2.2轴对称的基本性质(第1课时)

合集下载

小学五年级上学期数学《轴对称图形(一)》(第一课时 )教学设计

小学五年级上学期数学《轴对称图形(一)》(第一课时 )教学设计
教学内容
教学重点:
1.引导学生判断轴对称图形。
2.认识对称轴并利用轴对称图形的性质在方格纸上画出简单图形的对称轴。
教学难点:
1.认识对称轴并利用轴对称图形的性质在方格纸上画出简单图形的对称轴。
教学过程
一.复习引入。
1.师:什么是轴对称图形?ቤተ መጻሕፍቲ ባይዱ
(预设1:能对折的图形就是轴对称图形。)
师:怎样用标准的数学语言描述呢?(课件出示图形对折动画)
三.知识应用。
1.方法:师:因为轴对称图形的对称轴其实就是一条对称点所在线段的垂直平分线。画平面图形的对称轴只需要找到每组对称点所在线段的中心点,连接起来。
2.你能画出下面这个图形的对称轴吗?
①学生先尝试画一画。
②交流展示。
预设:我们先在图上找到两组对称点A和A',B和B',A和A'之间有4格,B和B'之间有10格,根据对称轴就是对称点所在线段的垂直平分线的特点,找到它们各自中心点,连接起来。
预设:A和A'所在线段与对称轴是互相垂直的。同样,对称点B和B'所在的线段和对称轴也是互相垂直的,因此对称点所在的线段与对称轴都是互相垂直。
(3)总结。轴对称图形到底有什么特点呢?
【在轴对称图形中,对称点到对称轴的距离相等,对称点所在的线段和对称轴互相垂直。轴对称图形的对称轴其实就是一条对称点所在线段的垂直平分线。】
②对称点到对称轴的距离相等。
师:我们可以看到A和A'与对称轴之间的距离都是2格,B和B'到对称轴之间的距离都是5格,每组对称点到对称轴的距离都是相等的,对称轴刚好在对称点所在线段的中心点上。
③对称点所在的线段与对称轴都是互相垂直。
师:仔细观察,这是A和A'这组对称点所在的线段,这条线段和对称轴有怎样的位置关系?

初中数学青岛版八年级上2.2《轴对称的基本性质》

初中数学青岛版八年级上2.2《轴对称的基本性质》

1、选关键点, 2、作垂线, 3、取相等, 4、对称点顺次连。
B
l
A
D
CE
对应线段 所在直线 的交点在 对称轴上 F 或与对称 轴平行
校训:立德树人 求实创新 拓展 生成
如何寻找对称轴?
A
D
CE B
F
①取中点,做垂线
②过对应线段所在直线的两个交点作 直线。
思考:
校训:立德树人 求实创新
情景 回扣
轴对称的基本性质
实践探究 理解记忆
应用作图 拓展生成
校训:立德树人 求实创新 实践 探究
做一做
(1)把一张纸片对折,扎一个小孔,然后展开铺平,记得到的两个
小孔为点A与A′,折痕为MN,连接AA′交MN于点O。
猜一猜,说一说
(2)如果将纸片沿MN重新折 叠,线段OA与OA′有怎样的
M
数量关系?
(3)线段AA′与直线MN有怎 样的位置关系 ?猜想一下。并
l
A
O
A′
请总作结垂关线键,步 骤可取分相几等步。。
点A′就是所求点。
校训:立德树人 求实创新 拓展 生成
(2)已知点A和A′是对称点,如何确定点A和A′的对称 轴?
M
A O A′ N
取中点, 作垂线
校训:立德树人 求实创新 应用 作图
如何作直线l关于直线MN 的对称直线l ′
M
作法:
l
l′
1、在直线l 取不重合的两点A,B,
M
(5)连接DD′,交MN于点P, 你发现线段DD′与直线MN具 有怎样的关系?
A
A′
E
B
F
B′
D
P
D′
C G C′ N

轴对称的基本性质(第1课时)课件

轴对称的基本性质(第1课时)课件

点A′就是点A关于直线l的对称点;
2.类似地,作出点B关于直线l
的对称点B′; 3.连接A′B′.
B
B′
所以线段A′B′即为所求.
【规律方法】 作已知图形关于某条直线对称的图形的一般步聚:
1.找点 (确定图形中的一些特殊点). 2.画点 (画出特殊点关于已知直线的对称点). 3.连线 (连接对称点).
【跟踪训练】
1.两个图形关于某直线对称,对称点一定在 ( D )
A.直线的两旁
B.直线的同旁
C.直线上
D.直线两旁或这直线上
2.轴对称图形沿对称轴对折后,对称轴两旁的
部分( A )
A.完全重合
B.不完全重合
C.两者都有
D. 没有关系
3.如果两个图形关于某条直线对称,那么对应点所连的线 段被__对__称__轴__垂直平分. 4.下图是轴对称图形,相等的线段是_A_B_=_C_D_,__B_E_=_C_E__, 相等的角__∠__B_=_∠__C___.
A
ED
B
C
共同探究
l
已知对称轴 l 和一个点A,如何
画出点A关于 l 的对称点A′?
A
O
A′
作法: 过点A作直线l的垂线,在垂线上
截取OA′=OA,垂足为点O,点A′就是 点A关于直线l 的对称点.
【例 题】
例2 如图,已知△ABC和直线l,怎样作出与△ABC关于直
线l对称的图形呢?
【解析】△ABC可以由三
(2)对应线段相等,对应角相等. 2.按要求作出一图形关于某条直线成轴对称的图形.
1.下面说法中,正确的是( C ) A.设A,B关于直线MN对称,则AB垂直平分MN. B.如果△ABC≌△DEF,则一定存在一条直线MN,使 △ABC与△DEF关于MN对称. C.如果一个三角形是轴对称图形,且对称轴不止一条, 则它是等边三角形. D.两个图形关于MN对称,则这两个图形分别在MN的两 侧.

