实验九 集成运算放大电路(同相及0.7倍放大电路)
集成运算放大器实验报告

集成运算放大器实验报告集成运算放大器实验报告引言集成运算放大器(Integrated Operational Amplifier)是一种常见的电子器件,广泛应用于各个领域,如通信、医疗、工业控制等。
本实验旨在通过实际操作和测量,了解集成运算放大器的基本原理和特性,并探讨其在电路设计中的应用。
一、实验目的本实验的主要目的如下:1. 理解集成运算放大器的基本原理和特性;2. 掌握集成运算放大器的基本参数测量方法;3. 探索集成运算放大器在电路设计中的应用。
二、实验仪器与器件1. 实验仪器:示波器、函数发生器、直流电源、万用表等;2. 实验器件:集成运算放大器、电阻、电容等。
三、实验步骤1. 搭建基本的集成运算放大器电路,并连接相应的仪器;2. 调节函数发生器,输入不同的信号波形,观察输出信号的变化;3. 测量并记录集成运算放大器的增益、输入阻抗、输出阻抗等参数;4. 尝试改变电路中的电阻和电容数值,观察输出信号的变化;5. 根据实验结果,分析集成运算放大器的应用场景和电路设计方法。
四、实验结果与分析1. 在实验中,我们观察到集成运算放大器具有很高的增益,可以将输入信号放大到几十倍甚至几百倍的程度。
这使得它在信号放大和放大器设计中发挥着重要的作用。
2. 通过测量,我们还发现集成运算放大器具有很高的输入阻抗和很低的输出阻抗。
这使得它可以有效地隔离输入和输出电路,提高信号传输的质量。
3. 在实验中,我们改变了电路中的电阻和电容数值,观察到输出信号的变化。
这进一步验证了集成运算放大器的灵活性和可调性,可以根据实际需求进行电路设计和调整。
五、实验总结通过本次实验,我们深入了解了集成运算放大器的基本原理和特性,并掌握了相关的测量方法。
我们还通过实际操作,探索了集成运算放大器在电路设计中的应用。
实验结果表明,集成运算放大器在信号放大、隔离和调节方面具有重要作用,可以在各个领域中发挥重要的作用。
六、参考文献[1] 张三, 李四. 集成运算放大器原理与应用[M]. 北京:电子工业出版社,2018.[2] 王五, 赵六. 集成运算放大器电路设计与实验[M]. 上海:上海科学技术出版社,2019.以上即为本次集成运算放大器实验报告的全部内容。
集成运放放大电路实验报告

集成运放放大电路实验报告一实验目的:用运算放大器等元件构成反相比例放大器,同相比例放大器,反相求和电路,同相求和电路,通过实验测试和分析,进一步掌握它们的主要特征和性能及输出电压与输入电压的函数关系。
二仪器设备:i SXJ-3B型模拟学习机ii 数字万用表iii 示波器三实验内容:每个比例求和运算电路实验,都应进行以下三项:(1)按电路图接好后,仔细检查,确保无误。
(2)调零:各输入端接地调节调零电位器,使输出电压为零(用万用表200mV档测量,输出电压绝对值不超过0.5mv)。
A. 反相比例放大器实验电路如图所示R1=10k Rf=100k R’=10k输出电压:Vo=-(Rf/R1)V1实验记录:将电路输入端接学习机上的直流信号源的OUTPUT,调节换档开关置于合适位置,并调节电位器,使V1分别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。
实际测量V0的值填在表内。
B 同相比例放大器R1=10k, Rf=100k R'=10k输出电压:V0=(1+Rf/R1)V1别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。
E 电压跟随器实验电路:四思考题1 在反相比例放大器和加法器中,同相输入端必须配置一适当的接地电阻,其作用是什么?阻值大小的选择原则怎样考虑?此电阻也称之为平衡电阻,使输入端对地的静态电阻相等,减少输入失调电流或对电路的影响。
2分析实验数据与理论值产生的误差原因。
(1)运放输入阻抗不是无穷大。
(2)运放增益不是无穷大。
(3)运放带宽不是无穷大。
(4)运放实际存在输入、温漂等等。
集成运算放大电路实验报告

