色光混合三定律
物理色光知识点归纳总结

物理色光知识点归纳总结一、光的特性1. 光的传播光是一种电磁波,可在真空中传播,也可在介质中传播。
光的传播具有波动性和粒子性,这一特性被称为光的波粒二象性。
2. 光的频谱可见光是一种波长在400至700纳米之间的电磁波,是人眼能够感知的波长范围。
可见光的波长较短的称为紫外线,波长较长的称为红外线。
二、色光的基本概念1. 光的颜色白光是由各种波长的光波混合而成的,当光线穿过三棱镜时,会发生折射,不同波长的光线受到折射的角度不同,导致它们分散成不同的颜色。
这些颜色称为光的颜色,通常包括红、橙、黄、绿、蓝、靛、紫七种颜色。
2. 色光的三原色色光的三原色是红、绿和蓝。
当红光、绿光和蓝光以适当的比例叠加时,可以产生任意颜色的光。
3. 色光的加法混色当两种或两种以上的颜色的光混合在一起时,它们的光在视觉上叠加为新的颜色。
这种混色方式被称为加法混色。
在加法混色中,三种原色的混合可以产生七种颜色,即红、橙、黄、绿、青、蓝、紫。
4. 色光的减法混色减法混色是指将颜色的光的一部分吸收或减掉,使得光的颜色变化。
在减法混色中,几种颜色叠加在一起产生新的颜色,而不是产生更亮的颜色。
这种混色方式主要应用在浆料、油墨等颜料的调配上。
三、色光的混合规律1. 色光的加法和减法混合规律色光的加法混合规律是指三原色的光混合产生任意颜色的光。
而色光的减法混合规律是指三原色的光混合产生黑色的光。
2. 色光的混合量计算在色光混合过程中,各种颜色的光的强度和比例对最终的混合结果有着重要的影响。
通过混合量的计算可以确定最终的颜色的光的强度和比例。
四、光的衍射和干涉1. 光的衍射光线通过狭缝或者过边缘的时候,会发生衍射现象,使得光线在传播方向上进行了扩散。
衍射实验证明了光的波动性。
2. 光的干涉干涉是指来自同一光源的两道波在空间中叠加时,波的干涉现象。
干涉实验证明了光的波动性和波的叠加原理。
五、光的折射和透视1. 光的折射光线从一种介质传播到另一种介质时,传播方向发生改变的现象称为光的折射。
第二单元色彩混合

空间混合的特点
空间混合有三大特点: 1、近看色彩丰富,远看色调统一。在不同视觉距离中, 可以看到不同的色彩效果; 2、色彩有颤动感、闪烁感,适于表现光感,印象派画家 贯用这种手法; 3、如果变化各种色彩的比例,少套色可以得到多套色的 效果,电子分色印刷就是利用这种原理。
把有色的透明材料重叠起来之后,透过的光都有减法混合 的效果,例如:彩色赛璐璐薄膜、有色玻璃、印刷油墨等 在白底色上的重叠,都会比原有的色变暗。
两种色料混合产生灰色或黑色,这两种色即为互补色。
在减法混合中,混合的色越多,明度越低,纯度也会有所 下降。
颜料的混合都属于色彩的减法混合,在颜料中,都有带色 的颗粒,这些颗粒物质的表面在遇到白光的照射后,都会 反射光谱一部分色光而吸收掉其余部分的色光,当两种颜 料相混时,这两种颜色的颗粒都相当于微小的滤色器。我 们可以用蓝色颜料和黄色颜料混合为例,在蓝色颜料中的 颗粒主要反射蓝色光,同时它也反射邻近的绿色光,而把 其余的光谱色光吸收掉。
混合产生其它颜色
色料混合
等量混合
C+M=( B ) C+Y=( G ) M+Y=( R ) C+M+Y=( BK )
黄Y、品M、青C
C BG
K MR Y
++ =
+
=
+
=
+
=
不等量混合
减色混合的特点
特点:在色料混合中,混合的色越多,明度越低,纯度也 会下降,色料混合后亮度降低。 三原色的混合,可以得到所需的各种色彩,而三原色自身 不能被其它颜色混合而获得。色料三原色与色光三原色的 混合相反。
色彩原理与应用-第三章-颜色混合原理与视觉理论

