小升初数学 阴影部分算面积
小升初数学复习专题:求阴影部分面积(含答案解析)

小升初数学复习专题:求阴影部分面积(含答案解析)1、几何图形计算公式:1) 正方形:周长=边长×4 C=4a面积=边长×边长S=a×a2) 正方体:表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3) 长方形:周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4)长方体:表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)体积=长×宽×高V=abh5)三角形:面积=底×高÷2 s=ah÷26)平行四边形:面积=底×高s=ah7)梯形:面积=(上底+下底)×高÷2 s=(a+b)×h÷28)圆形:周长=直径×Π=2×Π×半径C=Πd=2Πr面积=半径×半径×Π9)圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高10)圆锥体:体积=底面积×高÷32、面积求解大致分为以下几类:Ø 从整体图形中减去局部;割补法:将不规则图形通过割补,转化成规则图形。
重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
练习题例1.求阴影部分的面积。
(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米)例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
小升初数学正方形阴影面积

小升初数学正方形阴影面积在小升初数学中,正方形是一个非常基础且重要的几何形状。
而计算正方形阴影面积也是小升初数学中常见的问题之一。
正方形是一种特殊的四边形,四条边长度相等,四个角都是直角,对角线相等且垂直平分对方形的角。
在计算正方形阴影面积时,需要注意一些基本的几何知识和计算方法。
首先,要计算正方形的阴影面积,需要知道正方形的边长。
正方形的面积公式为边长的平方,即面积=边长×边长。
如果已知正方形的边长为a,则正方形的面积为a²。
当要计算的是正方形的阴影面积时,需要首先计算正方形的面积,然后减去阴影部分的面积,即可得到正方形的阴影面积。
其次,正方形的阴影面积通常是指正方形内部被阴影覆盖的面积。
在计算阴影面积时,需要根据阴影的形状和位置来确定如何减去阴影面积。
通常情况下,阴影的形状可以是矩形、三角形、圆形等,需要根据具体情况来计算阴影面积。
举例来说,如果一个正方形的边长为10cm,正方形内部有一个矩形阴影,矩形的长为6cm,宽为4cm。
那么首先计算正方形的面积,面积=10cm×10cm=100cm²。
然后计算矩形阴影的面积,面积=6cm×4cm=24cm²。
最后减去矩形阴影的面积,正方形的阴影面积为100cm²-24cm²=76cm²。
除了矩形阴影,还有一种常见的情况是正方形内部有一个三角形阴影。
在这种情况下,需要计算三角形的面积,面积=底边长×高÷2。
然后减去三角形的面积,得到正方形的阴影面积。
在解决正方形阴影面积的问题时,需要灵活运用几何知识和计算方法,根据具体的情况来确定如何计算阴影面积,以确保计算的准确性。
通过多练习和积累,可以更加熟练地解决类似的数学问题,提高数学的解题能力。
希望同学们在小升初数学考试中能够顺利解决正方形阴影面积的问题,取得优异的成绩。
小升初数学求阴影部分面积专项训练

小升初数学复习题『求阴影部分面积——专项训练』1.求图形中阴影部分的面积.(单位:分米)解:4×4﹣3.14×22=3.44(平方分米)答:阴影部分的面积是3.44平方分米。
2.计算下面图形的面积。
解:(16-9)×(10-4.5)÷2+16×4.5=91.25(平方米)答:图形的面积是91.25平方米.3.计算如图阴影部分的面积,已知d=6厘米。
解:6×(6÷2)-3.14×(6÷2)2÷2=3.87(平方厘米)答:阴影部分的面积是3.87平方厘米小升初数学复习题『求阴影部分面积——专项训练』4.计算下面两个图形阴影的面积。
(单位:厘米)(1)(2)(1)解:5×5-3×3=16(平方厘米)(2)解:8×8-(8-6)×(8-2)=52(平方厘米)5.如图所示,正方形的面积是9平方厘米,圆的面积是多少?解:3.14×9=28.26(平方厘米)答:这个圆的面积是28.26平方厘米。