电子技术基础实验与课程设计------运算放大器基本放大电路实验目的1.通过实验,进一步理解集成运算放大器线性应用电路的特点。
2.掌握集成运算放大器基本线性应用电路的设计方法。
3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。
集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
1.1反相比例放大电路输入输出关系: 输入电阻: Ri=R1 输出电阻: Ro=01.1.1设计要求1.1.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。
反相比例放大电路仿真电路图i oV R R V 12-=i R o V R R V R R V 1212)1(-+=输入与输出电压所以输出放大倍数 =12电压输入输出波形图i oV R R V 12-=1.2同相比例放大电路输入输出关系: 输入电阻: Ri=∞ 输出电阻: Ro=0 1.2.1设计要求1.2.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。
i o V RRV )1(12+=R o V R RV R R V 12i 12)1(-+=同相比例放大电路仿真电路图输入与输出电压所以输出放大倍数: =12 电压输入输出波形图i o V RRV )1(12+=1.3微分电路R fU iR 2U oC 1foi R U dt dU C -=1dtdU C R U if o 1-=max 1)(dtdU U C R i oM f ≤实用微分电路RC1=RfC电路的输出电压为o u 为:21io du u R C dt =- 式中,21R C 为微分电路的时间常数。
电工电子技术实验7.集成运算放大电路实验

100k
注意:
V
C C
2
10k
-
A 741
3
+
7 4
6
u
o
10k
5 1
10k
RW
(1)闭环回路 下 (2)输出端用 小量程 (3)输入端禁 止短路
4、同相比例放大器(Uo=(1+RF/R1)UI)
按下图连线,数据记录于下表中。 参考值 UI(mV) 实测值 理论值 U0(V) 实测值 30 100 300 1000 3000
相对误差
RF R1
10k
-
100k
A
u
i
A1
+
u
o
R2
10k
B
5、反相求和放大器(Uo=-RF/R1(UI1+UI2))
7.集成运算放大电路实验
实验目的:
(1)熟悉运放的引脚及其调零 (2)掌握用运放组成的比例、求和电路 的特点及性能 (3)学会运放电路的测试和分析方法
一、 A 741 内部电路图
7
VCC
V8
V9
V12
V13
V19
V16
3
V1
V2
1.5k
2
30 pF
V18
7.5k
25 50
6
V3
V E E
电源为±12V
uo i
2、电压跟随器(Uo=Ui)
按右图连线,数据记录于下表中。
参考值
UI(V) 实测值
集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。
它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。
在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。
实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。
它通过将输入信号与放大倍数相乘,输出一个放大后的信号。
我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。
而相位方面,输出信号与输入信号的相位保持一致。
这说明非反相放大器能够有效放大输入信号,并且不改变其相位。
实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。
它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。
我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。
但是相位方面,输出信号与输入信号相差180度。
这说明反相放大器能够有效放大输入信号,并且改变其相位。
实验三:积分器积分器是Op-Amp的另一个重要应用。
它可以将输入信号进行积分运算,输出一个积分后的信号。
我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。
这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。
实验四:微分器微分器是Op-Amp的又一个重要应用。
它可以将输入信号进行微分运算,输出一个微分后的信号。
我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。
集成运算放大电路实验

集成运算放大电路实验【实验目的】1、验证理想运算放大器的功能。
2、掌握集成运算放大器反相比例放大电路的设计方法,并测量集成运算放大器反相比例放大电路的放大倍数。
3、学习基于集成运算放大电路的RC 文氏桥振荡电路的设计方法,并观测振荡现象。
【实验原理/实验基础知识】集成运算放大器是现代电子电路中使用最为广泛的一种模拟电子电路。
LM358一种常用的双运放集成电路,芯片内部封装了2个完全相同的运算放大器,不需要调零端,如下图所示:电压放大倍数定义为输出电压和输入电压的比值,即ou iu A u 。
【实验环境】四、实验内容【实验步骤】1、实验电路如图4-1所示。
按图4-1所示,连接电路(注意:接线前先调节稳压电源输出电压为+12V ,关断电源后再连线)。
2、观察集成运算放大电路工作在线性放大区的理想特性(1)、正负输入端虚短路(正负输入端电位相等):使用万用表直流电压20V 档,测试正输入端、负输入端对地之间的电位 (2)、运放输入电阻r id 等于无穷大(输入端无电流流过): 使用万用表电流200uA 档,测试输入端电流。
(3)、其它理想特性:开环放大倍数等于无穷大,输出电阻接近0。
3、电压放大倍数研究※图4-1电路中,根据反相比例运算电路可知闭环放大倍数为:===11闭环电压放大倍数:-闭环输入电阻:输出电阻:(几十欧姆)ff i o R A R r R r 图4-1观察实际测量值与理论计算值是否符合。
(1)将信号发生器输出设置为正弦波、频率为1KHz、峰-峰值为100mV,接到放大器输入端u i处,观察u i和u o端波形、并比较相位。
(2)信号源频率不变,逐渐加大幅度,观察u o的变化并填表4-1。
表2-24、观察RC文氏桥振荡电路的振荡现象(1)按照图4-2搭建实验电路。
(2)按照图4-2电路计算的振荡频率(其中R=R2=R3,C=C1=C2)用示波器观察振荡电路的输出频率是否与计算值相同 【实验报告】1、根据实验内容,填写上述表格;2、回答问题理想运算放大电路的输出电压最大值可以超过供电电源电压吗?输入电压幅值有限制吗?按照实验电路搭建的RC 文氏桥振荡电路输出波形为什么不是正弦波?3、心得体会及其他。
集成运算放大电路实验PPT课件

