线性系统分析_(吴大正_第四版)习题答案-精选.

合集下载

信号与线性系统分析_(吴大正_第四版)习题答案12264精编版

信号与线性系统分析_(吴大正_第四版)习题答案12264精编版

第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t(5))trf=(sin)(t(7))t(kf kε=)(2(10))f kεk-=(k+(])1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号与线性系统分析-(吴大正-第四版)第三章习题答案

信号与线性系统分析-(吴大正-第四版)第三章习题答案

第三章习题3.1、试求序列k01(k)=2f ⎧⎪⎛⎫⎨ ⎪⎪⎝⎭⎩, 的差分(k)f ∆、(k)f ∇和i=-(i)kf ∞∑。

3.6、求下列差分方程所描述的LTI 离散系统的零输入相应、零状态响应和全响应。

1)()-2(-1)(),()2(),(-1)-1y k y k f k f k k y ε===3)()2(-1)(),()(34)(),(-1)-1y k y k f k f k k k y ε+==+= 5)1()2(-1)(-2)(),()3()(),(-1)3,(-2)-52k y k y k y k f k f k k y y ε++====3.8、求下列差分方程所描述的离散系统的单位序列响应。

2)()-(-2)()=y k y k f k5)()-4(-1)8(-2)()+=y k y k y k f k3.9、求图所示各系统的单位序列响应。

(a)(c)3.10、求图所示系统的单位序列响应。

3.11、各序列的图形如图所示,求下列卷积和。

(1)12()()f k f k *(2)23()()f k f k *(3)34()()f k f k *(4)[]213()-()()f k f k f k *3.13、求题3.9图所示各系统的阶跃响应。

3.14、求图所示系统的单位序列响应和阶跃响应。

3.15、若LTI 离散系统的阶跃响应()()()0.5k g k k ε=,求其单位序列响应。

3.16、如图所示系统,试求当激励分别为(1)()()f k k ε= (2)()()0.5()kf k k ε=时的零状态响应。

3.18、如图所示的离散系统由两个子系统级联组成,已知()1=2cos4k h k π,()()2=k h k k a ε,激励()()()=--1f k k a k δδ,求该系统的零状态响应()zs k y 。

(提示:利用卷积和的结合律和交换律,可以简化运算。

)3.22、如图所示的复合系统有三个子系统组成,它们的单位序列响应分别为()()1=h k k ε,()()2=-5h k k ε,求复合系统的单位序列响应。

信号与线性系统分析吴大正:第四版习题答案

信号与线性系统分析吴大正:第四版习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为(2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

信与线性系统分析吴大正第四版习题答案

信与线性系统分析吴大正第四版习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))rt f=)(t(sin(7))(t f kε)(k2=(10))(])1kf kε(k)(1[=-+1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号和线性系统分析-(吴大正-第四版)习题答案解析02871

信号和线性系统分析-(吴大正-第四版)习题答案解析02871

1 / 28专业课习题解析课程第1讲第一章 信号与系统〔一 专业课习题解析课程第2讲第一章 信号与系统〔二1-1画出下列各信号的波形[式中)()(t t t r ε=]为斜升函数。

〔2∞<<-∞=-t et f t,)( 〔3)()sin()(t t t f επ=〔4)(sin )(t t f ε= 〔5)(sin )(t r t f =2 / 28〔7)(2)(k t f kε= 〔10)(])1(1[)(k k f kε-+=解:各信号波形为 〔2∞<<-∞=-t et f t,)(〔3)()sin()(t t t f επ= 〔4)(sin )(t t f ε= 〔5)(sin )(t r t f = 〔7)(2)(k t f k ε= 〔10)(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

〔1)2()1(3)1(2)(-+--+=t t t t f εεε 〔2)2()1(2)()(-+--=t r t r t r t f 〔5)2()2()(t t r t f -=ε 〔8)]5()([)(--=k k k k f εε 〔11)]7()()[6sin()(--=k k k k f εεπ〔12)]()3([2)(k k k f k---=εε 解:各信号波形为〔1)2()1(3)1(2)(-+--+=t t t t f εεε3 / 28〔2)2()1(2)()(-+--=t r t r t r t f〔5)2()2()(t t r t f -=ε〔8)]5()([)(--=k k k k f εε〔11)]7()()[6sin()(--=k k k k f εεπ〔12)]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