6.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:1/4圆面积减去等腰直角三角形的面积,π/4×2²-2×1=1.14(平方厘米)答:阴影部分的面积是1.14平方厘米。
小升初数学复习题『求阴影部分面积——专项训练』7.如图的平行四边形中,空白部分的面积是20平方厘米,求阴影部分的面积?解:20×2÷5=8(厘米)(3+5)×8﹣20=44(平方厘米)答:阴影部分的面积是44平方厘米。
8.如图,甲、乙两图形都是正方形,它们的边长分别是5厘米和6厘米,求阴影部分的面积?解:5×5+6×6-5×5÷2-(5+6)×6÷2-(6-5)×6÷2=12.5(平方厘米)答:阴影部分的面积是12.5平方厘米。
小升初数学压轴题试题精粹及解析(26)

小升初数学压轴题试题精粹及解析(26)1.(长寿区)第1、2题求阴影部分周长和面积,第3﹣6题只求阴影部分面积.考点:组合图形的面积.专题:综合题;压轴题.分析:(1)阴影部分的周长等于直径4厘米,直径6厘米,直径(4+6)厘米,3个圆的周长的一半,阴影部分的面积用大半圆的面积减去2个小半圆的面积.(2)阴影部分的周长等于半径3厘米的圆的周长的加上长方形的两条长边(因为长是宽的2倍),阴影部分的面积用长方形的面积减去半径3厘米的圆面积的.(3)通过旋转把两部分阴影拼在一起正好是三角形面积的一半,根据三角形的面积公式解答.(4)根据环形面积的计算方法求环形的面积再除以2即可.(5)用正方形的面积减去两个半径是2厘米,圆心角是90°的扇形面积.(6)用半径5厘米圆心角是90°的扇形面积减去三角形的面积.解答:解:(1)阴影部分的周长:3.14×(4+6+4+6)÷2,=3.14×20÷2,=31.4(厘米);阴影部分的面积:[3.14×(10÷2)2﹣3.14×(4÷2)2﹣3.14×(6÷2)2]÷2,=[3.14×25﹣3.14×4﹣3.14×9]÷2,=[3.14×(25﹣4﹣9)]÷2,=[3.14×12]÷2,=37.68÷2,=18.84(平方厘米);(2)阴影部分的周长:3.14×3×2×+3×2×2,=4.71+12,=16.71(厘米);阴影部分的面积:3×2×3﹣3.14×32×,=18﹣3.14×9×,=18﹣7.065,=10.935(平方厘米);(3)阴影部分的面积:10×10÷2÷2=25(平方厘米);(4)阴影部分的面积:3.14×(8÷2+2)2÷2﹣3.14×(8÷2)2÷2,=3.14×36÷2﹣3.14×16÷2,=56.52﹣25.12,=31.4(平方厘米);(5)(5+2)×(5+2)﹣3.14×22×,=7×7﹣3.14×4×,=49﹣6.28,=42.72(平方厘米);(6)阴影部分的面积:3.14×52×﹣5×5÷2,=3.14×25×﹣12.5,=19.625﹣12.5,=7.125(平方厘米).点评:此题主要考查求组合图形的周长和面积,解答关键是明确周长和面积的意义,认真分析图形是由几部分组成,然后再根据相应的公式进行解答.2.(长寿区)下图表示的是某人骑自行车所走的路程和花费的时间.求往返的平均速度.考点:单式折线统计图;从统计图表中获取信息.专题:平均数问题.分析:通过观察统计图,可知:某人骑自行车往返所走的总路程是(30×2)千米,往返花费的总时间是(12﹣9)小时;要求往返的平均速度,就用往返的总路程除以往返的总时间,列式解答即可.解答:解:往返的总路程:30×2=60(千米),往返的总时间:12﹣9=3(小时),往返的平均速度:60÷3=20(千米/小时);答:某人骑自行车往返的平均速度是20千米/小时.点评:此题首先根据问题从图中找出所需要的信息,然后根据数量关系式:往返的路程÷往返的时间=往返的平均速度即可作出解答.3.(长寿区)张亮家离学校3600米,放学后他从学校回家,同时他妈妈从家骑电动车来接张亮,12分钟后两人相遇.已知张亮和妈妈的速度比是1:4,张亮每分钟行多少米?考点:相遇问题;比的应用.专题:应用题.分析:解答此题先根据路程÷相遇时间=速度和,求出张亮和妈妈的速度和是3600÷12,因为“张亮和妈妈的速度比是1:4”所以把张亮的速度看作1份,妈妈的速度就是4份,然后求出一份的数即可得知张亮的速度.解答:解:3600÷12÷(1+4),=3600÷12÷5,=300÷5,=60(米);答:张亮每分钟行60米.点评:此题是一道相遇问题和比的应用的综合题,解答思路是先根据路程÷相遇时间=速度和求出张亮和妈妈的速度和,再求出1份的数即可.4.(仙游县)用2,6,4,9四个数字组成一个算式,只能用“+、﹣、×、÷”四种运算中的几种,可以用括号,使结果为24,算式是4÷2×9+6.考点:填符号组算式.