uO +UO(sat)
饱和区
O
u+– u–
–UO(sat)
(1) 输出只有两种可能, +UO(sat) 或–UO(sat) 当 u+> u– 时, uO = + UO(sat) u+< u– 时, uO = – UO(sat) 不存在 “虚短”现象
(2) i+= i– 0,仍存在“虚断”现象
10/73
按功能 数字和模拟
2/73
章目录 上一页 下一页 返回 退出
16.1.1 集成运算放大器的特点
1. 元器件参数的一致性和对称性好; 2. 电阻的阻值受到限制,大电阻常用晶体管恒流 源代替,电位器需外接; 3. 电感、电容不易集成,常采用外接方式; 4. 二极管多用晶体管的发射结代替。
各类型号集成运算放大器
3/73
章目录 上一页 下一页 返回 退出
16.1.2 电路的简单说明
输入级 中间级
输出级
偏置 电路
运算放大器方框图
输入级:输入电阻高,能减小零点漂移和抑制干
扰信号,都采用带恒流源的差分放大器 。
中间级:要求电压放大倍数高。常采用带恒流源
的共发射极放大电路构成。
输出级:与负载相接,要求输出电阻低,带负载
(1) 开环电压放大倍数 Auo
(2) 差模输入电阻
rid
(3) 开环输出电阻
ro 0
(4) 共模抑制比
KCMRR
由于实际运算放大器的技术指标接近理想化条件,
用理想运算放大器分析电路可使问题大大简化, 为此,
后面对运算放大器的分析都是按其理想化条件进行的。
7/73
章目录 上一页 下一页 返回 退出
电子技术实验报告—实验9集成运算放大器组成的RC文氏电桥振荡器

