 要求: (1)利用影响系数法求解刚度阵K和质量阵M,建立控制方程;(15分) (2)求解系统固有频率和基准化振型;(13分) (3)求解对初始激励的响应(运动方程);(12分) (4)利用软件仿真对初始激励响应曲线(Matlab,simulink,excel均可),给出仿真程序(或框图)、分析结果;尝试对m、k赋值,分析曲线变化; (10分) (5)浅谈对本课程的理解、体会,对授课的意见、建议;(10分) 字迹清晰,书写规整。(10分)

(1)利用影响系数法求解刚度阵K 和质量阵M ,建立控制方程; ①求解刚度矩阵K 令[]T 00 1 =X ,则弹簧变形量δ=[1 1 0]T , 在此条件下系统保持平衡,按定义需加于三物块的力312111、、k k k 如图所示 根据平衡条件可得 0,,2312222121221111=-=-=-==+=+=k k k k k k k k k k k δδδ 同理,令[]T 010=X 得 k k k k k k k k k k -=-==+=-=-=3323222212,2, 令[]T 100=X 得 k k k k k k k ===-==33332313,-,0 故刚度矩阵为 ②求解质量矩阵M 令[ ]T 001=X 得m m m ==111,021=m ,031=m 令[]T 010=X 得012=m ,m m m ==222,032=m 令[]T 100=X 得013=m ,023=m ,m m m ==333 故质量矩阵为

机械振动总结复习习题及解答

欢迎阅读 1、某测量低频振动用的测振仪(倒置摆)如下图所示。试根据能量原理推导系统静平衡稳定条件。若已知整个系统的转动惯量23010725.1m kg I ??=-,弹簧刚度m N k /5.24=,小球质量 kg m 0856.0=,直角折杆的一边cm l 4=。另一边cm b 5=。试求固有频率。 k b l θθ I 0m 解:弹性势能 2 )(2 1θb k U k =, 重力势能 )cos (θl l mg U g --= 总势能 m g l m g l kb U U U g k -+=+=θθcos 2 122 代入0==i x x dx dU 可得 可求得0=θ满足上式。 再根据公式02 2>=i x x dx U d 判别0=θ位置是否稳定及其条件: 即满足mgl kb >2条件时,振动系统方可在0=θ位置附近作微幅振动。 系统的动能为 22 10θ?=I T 代入0)(=+dt U T d 可得

由0=θ为稳定位置,则在微振动时0sin ≈θ,可得线性振动方程为: 固有频率 代入已知数据,可得 2、用能量法解此题:一个质量为均匀半圆柱体在水平面上做无滑动的往复滚动,如上图所示,设圆柱体半径为R ,重心在c 点,oc=r,,物体对重心的回转体半径为L ,试导出运动微分方程。 解:如图所示,在任意角度θ(t )时,重心c 的升高量为 ?=r (1-cos θ)=2rsin 22θ 取重心c 的最低位置为势能零点,并进行线性化处理,则柱体势能为 V=mg ?=2mg r sin 22θ ≈ 21mgr 2θ (a ) I b =I c +m bc 2=m(L 2+bc 2) (b ) bc 2=r 2+R 2-2rRcos θ(t) (c ) 而柱体的动能为 T=21 I b ? θ2 把(b )式,(c )式两式代入,并线性化有 T=21 m[L 2+(R -r )2]? θ2 (d ) 根据能量守恒定理,有 21 m[L 2+(R -r )2]? θ2+21mgr 2θ=E=const 对上式求导并化简,得运动微分方程为 [L 2+(R -r )2]? ?θ+gr θ=0 (e ) 3、一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。 解:取圆柱体的转角θ为坐标,逆时针为正,静平衡位置时0θ=,则当m 有θ转角时,系统有: 由()0T d E U +=可知: 解得 22/()n kr I mr ω=+(rad/s ) 4、图中,半径为r 的圆柱在半径为R 的槽内作无滑滚动,试写出系统作微小振动时的微分方程 解 1)建立广义坐标。设槽圆心O 与圆柱轴线O 1的连线偏离平衡位置的转角为广义坐标,逆时针方向为正。

机械振动大作业.

《机械振动基础》大作业 (2014年春季学期) 题目基于MATLAB求系统特性 姓名李超 学号1110910706 班级1108107 专业机械设计制造及其自动化 报告提交日期2014年4月23 哈尔滨工业大学

报告要求 1.请根据课堂布置的2道大作业题,任选其一,拒绝雷同和抄袭; 2.报告最好包含自己的心得、体会或意见、建议等; 3.报告统一用该模板撰写,字数不少于3000字,上限不限; 4.正文格式:小四号字体,行距为1.25倍行距; 5.用A4纸单面打印;左侧装订,1枚钉; 6.课程报告需同时提交打印稿和电子文档予以存档,电子文档由班 长收齐,统一发送至:shanxiaobiao@https://www.360docs.net/doc/3c732336.html,。 7.此页不得删除。 评语: 成绩(15分):教师签名: 年月日

求解多自由度矩阵的认识体会。 二、MATLAB程序图 m=[]; k1=[]; k=[]; c=[]; c1=[]; % 质量矩阵的输入 for i=1:10 a=input('输入质量矩阵m:'); m(i,i)=a; end %刚度矩阵的输入 for j=1:10 b=input('输入刚度系数k:'); k1(1,j)=b; end for l=1:9 k(l,l)=k1(l)+k1(l+1); k(10,10)=k1(10); k(l+1,l)=-k1(l+1); k(l,l+1)=-k1(l+1); k(10,9)=-k1(10); k(9,10)=-k1(10); end

%阻尼矩阵的输入 syms w; B=k-w^2*m %系统的特征矩阵B Y=det(B); %展开行列式 W=solve(Y); %求解wh lW=length(W); [V,D]=eig(k,m); for I=1:10 for J=1:10 V(J,I)=V(J,I)/V(5,I); end end V W 三、MATLAB结果输入输出 1.输入质量矩阵m:1 2.输入质量矩阵m:1 3.输入质量矩阵m:1 4.输入质量矩阵m:1 5.输入质量矩阵m:1 6.输入质量矩阵m:1 7.输入质量矩阵m:1 8.输入质量矩阵m:1 9.输入质量矩阵m:1 10.输入质量矩阵m:1 11.输入刚度系数k:1 12.输入刚度系数k:1 13.输入刚度系数k:1 14.输入刚度系数k:1 15.输入刚度系数k:1 16.输入刚度系数k:1 17.输入刚度系数k:1 18.输入刚度系数k:1 19.输入刚度系数k:1 20.输入刚度系数k:1 21. B = 22.[ 2 - w^2, -1, 0, 0, 0, 0, 0, 0, 0, 0]

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

相关文档
最新文档