分析:在添加运算符号时,要注意最后的答数是24,通过实验可得出答案.本题可以这样去逆向推理:就是把24拆开,拆成2、4、6、9通过四则运算得来的,如把24拆成18+6,再把18拆成2×9,2由4÷2得到,这样就成了24=4÷2×9+6,也可把数字改变位置组成新的算式.解答:解:4÷2×9+6,=2×9+6,=18+6,=24;故答案为:4÷2×9+6.点评:此题考查对运算符号的熟练运用,有一定的技巧性,关键是把24如何拆成含那四个数的四则混合运算.5.(2012•无棣县)请你选取有用的信息解决问题.暑假期间,星光实验小学计划组织中、高年级部分学生参加夏令营活动,各年级分配名额如图:(1)三年级有多少名学生参加活动?(2)五年级有多少名学生参加活动?(用方程解)(3)六年级有多少名学生参加活动?考点:百分数的实际应用;列方程解应用题(两步需要逆思考);比的应用.专题:应用题;压轴题.分析:(1)运用和比问题的进行解答.(2)把五年级的人数设为x人,表示出三年级的人数,列方程解答.(3)运用比多比少问题进行解答,单位”1“知道运用乘法计算,不知道用除法计算.解答:解:(1)三年级参加活动的人数:80×=32(人);答:三年级有32名学生参加活动.(2)五年级参加活动的人数:设五年级参加活动的人数为x人.1.2x﹣28=32,1.2x﹣28+28=32+28,1.2x÷1.2=60÷1.2,x=50;答:五年级有50名学生参加活动.(3)六年级参加活动的人数:50×(1+20%),=50×1.2,=60(人);答:六年级有60名学生参加活动.点评:此题考查的是分数应用题的列式,要先找准单位“1”,再据题中的数量关系列式解答,灵活多变能运用方程解答题目.6.(长沙)已知0.123456789101112131415…是一个有规律的小数.(1)小数点后第100位上的数字是奇数.(填奇或偶)(2)小数点后第100位上的数字大小是5.(3)探究并填空:小数点后第100位前(包括第100位)的数字之和是365.考点:算术中的规律.专题:探索数的规律.分析:0.123456789101112131415…是一个有规律的小数,规律是自然数的依次排列,其中一位数1、2、3…9有9个数字,两位数10、11、…99有(99﹣10+1)×2=180个数字,所以第100为一定是某个两位数上的数字:(100﹣9)÷2=45…1,10+45=55,即第100为上的数字是5(第101位是5);第100为前的数字为:1、2、3、4、5、…54、5,所以个位数字之和为:(1+2+…+9)×5+(1+2+3+4)×10+5×6+1+2+3+4=365.据此得解.解答:解:(1)(2)0.123456789101112131415…是一个有规律的小数,规律是自然数的依次排列,其中一位数1、2、3…9有9个数字,两位数10、11、…99有(99﹣10+1)×2=180个数字,所以第100为一定是某个两位数上的数字:(100﹣9)÷2=45…1,10+45=55,即第100为上的数字是5(第101位是5);是奇数;(3)第100为前的数字为:1、2、3、4、5、…54、5,所以各位数字之和为:(1+2+…+9)×5+(1+2+3+4)×10+5×6+1+2+3+4=365答:(1)小数点后第100位上的数字是奇数.(2)小数点后第100位上的数字大小是5.(3)小数点后第100位前(包括第100位)的数字之和是365.点评:认真分析题意,找出小数点后面数字的规律是解决此题的关键.7.(东莞)下面是某次篮球联赛积分表,请同学们认真观察后回答问题.队名比赛场次胜场负场积分A 16 12 4 28B 16 12 4 28C 16 10 6 26D 16 10 6 26E 16 8 8 24F 16 8 8 24G 16 4 12 20H 16 0 16 16(1)用式子表示总积分与胜、负场数之间的数量关系.(2)某队的胜场总积分能等于它的负场总积分吗?并说明理由.考点:用字母表示数.专题:用字母表示数.分析:(1)如果一个队胜x场,根据比赛场次为16次,从而可得出负(16﹣x)场,再根据积分=胜场积分+负场的积分即可求解;(2)根据等量关系:某队的胜场总积分能等于它的负场总积分得出方程,解出x的值后结合实际进行判断即可.解答:解:(1)如果一个队胜x场,则负(16﹣x)场,胜场积分为2x分,负场积分为(16﹣x)分,总积分为2x+(16﹣x)=16+x分.故总积分与胜、负场数之间的数量关系为:2x+(16﹣x)=16+x.(2)根据题意得:2x=16﹣x3x=16x=,不是正整数,则某队的胜场总积分不能等于它的负场总积分.