电子技术实验报告实验名称:集成运算放大器组成的RC文氏电桥振荡器系别:班号:实验者姓名:学号:实验日期:实验报告完成日期:目录一、实验目的 (3)二、实验原理 (3)1、产生自激振荡的条件 (3)2、RC 串-并联网络的选频特性 (4)3、自动稳幅 (5)三、实验仪器 (6)四、实验内容 (7)1、电路分析及参数计算 (7)2、振荡器参数测试 (8)3、振幅平衡条件的验证 (9)4、观察自动稳幅电路作用 (10)五、误差分析 (10)六、实验心得 (11)一、实验目的1、掌握产生自激振荡的振幅平衡条件和相位平衡条件。
2、了解文氏电桥振荡器的工作原理及起振条件和稳幅原理。
二、实验原理1、产生自激振荡的条件所谓振荡器是指在接通电源后,能自动产生所需的信号的电路,如多谐振荡器、正弦波振荡器等。
当放大器引入正反馈时,电路可能产生自激振荡,因此,一般振荡器都由放大器和正反馈网络组成。
其框图如图1 所示。
振荡器产生自激震荡必须满足两个基本条件:(1)振幅平衡条件:反馈信号的振幅应该等于输入信号的振幅,即:V F = V i或|AF| = 1(2)相位平衡条件:反馈信号与输入信号应同相位,其相位差应为:Ф= ФA + ФF = ±2nπ(n = 0、1、2……)为了振荡器容易起振,要求|AF|>1,即:电源接通时,反馈信号应大于输入信号,电路才能振荡,而当振荡器起振后,电路应能自动调节使反馈信号的振幅应该等于输入信号的幅度,这种自动调节功能称为稳幅功能。
电路振荡产生的信号为矩形波信号,这种信号包含着多种谐波分量,故也称为多谐振荡器。
为了获得单一频率的正弦信号,要求在正反馈网络具有选频特性,以便从多谐信号中选取所需的正弦信号。
本实验采用RC 串-并联网络作为正反馈的选频网络,其与负反馈的稳幅电路构成一个四臂电桥,如图3 所示,故又称为文氏电桥振荡器。
2、RC 串-并联网络的选频特性RC 串-并联网络如图2(a )所示,其电压传输系数为:2()1122F +=12R1211(1)(21)122R2112R VF jwR c R c VO R j wc R jwc jwR c c wc R ++==+++++-()当R1= R2= R , C1= C2= C 时,则上式为:1()13()F j wRc wRc +=+-若令上式虚部为零,即得到谐振频率f o 为:1fo=2RC π 当f=f o 时,传输系数最大,且相移为0,即:F max =1/3,φF =0传输系数 F 的幅频特性和相频特性如图2(b )(c )所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EDA(一)模拟部分电子线路仿真实验报告
实验名称:实验九集成运算放大电路(同
相及0.7倍放大电路)
姓名:倪庆敏
学号:140404239
班级:通信2班
实验时间:2016.12.3
南京理工大学紫金学院电光系
一、实验目的(四号+黑体)
1、掌握比例运算电路运算关系的估算方法及仿真分析方法。
2、掌握加减运算电路运算关系的估算方法及仿真分析方法。
3、掌握比例运算电路,加减运算电路的设计方法及调试方法。
4、掌握积分电路的工作原理及其基本性能特点。
5、掌握积分电路的运算关系的分析方法。
6、掌握积分电路的仿真分析方法。
二、实验原理
(格式同上)集成运算放大电路具有很多技术指标,在误差允许的范围内可以将其理想化处理,集成运放的理想参数为:
(1)开环差模电压放大倍数Aud=无穷大。
(2)差模输入电阻Rid=无穷大。
(3)输出电阻R0=0.
(4)共模抑制比很大。
(5)带宽足够宽。
(6)由以上特点可以得到理想集成运放的分析依据,利用分析依据可以很方便的得到集成运放的输入电压和输出电压之间的运算关系。
1)虚断
理想集成运放的输入电阻无穷大,而输入电压为一个有限值,则电路的输入电流i+和i-近似为0,此时两个输入端之间没有电流流过,称为虚断。
注意:电流指的是净输入电流。
不论运放是开环还是构成负反馈,都可以使用虚断。
2)虚短
虚短使用的条件是运放构成负反馈电路,由于理想集成运放差模电压放大倍数很大,而输出电压为有限值,故,U+=U-,即同相输入端的电位和反相输入端电位相等,称为虚短。
3)放大信号类型
运放带宽足够大,所以运放构成的电路既可以放大直流信号也可以放大交流信号。
4)电源
运放可由双电源供电,也可以由单电源供电。
若运放由双电源供电,可放大交流信号与直流信号,此时电路中参考点电位为正,负电源的中间值,即公共接地端,静态时U+=U-=U0。
若仅需放大交流信号,则运放可由单电源供电吃屎集成运放内部各点对地电位都将提高,将以VCC/2为参考点,因此即使输入信号为0,仍然有输出信号。
因此为了使集成运放能够正常工作,必须调整运放电路的静态工作点,使U+=U-=U0=VCC/2,目的是电路能够获得最大的动态范围。
为了使电路输出信号只有交流信号,需要使用电容隔断直流信号。
三、实验内容
U0=(1+R4/R3)=5Ui
当R4是R3的4倍是即为要求的运放电路,R1=R3//R4=2.4K 仿真波形图如下图,由图可知,仿真结果是正确的。
2)实验任务二
元件参数估算:
假设第一个反相比例电路的放大倍数为-1倍,即第二个反相比例就.是-0.7倍了,AU1=A01=-1,第二个电路:AU2=-(R7/R3)=-(2.1/3)=-0.7 仿真结果如下图所示:波形最高和最大很明显为U0=0.7Ui
四、小结与体会
1、将理论计算结果和实测数据相比较,分析产生误差的原因。
从计算结果可知,实验测得结果与理论值相比都偏大一点,原因是在分析模拟运算电路的输出与输入之间的关系时,为简单计算,一般都将运放视为理想运放,但是,实际运放与理想运放的性能参数是有差异的,实际运放并不是理想的,存在是调温度飘移误差,以及闭环增益误差在分析因此产生的运算误差时,一般只考虑主要影响因素,则运算参数的非理想性引起运算误差.再者就是测量时在操作过程中也会出现人为的测量不精确以及系统误差,这些都会造成是测量值与理论之间的误差的结果。
2、分析讨论实验中出现的现象和问题。
在实验中进行调零时电压太大很难调,操作过程中会出现失调的现象。
实际运放并不是理想的, 存在失调、温度漂移误差, 以及闭环增益误差。
也即在输入端无信号输入时, 输出端仍输出不为零的电压。
虽然可以试尝通过运放的调零电路进行调节使输出端电压趋于
零。
但集成运放调零电路是以改变差动输入级的对称性来实现调零的, 调零作用过大时, 差动输入级的对称性就会严重失配, 从而使集成运放的共模抑制性能变坏。
而且在集成运放外接电路电阻阻值过大时, 失调电流的影响较严重, 用调零的方法来补偿失调输出, 势必造成差动输入级的严重失衡, 以至会大大降低集成运放抑制漂移的性能。
另外, 集成运放的温度漂移是无法通过调零电路来消除的。
因此在作运放应用电路设计时, 为提高运放的精度和工作稳定性, 应该在不考虑调零电路作用时, 要求输出失调电压尽可能的小, 或等价地要求输入失调电压尽可能小。