2.2轴对称的性质(1)

2.2轴对称的性质(1)

(1)2.2轴对称的性质教学目标1.知道线段垂直平分线的概念,知道成轴对称的两个图形全等,且成轴对称的两个图形中,对应点的连线被对称轴垂直平分;2.经历探索轴对称性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理的思考和表达能力.教学重点理解“成轴对称的两个图形中,对应点的连线被对称轴垂直平分,对应线段相等、对应角相等”.教学难点轴对称性质的运用教学过程开场白同学们,你们喜欢照镜子吗你知道“你与镜中的你”有什么关系吗引入【一些图形也想照镜子看看自己美不美,一位数学老师就让同学们记录下圆、正方形、长方形、平行四边形照镜子的状况,你对这四位的记录有什么意见吗(投影图片)同学们的看法到底对不对通过这一节课的学习我们就有答案了(对学生的回答不予评价,探索完轴对称的性质后,让学生自评或互评).需满足几个条件(活动说明:最好用透明纸,这样更方便观察现象).实践探索一1.指导学生完成下边的活动(投影要求).活动一:如图所示,把一张纸折叠后,用针扎一个孔;再把纸展开,两针孔分别记为点A、点A,折痕记为l;连接AA,AA与l相交于点O.2.探究:你有什么发现(1)通过活动一的操作,你小组探索的结果是什么你们是怎样发现的给直线l起个名字.(2)线段的垂直平分线你觉得线段的垂直平分线我们怎样定义%线段的垂直平分线的特征是什么实践探索二指导学生完成活动二(投影要求).仿照上面的操作,在对折后的纸上再扎一个孔,把纸展开后记这两个针孔为点B、点B,连接AB、A B、BB.你有什么新的发现实践探索三(投影要求)如图,并仿照上面进行操作,扎孔、展开、标记、连线.你又有什么发现引导学生观察,形成结论.返回情景导入题(投影图片)开始同学们的回答对不对先让学生自评,再由他评.投影例题&例1 小明取一张纸,用小针在纸上扎出“4”,然后将纸放在镜子前.(1)你能画出镜子所在直线l的位置吗(2)图中点A、B、C、D的在镜中的对应点分别是,线段AC、AB 的在镜中的对应线段分别是,CD=,∠CAB=,∠ACD=.(3)连接AE、BG,AE与BG平行吗为什么(4)AE与BG平行,能说明轴对称图形对称点的连线一定互相平行吗(5)延长线段CA、FE,连接CB、FG并延长,作直线AB、EG,你有什么发现吗总结轴对称在我们的生活中无处不在,通过这节课的学习,你有什么感受呢,说出来告诉大家。

第2章《轴对称图形》常考题集:2.2轴对称的性质(含答案)

第2章《轴对称图形》常考题集:2.2轴对称的性质(含答案)