点评:此题考查了用字母表示数,解答本题的关键是根据表格得出胜一场、负一场各自所得的积分.8.(2021•泉州)笑笑家五月份每天预定3袋鲜牛奶,按批发价共付232.5元.每袋鲜牛奶可比零售价便宜多少元?考点:图文应用题;整数、小数复合应用题.专题:简单应用题和一般复合应用题.分析:由图可知:每袋牛奶的零售价是2.80元;先用每天预定的袋数乘上五月份的天数,求出五月份一共需要多少袋的牛奶,再用批发价的总钱数除以总袋数,求出批发价每袋需要多少钱,最后用零售价减去批发价即可.解答:解:五月份31天2.80﹣232.5÷(3×31)=2.80﹣232.5÷93=2.80﹣2.5=0.3(元)答:每袋鲜牛奶可比零售价便宜0.3元.点评:本题考查了总价、单价、数量三者之间的关系,单价=总价÷数量,关键是求出批发时的单价.9.(2021•尚义县)从甲地到乙地原来每隔45米要装一根电线杆,加上两端的两根,一共有53根电线杆,现在改成每隔60米装一根电线杆,除两端的两根不需要移动外,中途还有多少根不必移动?考点:公约数与公倍数问题;植树问题.分析:共有(53﹣1)=52个间隔,总长45×52=2340米,45,60的最小公倍数180,2340÷180=13个,由于2340也是180的倍数,所以中间还有13﹣1=12根不必移动.解答:解:从甲地到乙地一共长:45×(53﹣2)=2340(米),45和60的最小公倍数是:180;2340÷180﹣1,=12(根);答:中间还有12跟不必移动.点评:此题应先算出从甲地到乙地的总长度,然后找出45和60的最小公倍数,进而根据题意,列出算式,解答即可.10.(河西区)上海世博会从2010年5月1日开幕,到10月31日闭幕.各月参观人数如图,根据统计图填空并回答问题.(1)根据条形统计图将下面的统计表补充完整.月份5 7 7 8 9 10人数(万人)803 13101379 1246 1001 1570(2)5月参观人数最少,10月参观人数最多.(3)10月份参观人数比9月份增加了几分之几?考点:统计图表的综合分析、解释和应用.专题:统计数据的计算与应用.分析:(1)6月份参观的有1310万人,10月份参观的有1570万人;把这两个数据填入统计表中;(2)直条最矮的参观人数最少,直条最高的参观人数最多;(3)求出10月份比9月份多多少万人,然后用多的人数除以9月份的人数即可.解答:解:(1)统计表如下:月份5 6 7 8 9 10人数(万人)803 1310 1379 1246 1001 1570(2)5月参观人数最少,10月参观人数最多.(3)(1570﹣1001)÷1001,=569÷1001,≈56.8%;答:10月份参观人数比9月份增加了56.8%.故答案为:1310,1570;5,10.点评:本题关键是能从条形统计图中读出数据,再根据题目要求找出需要的数据,由基本的数量关系解决问题.11.(北京)一个长方体水箱里装有15cm高的水,聪聪把一个直径6cm的铁球放入水中,水面上升了0.6cm,弟弟把一块石块放进了水箱,石块没入水中后水面又上升了1.5cm,问这块石块的体积是多少?考点:长方体、正方体表面积与体积计算的应用.专题:压轴题.分析:先依据放入铁球后升高的水的体积就等于铁球的体积,即可求出水箱的底面积,铁球的直径已知,从而可以求其体积,也就能求出水箱的底面积;投入石块后水面上升的高度已知,用水箱底面积成升高的水面高度,就是石块的体积.解答:解:根据球的体积公式计算铁球体积:V球=πr3,=×3.14×,=×3.14×27,=3.14×36,=113.04(立方厘米);水箱的底面积:113.04÷0.6=188.4(平方厘米);石块的体积:188.4×1.5=282.6(立方厘米);答:这块石块的体积是282.6立方厘米.点评:解答此题的关键是:先求出水箱的底面积,主要依据是浸入水中的物体体积,就等于升高部分的水的体积.12.(2010•成都)一项工程,由甲队承租,需工期80天,工程费用100万元,由乙队承担,需工期100天,工程费用80万元.为了节省工期和工程费用,实际施工时,甲乙两队合做若干天后撤出一个队,由另一个队继续做到工程完成.结算时,共支出工程费用86.5万元,那么甲乙两队合做了多少天?考点:工程问题.分析:本题设出甲乙和干的天数,就可以表示出甲的工作量从而也可以求出乙的工作量,在相应的工作量下可以表示出各自的费用,把费用加在一起就是86.5万元.解答:解:设甲队工作x天,则甲队完成的工作量是,乙队完成的工作量是(1﹣).100×+80×(1﹣)=86.5,x+80﹣x=86.5,x=86.5﹣80,x=6.5,x=6.5×4,x=26;答:甲乙共合作了26天.