信与线性系统分析习题答案吴大正第四版高等教育出版社

信与线性系统分析习题答案吴大正第四版高等教育出版社

第一章信号与系统(二)1-1画出下列各信号的波形【式中r(t)t(t)】为斜升函数。

(2)f(t) et t(3)f(t)sin( t) (t)(4)f (t) (sint)(5)f(t)r(sin t)(7)f(t) 2k (k)(10f(k) [1 ( 1)k] (k))解:各信号波形为(2)f(t) e N, t(3)f(t)sin( t)(t)(4)f(t)(s int)(5)f(t)r(si n t)(7)f(t)2k (k)(10)f(k)[1 (1)k] (k)1-2画出下列各信号的波形[式中r(t) t (t)为斜升函数]。

(1)f(t) 2 (t 1) 3 (t 1) (t 2) (2)f (t) r(t) 2r(t 1) r(t 2)(5)f (t) r(2t) (2 t) (8)f(k) k[ (k) (k 5)](11) f(k) ksin( )[ (k) (k 7)]6(12)f(k) 2k[ (3 k) ( k)]解:: 各信号波「形为(1) f(t) 2 (t 1) 3 (t 1) (t 2)(2) f(t) r(t) 2r(t 1) r(t2)(5) f(t)r(2t) (2 t)(8)f(k)k[ (k) (k 5)](11)f(k)ksin( § )[ (k) (k7)](12) f(k) 2k [ (3 k) ( k)]1-3写出图1-3所示各波形的表达式。

1-4写出图1-4所示各序列的闭合形式表达式。

1-5判别下列各序列是否为周期性的。

如果是,确定其周期。

Q■(2) f 2(k) cos(- k ) cos(—k )(5) f 5(t)3cost 2sin( t)4 4 3 6解:1-6已知信号f(t)的波形如图1-5所示,画出下列各函数的波形。

(6)f(0.5t 2)(1) f(t 1) (t) (2) f(t 1) (t 1) (5) f (1 2t)df (t) t(7) K ( 8) f(X)dx解:各信号波形为(1)f(t 1) (t)(2)f(t 1) (t 1)(5)f(1 2t)(6) f (0.5t 2)df(t)(7)dtt(8) f (x)dx1-7已知序列f(k)的图形如图1-7所示,画出下列各序列的图形。

信与线性系统分析吴大正第四版习题答案

信与线性系统分析吴大正第四版习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))rt f=)(t(sin(7))(t f kε)(k2=(10))(])1kf kε(k)(1[=-+1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

(完整版)信号与线性系统分析_(吴大正_第四版)习题答案

(完整版)信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t (7))t(k=f kε)(2(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业课习题解析课程西安电子科技大学
844信号与系统
专业课习题解析课程
第1讲
第一章信号与系统(一)
专业课习题解析课程
第2讲
第一章信号与系统(二)
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t e
t f t
,)( (3))()sin()(t t t f επ=
(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k
ε= (10))(])1(1[)(k k f k
ε-+=
解:各信号波形为 (2)∞<<-∞=-t e
t f t
,)(
(3))()sin()(t t t f επ=
(4))

t
=
(sin
)
(t
(5))
t
r
f=
(sin
)
(t
(7))
t
(k
f kε
=
)
(
2
(10))
f kε
k
-
=
(k
+
(
]
)1
(
1[
)
1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11)
)]7()()[6
sin()(--=k k k k f εεπ
(12)
)]()3([2)(k k k f k
---=εε 解:各信号波形为
(1))2()1(3)1(2)(-+--+=t t t t f εεε
(2)
)2
(
)1
(
2
)(
)(-
+
-
-
=t r
t r
t r
t
f
(5)
)
2(
)
2(
)(t
t
r
t
f-

(8)
)]5()([)(--=k k k k f εε
(11)
)]7()()[6
sin()(--=k k k k f εεπ
(12)
)]
(
)
3(
[
2
)
(k
k
k
f k-
-
-

ε
1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))6
3cos()443cos()(2π
πππ+++=k k k f
(5))sin(2cos 3)(5t t t f π+=
解:
1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

(1))()1(t t f ε- (2))1()1(--t t f ε (5)
)21(t f - (6))25.0(-t f
(7)dt
t df )
( (8)dx x f t ⎰∞-)(
解:各信号波形为 (1))()1(t t f ε-
(2)
)1()1(--t t f ε
(5)
)21(t f -
(6)
)25.0( t f
(7)dt t df )(
(8)
dx
x
f
t
⎰∞-)(
1-7 已知序列)(k f 的图形如图1-7所示,画出下列各序列的图形。