度.(第1题) (第2题) (第3题)2.如图,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A 的大小等于 度.3.如图,△ABC 沿DE 折叠后,点A 落在BC 边上的A ′处,若点D 为AB 边的中点,∠B=50°,则∠BDA ′的度数为 .4.如图,三角形纸片ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为 度.(第4题) (第7题) (第8题) cm..第2章 《轴对称图形》常考题集:2.2 轴对称的性质填空题1.如图,D 、E 为△ABC 两边AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=55°,则∠BDF=5.小宇同学在一次手工制作活动中,先把一张长方形纸片按左图方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按右图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是6.把图一的矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD 的面积为cm . 度. cm.(第9题) (第10题) (第12题)10.如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处,若∠CFE=60°,且DE=1,则边BC 的长为 . .13.将一张长方形纸片按如图所示折叠,如果∠1=64°,那么∠2等于 .(第13题) (第14题) (第15题) 14.如图,矩形ABCD 中(AD >AB ),M 为CD 上一点,若沿着AM 折叠,点N 恰落在BC 沿直线AD 折过来,点C 落到点C 1的位置,如果BC=10,那么BC 1= .16.如图,长方形纸片ABCD 中,AB=3cm ,BC=4cm ,现将A 、C 重合,使纸片折叠压平,设折痕为EF ,则S △AEF = cm 2.(第16题) (第18题)17.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则B=原三角形的∠B= 度.7.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=3 cm ,AB=8 cm ,则图中阴影部分面积为8.如图(1)是四边形纸片ABCD ,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR ,恰使CP ∥AB ,RC ∥AD ,如图(2)所示,则∠C=9.如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿着直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为11.已知Rt △ABC 中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于E ,交斜边于F ,则△CDE 的周长为12.如图,折叠宽度相等的长方形纸条,若∠1=70°,则∠2= 度.上,则∠ANB+∠MNC= 度.15.如图,AD 是△ABC 的中线,∠ADC=60°,把△ADCb 的值为 . 解答题A 1B 1C 1D 1; (2)在给出的方格纸中,画出四边形ABCD 关于直线l 对称的四边形A 2B 2C 2D 2.18.如图一张长方形纸片ABCD ,其长AD 为a ,宽AB 为b (a >b ),在BC 边上选取一点M ,将△ABM 沿AM 翻折后B 至B ′的位置,若B ′为长方形纸片ABCD 的对称中心,则a19.如图,把△ABC 纸片沿DE 折叠,当点A 在落在四四边形BCDE 内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED 的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.20.如图,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2). (1)写出点A 、B 的坐标;(2)求直线MN 所对应的函数关系式;(3)利用尺规作出线段AB 关于直线MN 的对称图形.(保留作图痕迹,不写作法)21.作图题:(不要求写作法)如图,在10×10的方格纸中,有一个格点四边形ABCD (即四边形的顶点都在格点上).(1)在给出的方格纸中,画出四边形ABCD 向下平移5格后的四边形的面积.. (3)写出点A 1,B 1,C 1的坐标.的坐标: ; (2)求经过第2008次跳动之后,棋子落点与点P 的距离.22.如图,在平面直角坐标系xoy 中,A (-1,5),B (-1,0),C (-4,3). (1)求出△ABC(2)在图中作出△ABC 关于y 轴的对称图形△A 1B 1C 123.如图,在平面直角坐标系中,一颗棋子从点P 处开始依次关于点A 、B 、C 作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于C 的对称点处,…如此下去.(1)在图中画出点M 、N ,并写出点M 、N, ).24.如图所示,在直角坐标系xOy 中,A (-1,5),B (-3,0),C (-4,3). (1)在图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′; (2)写出点C 关于y 轴的对称点C ′的坐标(25.如图,已知网格上最小的正方形的边长为1. (1)分别写出A 、B 、C 三点的坐标;(2)作△ABC 关于y 轴的对称图形△A ′B ′C ′.(不写作法)26.如图,在正方形网格上有一个△ABC .(1)作△ABC 关于直线MN 的对称图形(不写作法); (2)若网格上的最小正方形的边长为1,求△ABC 的面积27.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”,如图1中四边形ABCD 就是一个“格点四边形”. (1)求图1中四边形ABCD 的面积;(2)在图2方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为, )..