点评:本题考查了学生的分析应变能力,在这儿表示出甲的工作量,其实乙的工作量也就可以表示出来,再表示出各自的费用,问题就解决了.13.(2020•硚口区)解方程.(温馨提醒:注意书写格式哦!)X:2=5:0.4 15.3﹣3X=0.3 x﹣x=0.7+2.3.考点:解比例;方程的解和解方程.专题:压轴题;简易方程;比和比例.分析:(1)根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以0.4求解,(2)依据等式的性质,方程两边同时加3x,再同时减0.3,最后同时除以3求解,(3)先化简方程,再依据等式的性质,方程两边同时除以求解.解答:解:(1)X:2=5:0.4,0.4x=2×5,0.4x=10,0.4x÷0.4=10÷0.4,x=25;(2)15.3﹣3X=0.3,15.3﹣3X+3x=0.3+3x,15.3﹣0.3=0.3+3x﹣0.3,15÷3=3x÷3,x=5;(3)x﹣x=0.7+2.3,=3,x=3,x=36.点评:等式的性质,以及比例基本性质是解方程的依据,解方程时注意对齐等号.。
六年级下册数学试题——解决问题之阴影面积 人教新课标(2014秋)(含答案)

小升初解决问题——阴影面积一、直接求法根据已知条件,从整体出发,直接求出阴影部分的面积。
例如:分析:从图形可知阴影部分是一个三角形,由于三角形的面积有特定的计算公式,因此,要计算三角形的面积只需知道三角形的底和高就可以了。
要注意的是先求出阴影三角形的“底”。
通过分析,阴影三角形的底为7厘米,高为14厘米解:阴影部分面积为:1/2x(15-8)x14=49(平方厘米)二、相减法这种方法就是阴影部分面积不能够直接算出来,但是总面积和空白部分的面积可以直接算出,因此可以用总面积减去空白部分面积,即得阴影之面积。
这是用得较多的一种方法,是求阴影面积的基础。
分析:由于阴影部分面积不能算出,但是总面积和空白部分面积是规则图形,可以根据计算公式计算出面积,然后用扇形面积减去三角形面积。
解:1/4x3.14x2x2-1/2x2x2=1.14(平方厘米)三、割补法这类题主要是阴影部分是一个不规则的图形。
但是通过割和补的方法,变成一个规则的图形,从而进行计算。
需要提醒的是,割补法重在割与补,割补后要有利于变整体为局部,化不规则为规则,化陌生为熟悉,化抽象为直观。
分析:通过看图发现连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半。
解:8x8÷2=32(平方厘米)四、拼凑法这种方法就是把所有的阴影部分放到一块进行拼凑成一个图形,然后根据计算公式进行计算。
分析:通过看图阴影部分是三个扇形,但是扇形的圆心角不知道,好像无法计算。
但是,通过分析吧三个扇形通过拼可以一个半圆,这样问题也就迎刃而解。
解:1/2x3.14x3x3=14.13(平方厘米)五、等面积变换法它通过平面图形之间的等面积变换,化难为易,求出阴影部分的面积。
如下图(已知CD为6厘米)分析:图形中的阴影部分是不规则图形,面积较难计算,注意到点C、D为半圆的三等分点。
通过分析发现把P点移动到O点三角形CDP和三角形CDO同底等高,所以三角形CDP和三角形CDO的面积相等。
小升初数学正方形阴影面积

小升初数学正方形阴影面积
正方形是小学数学中的基础形状之一,孩子在小学阶段就会学习到与正方形相关的一些概念和计算方法。
其中,正方形的阴影面积问题是一种常见的数学题型。
在解决正方形阴影面积问题时,孩子需要掌握正方形的定义和性质。
正方形是指四条边相等且四个角都是直角的四边形。
根据正方形的对称性质,正方形的阴影面积可以通过计算正方形的面积来求解。
设正方形的边长为a,那么正方形的面积S=a*a=a^2。
如果正方形的边长增加了b,那么新的正方形的面积
S'=(a+b)*(a+b)=(a^2+2ab+b^2)。
根据计算公式,我们可以得出正方形阴影面积的计算公式为:阴影面积=S'-S=(a^2+2ab+b^2)-
a^2=2ab+b^2。
例如,如果一个正方形的边长是8cm,而阴影部分的边长是
3cm,那么阴影面积=2*8*3+3^2=48+9=57cm^2。
在解决正方形阴影面积问题时,孩子需要注意计算过程的准确性和逻辑性。
同时,孩子还可以通过绘制图形来帮助自己理解问题,提高解题效率。
此外,还可以引导孩子思考不同情况下正方形阴影面积的变化规律,培养孩子的逻辑思维和分析问题的能力。
通过解决正方形阴影面积问题,孩子可以巩固正方形的概念和性质,提升数学计算能力,培养解决问题的能力和思维方式。