(1))()2(k k f ε- (2))2()2(--k k f ε
(3))]4()()[2(---k k k f εε (4))2(--k f (5)
)1()2(+-+-k k f ε (6))3()(--k f k f
解:
1-9 已知信号的波形如图1-11所示,分别画出)(t f
和dt t df )
(的波形。

解:由图1-11知,)3(t f -的波形如图1-12(a)所示()3(t f -波形是由对)23(t f -的波形展宽为原来的两倍而得)。

将)3(t f -的波形反转而得到)3(+t f 的波形,如图1-12(b)所示。

再将)3(+t f 的波形右移3个单位,就得到了)(t f ,如图1-12(c)所示。

dt
t df )
(的波形如图1-12(d)所示。

1-10 计算下列各题。

(1)[]{})()2sin(cos 22
t t t dt
d ε+ (2))]([)1(t
e dt d t t δ-- (5)dt t t t )2()]4sin([2++⎰∞∞-δπ (8)dx x x t
)(')1(δ⎰∞--
1-12 如图1-13所示的电路,写出
(1)以)(t u C 为响应的微分方程。

(2)以)(t i L 为响应的微分方程。

1-20 写出图1-18各系统的微分或差分方程。

1-23 设系统的初始状态为)0(x ,激励为)(⋅f ,各系统的全响应)(⋅y 与激励和初始状态的关系如下,试分析各系统是否是线性的。

(1)⎰+=-t t dx x xf x e t y 0)(sin )0()( (2)⎰+=t
dx x f x t f t y 0)()0()()( (3)⎰+=t
dx x f t x t y 0)(])0(sin[)(
(4))2()()0()5.0()(-+=k f k f x k y k
(5)∑=+=k
j j f kx k y 0)
()0()(
1-25 设激励为)(⋅f ,下列是各系统的零状态响应)(⋅zs y 。

判断各系统是否是线性的、时不变的、因果的、稳定的?
(1)dt t df
t y zs )()(= (2))()(t f t y zs = (3))2cos()()(t t f t y zs π= (4))()(t f t y zs -= (5))1()()(-=k f k f k y zs

6))()2()(k f k k y zs -= (7)∑==k
j zs j f k y 0
)()( (8))1()(k f k y zs -=
1-28 某一阶LTI离散系统,其初始状态为)0(x。

已知当激励为)(
)
(
1k
k

=时,其全响应为
若初始状态不变,当激励为)(k f-时,其全响应为)(]1
)5.0(2[
)
(
2k
k
y kε
-
=
若初始状态为)0(2x,当激励为)(
4k
f时,求其全响应。

第二章
2-1 已知描述系统的微分方程和初始状态如下,试求其零输入响应。

(1)1)0(',1)0(),()(6)('5)(''-===++-y y t f t y t y t y
(4)0)0(',2)0(),()()(''===+-y y t f t y t y
2-2 已知描述系统的微分方程和初始状态如下,试求其+0值)0(+y 和)0('+y 。

(2))()(,1)0(',1)0(),('')(8)('6)(''t t f y y t f t y t y t y δ====++--
(4))()(,2)0(',1)0(),(')(5)('4)(''2t e t f y y t f t y t y t y t ε====++--
解:
2-4 已知描述系统的微分方程和初始状态如下,试求其零输入响应、零状态响应和全响应。

(2))()(,2)0(',1)0(),(3)(')(4)('4)(''t e t f y y t f t f t y t y t y t ε---===+=++
解:
2-8 如图2-4所示的电路,若以)(t i S 为输入,)(t u R 为输出,试列出其微分方程,并求出冲激响应和阶跃响应。

2-12 如图2-6所示的电路,以电容电压)(t u C 为响应,试求其冲激响应和阶跃响应。

2-16 各函数波形如图2-8所示,图2-8(b)、(c)、(d)均为单位冲激函数,试求下列卷积,并画出波形图。

(1))(*)(21t f t f (2))(*)(31t f t f (3))(*)(41t f t f
(4))(*)(*)(221t f t f t f (5))3()(2[*)(341--t f t f t f。

相关文档
最新文档