轴对称图形.28.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1. (1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法); (3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形的边长为单位长度建立直角坐标系,可得点A 的坐标是(29.认真画一画.如图,在正方形网格上有一个△DEF .(1)作△DEF 关于直线HG 的轴对称图形△D ′E ′F ′(不写作法); (2)作EF 边上的高(不写作法);(3)若网格上的最小正方形边长为1,则△DEF 的面积为30.如图,写出△ABC 的各顶点坐标,并画出△ABC 关于Y 轴的对称图形,并直接写出△ABC 关于x 轴对称的三角形的各点坐标.答案:填空题1.故答案为:70.考点:翻折变换(折叠问题). 专题:压轴题.分析:利用折叠的性质求解.利用折叠的性质求解. 解答:解:由折叠的性质知,解:由折叠的性质知,AD=DF AD=DF AD=DF,,∵点D 是AB 的中点,∴AD=BD,由折叠可知AD=DF AD=DF,, ∴BD=DF,∴BD=DF,∴∠DFB=∠B=55°,∠BDF=180°∴∠DFB=∠B=55°,∠BDF=180°--2∠B=70°.2∠B=70°. 故答案为:故答案为:707070..点评:本题利用了:①折叠的性质:折叠是一种本题利用了:①折叠的性质:折叠是一种对称对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,位置变化,对应边和对应角相对应边和对应角相等;②中点的性质,等边对等角,等;②中点的性质,等边对等角,三角形内角和三角形内角和定理求解. 2.故本题答案为50°.°.考点:翻折变换(折叠问题). 专题:压轴题.分析:根据折叠的性质可知.根据折叠的性质可知.解答:解:连接AA′,AA′,易得AD=A′D,AE=A′E;AD=A′D,AE=A′E;故∠1+∠2=2(∠DAA′+∠EAA′)=2∠A=100°;3.故填80.考点:翻折变换(折叠问题). 分析:由折叠的性质可知 点评:本题利用了:本题利用了:11对应边和对应角等;三角形内角和为180°;四边形内角和等于360度.度. 5.故应填1cm cm...考点:翻折变换(折叠问题). 专题:压轴题.分析:有关图形的折叠与拼接最好的解决方法是亲自动手操作.先求第一次折痕,再求第二次,从而求它们的关系.故∠A=50°.故∠A=50°.点评:本题通过折叠本题通过折叠变换变换考查学生的逻辑思维能力,考查学生的逻辑思维能力,解决此类问题,解决此类问题,应结合题意,最好最好实际操作实际操作图形的折叠,易于找到图形间的关系. AD=A′D,再根据AD=A′D,再根据中点中点的性质得AD=BD AD=BD,BD=A′D,,BD=A′D,∠DA′B=∠B=50°,从而求解∠BDA'的度数.解答:解:由折叠的性质知,AD=A′D,解:由折叠的性质知,AD=A′D,∵点D 为AB 边的中点边的中点∴AD=BD,BD=A′D,∠DA′B=∠B=50°, ∴∠BDA′=180°∴∠BDA′=180°--2∠B=80°.、折叠的性质:折叠是一种、折叠的性质:折叠是一种对称对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,相等;相等;22、中点的性质,、中点的性质,等边对等角等边对等角,三角形的内角定理求解. 4.故填60.分析:根据题意,已知∠A=65°,∠B=75°,可结合根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和三角形内角和定理和折叠变换的性质求解.解答:解:∵∠A=65°,∠B=75°,解:∵∠A=65°,∠B=75°,∴∠C=180°∴∠C=180°--(65°+75°)(65°+75°)=40=40度,度, ∴∠CDE+∠CED=180°∴∠CDE+∠CED=180°--∠C=140°,∠C=140°, ∴∠2=360°∴∠2=360°--(∠A+∠B+∠1+∠CED+∠CDE)=360°(∠A+∠B+∠1+∠CED+∠CDE)=360°--300°=60度.度.故填6060..点评:本题通过折叠变换考查三角形、本题通过折叠变换考查三角形、四边形四边形内角和定理.注意折叠前后图形全.故应填1445 .考点:翻折变换(折叠问题). 专题:压解答:解:由勾股定理得,等;②勾股定理,直角三角形和矩形的面积公式求解. 7.故应填30cm 2.考点:翻折变换(折叠问题). 专题:压轴题.分析:根据折叠的性质求出EF=DE=CD-CE=5EF=DE=CD-CE=5,,AD=AF=BC AD=AF=BC,再根据勾股定理列出,再根据勾股定理列出,再根据勾股定理列出方方程求解即可.解答:解:由折叠的性质知,解:由折叠的性质知,EF=DE=CD-CE=5EF=DE=CD-CE=5EF=DE=CD-CE=5,,AD=AF=BC AD=AF=BC,, 由勾股定理得,由勾股定理得,CF=4CF=4CF=4,,AF 2=AB 2+BF 2, 即AD 2=82+(AD-4AD-4))2, 解得,解得,AD=10AD=10AD=10,, ∴BF=6,∴BF=6,图中阴影部分面积图中阴影部分面积=S =S △A B F +S △C E F =30cm 2.点评:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,位置变化,对应边和对应角相对应边和对应角相等;②勾股定理,三角形的面积公式求解. 8.故应填95.考点:翻折变换(折叠问题).分析:根据折叠前后图形全等和平行线,根据折叠前后图形全等和平行线,先求出∠CPR 先求出∠CPR 和∠CRP,和∠CRP,再根据再根据再根据三角形内三角形内角和定理即可求出∠C.定理即可求出∠C.解答:解:第一次折痕的左侧部分比右侧部分短1cm 1cm,,第二次折痕的左侧部分比右侧部分长1cm 1cm,,其实这两条折痕是关于纸张的正中间的折痕成轴其实这两条折痕是关于纸张的正中间的折痕成轴对称对称的关系,它们到它们到中线中线的距离是0.5cm 0.5cm,,所以在纸上形成的两条折痕之间的距离是1cm 1cm..