四色(赫林)学说的视网膜视素 感光化学视素 白-黒 红-绿 黄-蓝 视网膜过程 破坏 建立 破坏 建立 破坏 建立 颜色感觉 白 黒 红 绿 黄 蓝
三对视素的代谢作用图
破坏
建立
a曲线是白-黑视素的代谢作用 b曲线是黄-蓝视素的代谢作用 c曲线是红-绿视素的代谢作用
对立学说可以解释的现象: ◇对立学说能很好地解释对立色。 ◇对立学说能很好地解释色盲。 ◇对立学说能很好地解释负后像现象现象。 ◇对立学说能很好地解释补色现象。 ◇对立学说能很好地解释光谱上存在众多的高纯度 的单波长色光的现象。 对立学说的不足: ◇对于红、绿、蓝三原色能够产生所有光谱色彩的 现象并无法得到满意的解释。
B= M+C G= Y+C M+Y+C = K M+Y+C = K M+Y+C = K B+Y=K G+M=K
等式左右两边相加得:R+C=K
颜色相减
白光
实际使用的三原色油墨的光谱反射和吸收示意图
三、加色法与减色法的关系
◇加色法与减色法都是针对色光而言;加色法指的是色光相加
,减色法指的是色光被减弱。加色法与减色法又是迥然不同的两
3、阶段学说
阶段学说最早是由G.E.Muller(1930)及Judd (1949)所提出,他们认为长久以来一直在色彩视觉 理论(处于对立的状态的三色理论与对立理论,是可 以加以统一与相互配合的,并且对于人眼色彩视觉的 现象做了更为完整的解释与说明。
阶段学说理论: 视网膜上的锥体细胞是一个三色系统,而在视觉信息 向大脑皮层视觉中枢的传导通路中则变成了四色机制。颜 色视觉过程的这种设想称为阶段学说。 颜色视觉的形成过程可分为几个阶段。 第一阶段,当光线进入人眼视网膜时,三种独立的锥 体细胞中的感色物质会选择性在吸收不同波长光谱的辐射, 同时每一种锥体细胞根据光刺激量又可独自产生明度(黑 或白)与色彩(红、绿、蓝)的反应。在这一阶段中可应 用三原色理论及色光混合实验来解释视觉色彩的现象。 第二阶段中,在神经兴奋由锥体细胞向视神经细胞传 递的过程中,这三种反应重新组合,形成三对对立性的神 经反应,即红-绿、黄-蓝、黑-白反应。
色光混合的三条定律

色光混合的三条定律
色光混合的三条定律是指:
1. 减色混合定律:减色混合是指将一种颜色的光线透过某种透明介质(例如棱镜)后,再与另一种颜色的光线混合,最终形成一种新的颜色。
减色混合定律表明,当光线通过棱镜时,它们会被分解成不同的颜色,这些颜色的强度是不同的。
在减色混合中,最终的颜色取决于原始光线中各种颜色的相对强度,而不是它们的绝对强度。
2. 加色混合定律:加色混合是指将不同颜色的光线混合在一起,形成一种新的颜色。
在加色混合中,最终的颜色取决于各种颜色的相对强度和比例。
加色混合定律是指在加色混合中,最终的颜色可以通过将各种颜色的光线的相对强度和比例相加来计算得出。
3. 彩色三原色定律:彩色三原色定律指的是将三种颜色(红色、绿色和蓝色)混合在一起,可以产生所有其他颜色。
这个定律是加色混合定律的基础,因为在加色混合中,最终的颜色是通过将各种颜色的光线的相对强度和比例相加来计算得出的。
在彩色显示器和电视中,使用的就是三原色光的加色混合。
第1页/ 共1页。
色光混合规律