这对孩子在小升初数学考试中取得好成绩,以及今后学习数学的基础打
下良好的基础。
【2020】小升初数学几何图形阴影部分面积题型大全(详细答案解析)

六年级阴影部分的面积1.求阴影部分的面积。
(单位:厘米)解:割补后如右图,易知,阴影部分面积为一个梯形。
梯形上底DE=7-4=3厘米,1S =S =DE AB)AD 2⨯+⨯阴梯形(=137)42⨯+⨯(=20(平方厘米)2、求阴影部分的面积。
<解:S =S 阴梯形,梯形的上底是圆的直径,下底、高是圆的半径,S =S 阴梯形=124)22⨯+⨯(=6(2cm )3、如图,平行四边形的高是6厘米,面积是54平方厘米,求阴影三角形的面积。
【解:S =AD AO ⨯ABCD =54平方厘米,且AO=6厘米,所以AD=9厘米。
由图形可知AED ∆是等腰直角三角形,所以AE=AD ,OE=OF=AE-AO=9-6=3cm ,BO=BC-OC=9-3=6cm 。
1S =BO OF 2⨯⨯阴=1S =632⨯⨯阴=92cm 。
4、如图是一个平行四边形,面积是50平方厘米,求阴影积分的面积。
解:方法一:过C 点作CF AD ⊥交AD 于点F ,可知AECF 是长方形,面积=5×6=302cm ,ABE CFD S =S ∆∆=(50-30)÷2=102cm 。
方法二:BC=S ABCD ÷AE=50÷5=10cm ,BE=BC-EC=10-6=4cm ,ABE S ∆=BE ×AE ÷2 =4×5÷2=102cm,5、下图是一个半圆形,已知AB=10厘米,阴影部分的面积为平方厘米,求图形中三角形的高。
解:S =S -S ∆阴半圆=21AB 22π⎛⎫⨯⨯ ⎪⎝⎭=21103.1422⎛⎫⨯⨯ ⎪⎝⎭=152cm , 三角形的高=2S ∆÷AB=2×15÷10=3cm 。
@6、如图,一个长方形长是10cm ,宽是4cm ,以A 点和C 点为圆心各画一个扇形,求画中阴影部分的面积是多少平方厘米解:BECD 1S =S -S 4阴大圆=ABCD 11S -S S 44⎛⎫- ⎪⎝⎭大圆小圆=ABCD 11S +S -S 44大圆小圆=()2213.1410-4-1044⨯⨯⨯ =2cm 。
2020-2021学年人教版数学六年级下册小升初总复习《阴影部分求面积及周长》专项练习卷

2020-2021学年人教版数学六年级下册小升初总复习《阴影部分求面积及周长》专项练习卷学校:___________姓名:___________班级:___________考号:___________一、图形计算1.求阴影部分的面积.(单位:厘米)2.正方形面积是7平方厘米,求阴影部分的面积.(单位:厘米)3.求图中阴影部分的面积.(单位:厘米)4.求阴影部分的面积.(单位:厘米)5.求阴影部分的面积.(单位:厘米)6.求阴影部分的面积.(单位:厘米)7.求阴影部分的面积.(单位:厘米)8.求阴影部分的面积.(单位:厘米)9.求阴影部分的面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求阴影部分的面积.(单位:厘米)12.求阴影部分的面积.(单位:厘米)13.求阴影部分的面积.(单位:厘米)14.已知直角三角形面积是12平方厘米,求阴影部分的面积.15.求阴影部分的面积.(单位:厘米)16.图中圆的半径为5厘米,求阴影部分的面积.(单位:厘米)17.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长.18.正方形边长为2厘米,求阴影部分的面积.19.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积.20.图中四个圆的半径都是1厘米,求阴影部分的面积.21.如图,正方形边长为8厘米,求阴影部分的面积.22.求阴影部分的面积.(单位:厘米)23.如下图,大正方形的边长为6厘米,小正方形的边长为4厘米.求阴影部分的面积.24.求阴影部分的面积.(单位:厘米)25.求阴影部分的面积.(单位:厘米)26.下图中,大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积.27..下图中,大小正方形的边长分别是12厘米和10厘米.求阴影部分面积.28.求下图中阴影部分图形的面积及周长.29.已知下图阴影部分三角形的面积是5平方米,求圆的面积.30.已知下图中,圆的直径是2厘米,求阴影部分的面积.31.求下图中阴影部分图形的面积及周长.32.求下图中阴影部分的面积.(单位:厘米)33.求下图中阴影部分的面积.34.求下图中阴影部分的面积.35.求下图中阴影部分的面积.36.求下图中阴影部分的面积.二、解答题37.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?38.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?39.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初阴影部分面积总结【典型例题】例1.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的面积。