点评:考查图形的拆叠知识及学生动手操作能力和图形的翻折考查图形的拆叠知识及学生动手操作能力和图形的翻折变换变换,解题过程中应注意折叠是一种对称变换,应注意折叠是一种对称变换,它属于轴对称,它属于轴对称,它属于轴对称,根据根据根据轴对称的性质轴对称的性质,折叠前后图形的形状和大小不变. 6轴题.分析:利用折叠的性质和利用折叠的性质和勾股定理勾股定理可知. MN=5MN=5,,设Rt△PMN 的斜边上的高为h ,由,由矩形矩形的宽AB 也为h , 根据直角根据直角三角形的面积三角形的面积公式得,h=PM•PN÷MN=125, 由折叠的性质知,由折叠的性质知,BC=PM+MN+PN=12BC=PM+MN+PN=12BC=PM+MN+PN=12,, ∴矩形的面积=AB•BC=1445. 点评:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,位置变化,对应边和对应角相对应边和对应角相解答:解:因为折叠前后两个图形全等,故∠CPR=12 ∠B=12 ×120°=60°,×120°=60°,∠CRP ∠CRP==12 ∠D=1250°=25°;50°=25°;∴∠C=180°∴∠C=180°--25°25°--60°=95°;∠C=95度;度;故应填9595..点评:折叠前后图形全等是解决折叠问题的关键.9.故应填3cm cm..考点:翻折变换(折叠问题). 分析:由折叠的性质知CD=DE 对应边和对应角相等;相等;22、勾股定理求解.、勾股定理求解. 10.故应填3 .考点:翻折变换(折叠问题). 分析:根据翻折变换的特点可知.解答:解:根据翻折变换的特点可知:解:根据翻折变换的特点可知:DE=GE DE=GE因为∠CFE=60°,因为∠CFE=60°, 所以∠GAE=30°,所以∠GAE=30°, 则AE=2GE=2DE=2AE=2GE=2DE=2,, 所以AD=3AD=3,, 所以BC=3BC=3..点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,于轴对称,根据轴对称的性质,根据轴对称的性质,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,如本题中折叠如本题中折叠前后角相等.前后角相等.11.故应填11或10 . 考点:翻折变换(折叠问题). 专题:压轴题.分析:解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变. 解答:解:当角B 翻折时,翻折时,B B 点与D 点重合,点重合,DE DE 与EC 的和就是,AC=AE AC=AE.根据题意在.根据题意在Rt△BDE 中运用中运用勾股定理勾股定理求DE DE..解答:解:由勾股定理得,解:由勾股定理得,AB=10AB=10AB=10..由折叠的性质知,由折叠的性质知,AE=AC=6AE=AC=6AE=AC=6,,DE=CD DE=CD,∠AED=∠C=90°.,∠AED=∠C=90°.,∠AED=∠C=90°.∴BE=AB ∴BE=AB-AE=10-6=4-AE=10-6=4-AE=10-6=4,,在Rt△BDE 中,由勾股定理得,中,由勾股定理得, DE 2+BE 2=BD 2即CD 2+42=(8-CD 8-CD))2, 解得:解得:CD=3cm CD=3cm CD=3cm.. 点评:本题利用了:本题利用了:11、折叠的性质:折叠是一种、折叠的性质:折叠是一种对称对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠前后图形的形状和大小不变,位置变化,位置变化,BC BC,也就是说等,也就是说等8,CD 为AC 的一半,故△CDE 的周长为8+3=118+3=11;; 当A 翻折时,翻折时,A A 点与D 点重合.同理DE 与EC 的和为AC=6AC=6,,CD 为BC 的一半,所以CDE 的周长为6+4=106+4=10.故△CDE .故△CDE 的周长为1010.. 点评:本题考查图形的翻折变换.12.故填40.故填4040..点评:本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.∵∠1=64°,∵∠1=64°,∴∠3=∠1=64°,∴∠3=∠1=64°,∴∠4=180°∴∠4=180°--2∠1=180°∠ANB+∠MNC=180°∠ANB+∠MNC=180°--∠ANM=90°.∠ANM=90°.点评:综合考查了折叠得到的对应角相等及平角定义.15.故应填5.考点:翻折变换(折叠问题).考点:翻折变换(折叠问题);平行线的性质.专题:计算题.分析:根据两根据两直线直线平行内错角相等和同旁内角互补,以及折叠关系列出方程解则可.可.解答:解:根据题意:2∠1与∠2互补,互补,得到:2∠1+∠2=180°,得到:2∠1+∠2=180°,∵∠1=70°,∵∠1=70°,∴140°+∠2=180°,∴140°+∠2=180°,∴∠2=40°∴∠2=40° 13.故应填52°.考点:翻折变换(折叠问题). 专题:计算题.分析:根据根据补角补角的定义、折叠的性质和平行线的性质可求解. 解答:解:由折叠的性质可得∠3=∠1,解:由折叠的性质可得∠3=∠1,-2×64°=52°2×64°=52°∵长方形的对边平行,的对边平行,∴∠2=∠4=52°.∴∠2=∠4=52°.点评:此题主要利用了折叠的性质和平行线的性质:两直线平行,内错角相等. 14.故应填90°.考点:翻折变换(折叠问题). 分析:易得∠ANM=∠ADM=90°,那么根据平角定义即可得到所求的两个角的度数之和.解答:解:根据折叠的性质,有∠ANM=∠ADM=90°;故 专题:应用题.分析:根据AD 是△ABC 的中线,BC=10BC=10,,先求得BD=5BD=5,,由折叠的性质知BC 1=BD=5=BD=5.. 解答:解:由折叠可知DC=DC 1,∠ADC=∠ADC 1=60°,∴∠BDC 1=60°,=60°,又∵AD 是△ABC 的中线,的中线,BC=10BC=10BC=10,,∴BD=DC=DC 1=5=5,,∴△B ∴△BDC DC 1为等边三角形,∴BC 1=BD=5=BD=5..16.故本题答案为7516. 考点:翻折变换(折叠问题). 