Page 31
第五节 色光混合规律----格拉斯曼定律
(4)亮度相加定律 混合色光的总亮度等于组成混合色的
各颜色光的亮度之和。
亮度相加定律仅适合色光相加的混合, 不适用于色料减色混合。不同色料混合后 的结果使混合色明度降低,即有更多的照 明光被吸收。
三原色色料两两等量混合得红、 绿、蓝三种色料,三种原色色 料等量混合可得黑色。
Page 18
第五节 色光混合规律----格拉斯曼定律
等量混合 C+M=B C+Y=G M+Y=R C+M+Y=K
C
BG K
MR Y
Page 19
第五节 色光混合规律----格拉斯曼定律
Page 20
第五节 色光混合规律----格拉斯曼定律 不等量混合
Page 11
第五节 色光混合规律----格拉斯曼定律
Page 12
第五节 色光混合规律----格拉斯曼定律
等量混合
R+G=Y R+B=M G+B=C R+G+B=W
R YM
W GCB
Page 13
第五节 色光混合规律----格拉斯曼定律
Page 14
第五节 色光混合规律----格拉斯曼定律
Page 32
第五节 色光混合规律----格拉斯曼定律
(1)确立颜色空间是三维空间 用三个变量来表示颜色的视觉特性
(2)颜色空间是连续的, 空间的不同点代表了不同的颜色感觉
色彩的物理理论

补色的一个重要性质:一种色光照射到其补色的物体上,则被吸收。如用蓝光照射黄色物体,则呈现黑色。如图2-11 所示。
图2-11 物体对补色光的吸收
利用这个道理,我们可以用某一色光的补色控制这一色光。如果控制绿色,可以通过调节品红颜料层的浓度来控制其反射(透射)率,以达到合适的强度。
3、中间色律
(三)加色法实质
加色法是色光与色光混合生成新色光的呈色方法。参加混合的每一种色光都具有一定的能量,这些具有不同能量的色光混合时,可以导致混合色光能量的变化。
色光直接混合时产生新色光的能量是参加混合的各色光的能量之和。如图2-8所示,照射面积相同的两种色光--红光与绿光混合,混合后的面积依然与混合前单色光的面积相同,但光的能量却增大了,所以导致了混合后色光亮度的增加。
当用红光、绿光、蓝光三色光进行混合时,可分别得到黄光、青光和品红光。品红光是光谱上没有的,我们称之为谱外色。如果我们将此三色光等比例混合,可得到白光;而将此三色光以不同比例混合,就可得到多种不同色光。
从人的视觉生理特性来看,人眼的视网膜上有三种感色视锥细胞--感红细胞、感绿细胞、感蓝细胞,这三种细胞分别对红光、绿光、蓝光敏感。当其中一种感色细胞受到较强的刺激,就会引起该感色细胞的兴奋,则产生该色彩的感觉。人眼的三种感色细胞,具有合色的能力。当一复色光刺激人眼时,人眼感色细胞可将其分解为红、绿、蓝三种单色光,然后混合成一种颜色。正是由于这种合色能力,我们才能识别除红、绿、蓝三色之外的更大范围的颜色。
色彩管理与应用项目三+颜色混合规律

格拉斯曼定律
• 代替律 • 颜色外貌相同的光,不管它们的光谱组成是否一 样,在颜色混合中具有相同的效果,换言之,凡 是在视觉上相同的颜色都是等效的。由这一定律 导出颜色的代替律。
–A≡B C≡D –则 A + C ≡ B + D –A - C ≡ B - D – nA≡nB
38
格拉斯曼定律
• 亮度相加律 • 混合色的总亮度L等于组成混合色的各种色光亮度 的总和。若混合色的亮度为L,组成混合色的两种 颜色亮度分别为L1和L2,则L L1 L2。 • 亮度相加律仅适合色光相加的混合,不适用于色 料减色混合。不同色料混合后的结果使混合色明 度降低,即有更多的照明光被吸收。
32
Y B G R G R
M
B R
kground
33
色料基本十色
• 一次色(原色)
–Y、M、C, –R、G、B, 色料三原色 色光三原色
• 二次色(间色) • 三次色(复色)
–枣红色、橄榄绿、古铜色和黑色
34
项目三 颜色混合规律
任务三 颜色混合定律
35
颜色混合定律
色相 明度=明度1+明度2
青
红
蓝
品
9
色光混合规律
• 色光的互补色 • 凡是两种色光相加后呈现白色光时,这两种色光 为互补色光。
–R C W(红光 青光 白光) –G M W(绿光 品红光 白光) –B Y W(蓝紫光 黄光 白光)
10
色光混合规律
• 已知三原色光R、G、B的比例为2:1:2,判断混合 色是什么颜色? • 可先把其中的白色成分(W R G B)分出, 剩下等比例的R + B组成品红色光(M R B) ,由此确定R、G、B三原色光以2:1:2的比例混合 时形成浅品红色光。
初二物理【光】知识点归纳