例2.正方形边长为2厘米,求阴影部分的面积。
例3.图中四个圆的半径都是1厘米,求阴影部分的面积。
例4.如图,四个扇形的半径相等,求阴影部分的面积。
(单位:厘米)分析:四个空白部分可以拼成一个以2为半径的圆.所以阴影部分的面积为梯形面积减去圆的面积,例22.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。
例23.求阴影部分的面积。
(单位:厘米)例24.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。
求BC的长度。
例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)【练习】1、求阴影部分的面积。
(单位:厘米)〖综合练习〗一、填空题。
1. 从直线外一点到这条直线可以画无数条线段,其中最短的是和这条直线()的线段。
2. 下图中,∠1=()度,∠2=()度。
13023. 一个三角形中,最小的角是46°,按角分类,这个三角形是()三角形。
4. 下图是三个半径相等的圆组成的图形,它有()条对称轴。
5. 用百分数表示以下阴影部分是整个图形面积的百分之几。
6. 把一个底面直径2分米的圆柱体截去一个高1分米的圆柱体,原来的圆柱体表面积减少()平方分米。
7. “”和“”的周长之比是(),面积之比是()。
8.下图是由棱长1厘米的小正方体木块搭成的,这个几何体的表面积是()平方厘米。
至少还需要()块这样的小正方体才能搭成一个大正方体。
9. 画一个周长25.12厘米的圆,圆规两脚间的距离是()厘米,画成的圆的面积是()。
10. 下面的小方格边长为1厘米,估一估图①中“福娃”的面积,算一算图②中阴影部分的面积。
11. 一个梯形,上底长a厘米,下底长b厘米,高h厘米。
它的面积是()平方厘米。
如果a=b,那么这个图形就是一个()形。
12. 在一块边长是20厘米的正方形木板上锯下一个最大的圆,这个圆的面积是()平方厘米,剩下的边料是()平方厘米。
13. 将一个大正方体切成大小相同的8个小正方体,每个小正方体的表面积是18平方厘米,原正方体的表面积是()平方厘米。
14. 5个棱长为30厘米的正方体木箱堆放在墙角(如下图),露在外面的表面积是()平方厘米。
15. 如下左图,已知大正方形的边长是a厘米,小正方形的边长是b厘米。
用字母表示阴影部分的面积是()平方厘米。
16. (上右图)根据左图估计右图的面积是()平方厘米。
二、选择题。
1. 小青坐在教室的第3行第4列,用(4,3)表示,小明坐在教室的第1行第3列应当表示为()。
A. (1,3)B. (3,1)C. (1,1)D. (3,3)2. 在同一平面,画已知直线的垂线,可以画()。
A. 1条B. 4条C. 2条D. 无数条3. 用100倍的放大镜看40°的角,这个角的度数是()度。
A. 4B. 40C. 400D. 40004. 下面图形是用木条钉成的支架,最不容易变形的是()。
DCBA5. 下列图形中,对称轴条数最多的是()。
DCBA6. 水桶占地面积是指水桶的()。
A. 表面积B. 体积C. 容积D. 底面积7. 下列形体,截面形状不可能是长方形的是()。
8. 一个用立方块搭成的立体图形,淘气从前面看到的图形是,从上面看是,那么搭成这样一个立体图形最少要()个小立方块。
A. 4B. 5C. 6D. 79. 有两个大小不同的圆,直径都增加1厘米,则它们的周长()。
A. 大圆增加得多B. 小圆增加得多C. 增加得一样多10. 一个立方体木块,6个面都涂上红色,然后把它切成大小相等的27个小立方体,其中有三个面是红色的小立方体有()个。
A. 4B. 12C. 6D. 811. 左图最有可能是()的展开示意图。
12. 有两盒滋补品,用下面三种方式包装,你认为最省包装纸的是()。
13. 甲图和乙图所占空间的大小关系是甲()乙。