分析:由翻折的性质知D′F=DF,D′F=DF,CE=AE CE=AE CE=AE,且,且CE=BC-BE 长,再证得△ABE≌△AD′F,有AF=AD-FD AF=AD-FD,则,则S△A E F =12AF•AB.AF•AB. 解答:解:由题意知,D′F=DF,解:由题意知,D′F=DF,CE=AE CE=AE CE=AE,, 在Rt△ABE 中,中,AB AB 2+BE 2=AE 2,AB 2+BE 2=(BC-BE BC-BE))2,即32+BE 2=(4-BE 4-BE))2,解得:解得:BE=BE=78, ∵∠D′AF+∠EAF=∠EAF+∠BAE=90°,∴∠D′AF=∠BAE ∴∠D′AF=∠BAE又∵∠D′=∠B=90°,AD′=CD=AB 又∵∠D′=∠B=90°,AD′=CD=AB∴△D′AF≌△BAE ∴△D′AF≌△BAE∴FD=D′F=BE=78. ∴AF=AD ∴AF=AD-FD=4- -FD=4- 78 =258∴S △A E F =12 AF•AB=12 ×258 ×3=7516 . 故本题答案为7516 .考点:翻折变换(折叠问题).点评:本题利用了折叠的性质:折叠是一种对称本题利用了折叠的性质:折叠是一种对称变换变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.,故由,故由勾股定理勾股定理求得BE 的点评:本题考查了翻折的性质,本题考查了翻折的性质,全等三角形全等三角形的判定和性质、勾股定理. 17.故应填78°. 专题:压轴题.分析:在图①的△ABC 中,根据中,根据三角形内角和三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD 中,得到另一个关于∠B、∠C 度数的等量关系式,联立两式即可求得∠B 的度数.的度数.解答:解:在△ABC 中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD 中,则有:∠CBD+∠BCD=180°中,则有:∠CBD+∠BCD=180°--82°,即:82°,即:13 ∠B+∠C=98°…②;①-②,得:23∠B=52°,∠B=52°, 故应填 3 .考点:翻折变换(折叠问题). 专题:压:解:连接CB′.cos∠ACB=cos30°=a:解答题19.考点:全等三角形的判定;三角形内解得∠B=78°.解得∠B=78°.点评:此题主要考查的是图形的折叠此题主要考查的是图形的折叠变换变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.关系是解答此题的关键.18.轴题. 分析:连接CB′.由于B'B'为长方形纸片为长方形纸片ABCD 的对称中心,∴AB′C 是矩形的对角线.角线.由折叠的性质知可得△ABC 三边关系求解.三边关系求解.解答由于B'B'为长方形纸片为长方形纸片ABCD 的对称中心,∴AB′C 是矩形的是矩形的对角对角线.线.由折叠的性质知,AC=2AB′=2AB=2b,由折叠的性质知,AC=2AB′=2AB=2b,∴sin∠ACB=AB:∴sin∠ACB=AB:AC=1AC=1AC=1::2,∴∠ACB=30°.∴∠ACB=30°.b= 3 3 ..点评:本题利用了:本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、矩形的性质,锐角三角函数的概念求解.角和定理;翻折变换(折叠问题). 专题:操作型;探究型.分析:(1)根据折叠就可写出一对全等三角形,根据折叠,则重合的)根据折叠就可写出一对全等三角形,根据折叠,则重合的顶点顶点是对应点,重合的角是对应角;点,重合的角是对应角;(2)根据全等三角形的对应角相等,以及平角的定义进行表示;(3)根据()根据(22)中的表示方法,可以求得∠1+∠2,再找到∠A 和x 、y 之间的关系,就可建立它们之间的联系.系,就可建立它们之间的联系.解答:解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE;(2)∠1=180°)∠1=180°-2x -2x -2x,∠2=180°,∠2=180°,∠2=180°-2y -2y -2y;;(3)∵∠1+∠2=360°)∵∠1+∠2=360°-2-2-2((x+y x+y)=360°)=360°)=360°-2-2-2(180°(180°(180°--∠A)=2∠A.∠A)=2∠A.规律为:∠1+∠2=2∠A.)(8分)分)点评:根据图形,找出需要的点的坐标即可根据图形,找出需要的点的坐标即可21.考点评:在研究折叠问题时,有全等形出现,要充分利用全等的性质.20.考点:作图-轴对称变换.专题:作图题;压轴题;网格型.分析:考查平面直角坐标系的基本知识,但同时也考查了考查平面直角坐标系的基本知识,但同时也考查了待定系数法待定系数法, 解答:解:(1)A (-1-1,,3),B (-4-4,,2.(2分)分)(2)解法1:∵:∵直线直线MN 经过坐标原点,经过坐标原点,∴设所求函数的关系式是y=kx y=kx,,又点M 的坐标为(的坐标为(11,2), ∴k=2.(3分)分)∴直线MN 所对应的函数关系式是y=2x y=2x..(4分)分)解法2:设所求函数的关系式是y=kx+b y=kx+b,,则由题意得:îïíïìb =0 k +b =2, 解这个解这个方程组方程组,得îïíïìk =2 b b==0 ,(6分)分)∴直线MN 所对应的函数关系式是y=2x y=2x..(3)利用)利用直尺直尺和圆规,作线段AB 关于直线MN 的对称图形A′B′,如图所示.点:作图-轴对称变换.专题:作图题;压轴题;网格型.分析:在平移时要注意平移的方向和平移的距离.确定平移的方向和距离,先确定一组对应点;确定图形中的确定图形中的关键点关键点;利用第一组对应点和平移的性质确定图中所有关键点的对应点;按原图形顺序依次连接对应点,按原图形顺序依次连接对应点,所得到的图形即为平移后所得到的图形即为平移后的图形.的图形.轴对称图形轴对称图形对应点到对称轴的距离相等,对应点到对称轴的距离相等,利用此性质找对应点,利用此性质找对应点,利用此性质找对应点,顺次连顺次连接即可.接即可.解答:解:作图如右图:解:作图如右图:分析:(1)根据网格可以看出三角形的底AB 是5,高是C 到AB 的距离,是3,解:(1)画出对应点的位置,连接即可.