初二物理【光】知识点归纳第一节光的直线传播1、光源的特点:光源指自身能发光的物体,太阳、发光的电灯、点燃的蜡烛都是光源,有些物体本身不发光,但由于它们能反射太阳光或其它光源射出的光,好像它们也在发光一样,不要被误认为是光源,如月亮和所有行星,它们并不是物理学所指的光源。
2、光的传播规律:光在同一均匀透明介质中沿直线传播。
(三个条件)3、光的传播速度:光速与介质有关(但是光的传播不需要介质),光在不同介质中的传播速度不同,光在真空中的传播速度最大,真空或空气中的光速取为c =3.0 ⨯ 108m / s ,光在水中的速度约为真空中的 3/4,光在玻璃中的速度为真空中的 2/3。
4、光年:光在 1 年内传播的距离,是长度单位不是是时间单位。
5、光线:用一条带有箭头的直线表示光的传播径迹和方向,这样的直线叫光线。
6、应用及现象:(1)激光准直。
(例子:种树、排队、挖掘隧道、射击)。
(2)影子的形成:光在传播过程中,遇到不透明的物体,在物体的后面形成黑色区域即影子。
(3)日食月食的形成:当地球在中间时可形成月食。
如图:在月球后 1 的位置可看到日全食,在 2 的位置看到日偏食,在 3 的位置看到日环食。
(4)小孔成像:成像成倒立的实像,其像的形状与孔的形状无关。
i r镜面 O第二节 光的反射1、光的反射及反射定律(1) 反射:是指光从一种介质射到另一种介质表面时,有部分光返回原介质中传播的现象。
入射光线 N 法线反射光线(2) 反射定律:①反射光线和入射光线、法线在同一平面上。
②反射光线和入射光线分居法线两侧。
③反射角等于入射角。
入射点:入射光线与镜面的交点。
法线:从光的入射点 O 所作的垂直于镜面的线 ON 叫做法线。
入射角:入射光线与法线的夹角叫做入射角,用符号i 表示。
反射角:反射光线与法线的夹角叫做反射角,用符号r 表示。
(3) 反射现象中光路可逆:光线沿原来的反射光线的方向射到界面上,这时的反射光线定会沿原来的入射光线的方向射出去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人眼睛不仅对单色光产生一种色觉,而且对混合光也可以产生同样的色觉。
例如520毫微米的单色光刺激人眼产生绿色觉,将510毫微米与530毫微米的单色光混合刺激人眼也可以产生绿色觉;又如580毫微米的单色光刺激人眼产生黄色觉,将700毫微米的红光与510毫微米的绿光混合刺激人眼也可以产生黄色觉,而且人眼感觉不出这两者之间有什么差别。
光谱中色光混合是一种加色混合,用3种原色光:红(R)、绿(G)、蓝(B)、按一定比例混合可以得到白色光或光谱上任意一种光。
格拉斯曼将色光混合现象归纳为三条定律:补光律、中间色津、代替律。
补色律–每一种色光都有另一种同它相混合而产生白色的色光,这两种色光称为互补色光。
例如蓝光和黄光,绿光与紫光,红光与青光混合都能产生白光。
中间律–两种非补色光混合则不能产生白光,其混合的结果是介乎两者之间的中间色光。
例如红光与绿光,按混合的比例不同,可以和到介乎两者之间的橙、黄、黄橙等色光。
代替律–看起来相同的颜色却可以由不同的光谱组成。
只要感觉上是相似的颜色,都可以相互代替。
例如颜色光A=色光B,色光C=色光D,则A+C=B+D;又如
A+B=C,而X+Y=B,则A+(X+Y)=C,如:A(黄光)=B(红光+绿光),C (青光)=D(蓝光+绿光),A(黄光)+C(青光)=B(红光+绿光)+D(蓝光+绿光),其结果是A(黄光)+C(青光)=淡绿光,B(红光+绿光)+D(蓝光+绿光)=红光+绿光+蓝光+绿光=白光+绿光=淡绿光。
这就是代替律。
它在色彩光学上是一条非常重要的定律,现代色度学就是以此为理论基础而建立的。
色光混合
定律属于加色混合,它与染料、颜料的混合相反,后者为减色混合,其混合的规律也完全相反。