14. 下图中甲和乙周长相比,结果是(),面积相比,结果是()。
A. 甲比乙大B. 甲比乙小C. 甲和乙一样大D. 无法比较三、判断题。
1. 一条射线长12米。
()2.两条直线相交,一定有两个交点。
()3.小于180°的角是钝角。
()4.角的两条边画得越短,这个角就越小。
()5.用一副三角板可以拼成105°的角。
()6.用8个小正方体拼成一个大正方体,任意拿走一个小正方体后表面积一定会减少。
()7.任何一个长方体都有8个面,12条棱,6个顶点。
()8.只要有一个角是直角的平行四边形,就是长方形或正方形。
()9.以圆规两脚间的距离为4厘米画一个圆,这个圆的半径是2厘米。
()10.把一个长方形拉成一个平行四边形后,保持不变的是面积。
()11.半圆的周长就是圆的周长的一半。
()12.一个正方形的边长与一个圆的直径相等,那么这个正方形的周长一定大于圆的周长。
()13.棱长6厘米的正方体,表面积和体积相等。
()四、操作题。
1.在方格纸上按以下要求画出图形B和图形C。
(1)以直线MN为对称轴画图图形A的对称图形B。
(2)将图形B向右平移4格,再以O点为中心,顺时针旋转90°得到图形C。
2.画出下面图形的全部对称轴。
3.在方格纸上分别画出从正面、左面和上面看到的图形。
(市)4.画两个圆,使它们的面积的比是1:4,并且使它们组成的图形有无数条对称轴。
(沙县)5.根据图中的信息解答下列问题:(1)车站到学校的路线与游乐园到学校的路线的夹角的度数是()。
(2)电影院距离学校有500米,位置刚好在学校的东偏北方向,并且路线与学校到车站的路线垂直,则学校到电影院的图上距离是多少厘米?请你在图中画出学校到电影院的路线,并标上电影院的位置。
(3)根据图上的距离,求出学校到车站的实际距离是多少米。
6.在生产、生活中,我们经常把一些同样大小的圆柱捆扎起来,下面我们来探索捆扎时怎样求绳子的长度。
假设每个圆柱管的直径都是10厘米,当圆柱管的放置方式是“单层平放”时,捆扎后的横截面如下图所示:请你根据图形,完成下表: (100)321绳子长度(厘米)圆柱管个数五、周长、面积计算题。
1.下图中阴影部分的周长是多少?2.光明小区要将一块四边形闲置地(如下图,单位:米)改建为小区花园。
请你帮忙算一算:这块闲置地的面积是多少?3.已知阴影部分的面积是8平方厘米,求圆的面积。
4.如下图(单位:米),阴影部分的面积分别是1S和2S,1S与2S的比为1:4,求1S 、2S 。
5.下图中,正方形的边长是2厘米,四个圆的半径都是1厘米,圆心分别是正方形的四个顶点。
求出阴影部分的面积。
6.给水缸做一个圆形木盖,木盖面的直径是0.8米。
木盖面的面积是多少平方米?如果沿木盖的外沿钉一条铁片,铁片至少长多少厘米?7.老师从家到学校的路程是3000米,早上7:30他骑自行车从家去学校上班,这辆自行车轮子的外直径是70厘米,平均每分钟转100圈,如果学校8:00上课,老师会不会迟到?你是怎样想的?六、表面积、体积计算题。
1.母亲节时,小明送妈妈一个茶杯。
(如下图,单位:厘米)(1)茶杯中部的一圈装饰带很漂亮,那是小明怕烫伤妈妈的手特意贴上的,这条装饰带宽5厘米,装饰带展开后至少长多少厘米?(接头处忽略不计)(2)这只茶杯的体积是多少?2.某工厂要生产100节圆柱形铁皮通风管,已知每节通风管的管口半径是0.2米,长是1.4米。
生产这批圆柱形通风管,至少需要铁皮多少平方米?(通风管的接口、损耗料忽略不计,得数保留整数)3.把一个棱长是0.5米的正方体钢坯,锻成横截面面积是10平方分米的长方体钢材。
锻成的钢材有多长?(用方程解答)4.红星村在空地上挖一个直径是4米,深3米的圆柱形氨水池。
(1)如果要在池壁和池底抹上水泥,抹水泥的面积是多少平方米?(2)这个水池能储存多少立方米的氨水?5.有一个圆锥形帐篷,底面直径约5米,高约3.6米(1)它的占地面积约是多少平方米?(2)它的体积约是多少立方米?七、能力拓展题。
1.求下图正方形阴影部分的面积。
(正方形边长是4厘米)2.长方形ABCD被虚线分割成4个面积相等的部分(如下图,单位:厘米)。
试求线段BE的长度。
3.图中四个等圆的周长都是50.24厘米,求阴影部分的面积。
4.下图由19个棱长是2厘米的小正方体重叠而成。
求这个立体图形的表面积。
5.一只猫追赶一只老鼠,老鼠沿A B C方向跑,猫沿A D C 方向跑,结果在E点将老鼠抓住了。
老鼠与猫的速度比是17:20,C点与E点相距3米,四边形ABCD为平行四边形。
猫和老鼠所用的时间相等。
(1)猫比老鼠多跑了几米才追到老鼠?(2)猫和老鼠所跑的四边形的周长是多少米?。