画出对应点的位置,连接即可.点评:本题考查的是平移变换与轴对称变换本题考查的是平移变换与轴对称变换作图作图.作平移图形时,作平移图形时,找找关键点的对应点也是关键的一步.的对应点也是关键的一步.平移作图的一般步骤为:平移作图的一般步骤为:平移作图的一般步骤为:①①确定平移的方向和距离,确定平移的方向和距离,先确定一组对应点;先确定一组对应点;先确定一组对应点;②确定图形中的关键点;②确定图形中的关键点;②确定图形中的关键点;③利用第③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作轴对称后的图形的依据是作轴对称后的图形的依据是轴对称的性质轴对称的性质,基本作法是①先确定图形的关键点;②利用轴②利用轴对称性对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.22.考点:作图-轴对称变换.专题:综合题.利用面积公式计算.利用面积公式计算. (2)从三角形的各)从三角形的各顶点顶点向y 轴引轴引垂线垂线并延长相同长度,找对应点.顺次连接即可.可.(3)从图中读出新三角形三点的坐标.)从图中读出新三角形三点的坐标.解答:S △A B C =12 ×5×3=152(或7.57.5))(平方单位).(2)如图.)如图.(3)A 1(1,5),B 1(1,0),C 1(4,3).点评:本题综合考查了三角形的面积,网格,本题综合考查了三角形的面积,网格,轴对称图形轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.对所学的知识要会灵活运用.23.故本题答案为(-2,0),(4,4). 考点:作图-轴对称变换.专题:压轴题;规律型.分析:(1)点P 关于点A 的对称点M ,即是连接PA 延长到M 使PA=AM PA=AM,所以,所以M 的坐标是,N (4,4); 故答案为:故答案为:M M (-2-2,,0),N (4,4);(2)棋子跳动3次后又回点P 处,且2008÷3=669…1,所以经过第2008次跳动后,棋子落在点M 处,处,∴PM ∴PM==OM 22+OP 22 =22+22 =2 2 2 ..答:经过第2008次跳动后,棋子落点与P 点的距离为2 2 2 ..点评:考查学生对点对称意义的理解及学生在新的知识环境下运用所学知识的能力.本题着重考查学生探索规律和计算能力.24.考点:作图-轴对称变换.专M (-2-2,,0),点M 关于点B 的对称点N 处,即是连接MB 延长到N 使MB=BN MB=BN,,所以N 的坐标是N (4,4);(2)棋子跳动3次后又回点P 处,所以经过第2008次跳动后,棋子落在点M 处,根据处,根据勾股定理勾股定理可知PM 的值.的值.解答:解:(1)M (-2-2,,0)题:网格型.分析:(1)从三角形的三边向y 轴引轴引垂线垂线,并延长相同的距离找到三点的对称点,顺次连接.顺次连接.(2)从图形中找出点C′,并写出它的坐标.C′,并写出它的坐标.解答:解:(1)如图;)如图;(2)根据)根据轴对称图形轴对称图形的性质可:C′(的性质可:C′(44,3). 点评:本题主要考查了轴对称图形的作法,注意本题主要考查了轴对称图形的作法,注意画轴对称图形画轴对称图形找关键点的对称点然后顺次连接是关键.然后顺次连接是关键.25.考点:作图-轴对称变换.专题:网格型.分析:根据点关于y 轴对称的特点找出各点的对称点,然后顺次连线即可. 解答:解:(1)A (-3-3,,3),B (-5-5,,1),C (-1-1,,0);(3分)分)(2)如上图.)如上图.26.考点:作图-轴对称变换.专题:网格型.分析:(1)分别作A、B 、C 关于MN 的对称点,顺次连接即可;的对称点,顺次连接即可;(2)可在△ABC 所在的2×3的网格中求面积.解答:解:(1)作图正确给5分;分;(2)此三角形面积为:)此三角形面积为:S △A B C =S 矩形D E C F -S △A B D -S △A C F -S △B E C=2×3=2×3--2×(较到位,学生需要学会触类旁通,举一反三.27.考点:作图-轴对称变换.专题:网格型.分析:(1)用矩形面积减去周围三角形面积即可;(2)画一个面积为解答:解:(1)根据面积公式得:方法一:)根据面积公式得:方法一:S=S=12×6×4=12;×6×4=12; 方法二:S=4×6方法二:S=4×6- - 12 ×2×1×2×1- - 12 ×4×1×4×1- - 12 ×3×4×3×4- - 12×2×3=12;×2×3=12; (2)(只要画出一种即可)(只要画出一种即可) 12 ×1×2)×1×2)- - 12 ×1×3=6×1×3=6-2- -2- 32 =52.(5分)分) 点评:此题考查此题考查轴对称图形轴对称图形的作法、动手操作、面积的计算,对综合能力考查比12的等腰三角形,即底和高相乘为24即可.即可.(8分)对称轴:折痕所在的这条直线叫做对称轴.28.故应填-4,1.考点:作图-轴对称变换.点评:解答此题要明确:如果一个图形沿着一条解答此题要明确:如果一个图形沿着一条直线直线对折,直线两侧的图形能够完全重合,这个图形就是完全重合,这个图形就是轴对称图形轴对称图形;专题:网格型.分析:将“小猪”所占的面积转化为三角形和将“小猪”所占的面积转化为三角形和四边形四边形面积的和来解答,合理地进行图形的移动和变换是做此题的关键.解答:解:(1)4×4×12 +8×3×12 +1×1×12=32.5 =32.5;;(3分)分) (2)(画图)(6分)分)(3)(-4-4,,1).(7分)分)点评:解答此题要明确解答此题要明确轴对称的性质轴对称的性质:①对称轴是一条直线.①对称轴是一条直线.②垂直并且平分一条②垂直并且平分一条线段线段的直线称为这条线段的垂直平分线,的直线称为这条线段的垂直平分线,或中或中或中垂线垂线.线段垂直平分线上的点到线段两端的距离相等.③在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等. ④在轴对称图形中,对称轴把图形分成完全相等的两份.⑤如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.直平分线.29.故应填3 .考点:作图-轴对称变换.专题:作图题.。

初中数学【轴对称的基本性质】教案教学设计

初中数学【轴对称的基本性质】教案教学设计

年级八年级科目数学主备教师备课时间年月日课题轴对称的基本性质总 1 课时第 1 课时教学目标1.了解轴对称的基本性质,能画出与已知图形关于某条直线对称的图形;2.在直角坐标系中,会求已知点关于坐标轴的对称点坐标,知道对称点坐标之间的关系。

教学重点轴对称的基本性质,关于坐标轴对称的点的坐标特征。

教学难点轴对称的基本性质,关于坐标轴对称的点的坐标特征。

课前准备三角尺,直尺,课本,自主预习教学过程(一)先学环节1.自学,互学:利用8分钟,阅读课本34—38页,按要求完成下列任务,小组展示疑难问题。

预学核心问题⑴轴对称的基本性质:⑵画成轴对称的图形:⑶关于坐标轴对称的点的坐标特征:2.预学检测问题一:轴对称的基本性质:问题二:画成轴对称的图形问题三:关于坐标轴对称的点的坐标特征:(1)如图2-12,在直角坐标系中,已知点Q的坐标为(4,3),画出点Q关于y轴的对称点Q′,写出点Q′的坐标,你发现点Q 与Q′的坐标有什么关系?利用轴对称的基本性质,说明你的理由.(2)画出点Q关于x轴的对称点Q′′,写出点Q关于x轴的对称点Q′′的坐标,你发现点Q与点Q′′的坐标有什么关系?(3)你能分别写出点(-1,0)关于y轴和x轴对称点的坐标吗?点(0,-1)呢?(4)一般地,已知点P的坐标是(a,b),按照上面发现的规律,你能分别写出点P关于y轴的对称点P′和关于x轴对称的对称点P′′的坐标吗?解决问题评价:你在解决问题时遇到了哪些困难,此类问题今后如何处理?预学评价质疑:小组交流后,提出不能解决和有质疑的问题。

(二)展示环节3.反馈:以小组为单位,交流问题答案,并把小组内解决不了的问题写在题板上展示。

4.展讲:将各小组没有解决的疑问,讨论展讲。

(三)释疑环节5.点拨:对每一个小组的讲评给予适当的评价并做重点的点拨。

6.精讲:总结文字语言与符号语言的转换不能改变原有的意义。

例1:如图,画出△ABC关于直线l成轴对称的图形.例2:如图,在直角坐标系中,已知△ABC的顶点坐标分别是A(-2,1) ,B(1.5,-4),C(0,3).(1)分别写出与△ABC关于y轴成轴对称的△A′B′C′的顶点坐标(2)分别写出与△ABC关于x轴成轴对称的△A′′B′′C′′的顶点坐标(3)分别画出△A′B′C′与△A′′B′′C′′.(四)训练环节7.精炼练习1.作一条线段AB关于直线MN的轴对称的图形。

2.2轴对称的基本性质(第1课时)

2.2轴对称的基本性质(第1课时)

生活中的方程模型11.4一元一次方程的应用(1)七年级数学上册青岛版: 巍巍宝塔高七层, 点点红灯倍加增。

灯共三百八十一, 请问顶层几盏灯。

学习目标:2、会列一元一次方程解决有关实际问题,总结运用方程解决实际问题的步骤;3、通过列一元一次方程解决实际问题提高分析问题、解决问题的能力。

1.能找出实际问题中的已知量、未知量及等量关系1.兴华学校距青云双语7.5千米,老师今天开车以60千米每小时的速度行驶,x小时到达;2.牛牛的爸爸今年35岁了,是牛牛年龄的2倍多7岁,牛牛的年龄是x 岁;3.小红买10本练习本和3只笔共花了20元,已知练习本每本1.4元,每只笔x元;体验身边的方程:(找出已知量、未知量及等量关系)一座雄伟壮丽的七层宝塔,层层飞檐上闪烁着红灯,下层红灯数目是相邻上层的2倍。

如果共有381盏灯,请问顶层有几盏灯?列一元一次方程解应用题的一般步骤是: 1.审:分析题中已知量、未知量各是什么,明确各量之间的关系;4.列:根据相等关系列出方程;5.解并检验方程的解是否正确、符合题意;6.答:写出答案. 3.设:设未知数,用代数式表示其他量;2.找:根据题意找出等量关系;关键为响应安丘市政府“文明城市”的号召,青云山购进A,B两种树苗共12棵,已知A种树苗每棵20元,B种树苗每棵10元,若购进A,B两种树苗刚好用去了140元,问购进A,B两种树苗各多少棵?等量关压缩包中的资料: 一元一次方程的应用(1)课件.ppt 教学设计.doc。

2. 2轴对称的性质教案(2013年秋苏科版八年级上)

2. 2轴对称的性质教案(2013年秋苏科版八年级上)
1
预 习 导 航
探索:两针孔 A. A 和线段 A A 与折痕 l 之间有什么关系? 问题 1:如果把纸重新折叠,因为 A、 A 重合,那么线段 OA、O A 呢? ,此时 O 是线段 A A 的
1 1 1 1 1

问题 2:∠1 与∠2 有什么关系? 问题 3:折痕 l 与 A A 什么关系? 一、概念探究: 垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。 1.操作:取一张长方形的纸片,按下面步骤做一做。 将长方形纸片对折,折痕为 l, (1)在纸上画△ABC; (2)用针尖沿△ABC 各边扎几个小孔 (3)将纸展开,连接 AA’ 、BB’ 、CC’
O · P 四、提炼总结: 画轴对称图形的方法:
A
O · P
A
1.先画对称轴,再画已知点的对称 2.先画已知线段各端点的 3.先画已知三角形的各顶点的
; ,再画出对称线段; ,再画出对称三角形;
4.成轴对称的两个图形的对应点也成轴对称。
1.如图,下列图案是我国几家银行的标志,其中是轴对称图形的有 ( )
.
A l B B
2.变式 1:请你分别在直线 l 上取一点 C,并作出△ABC 关于直线 l 对称的△ ABC 。 问题:三角形有三个顶点,你想到了什么?你该如何做?
变式 2:已知点 P 和点 P’关于一条直线对称,请你画出这条对称轴。
P
.ቤተ መጻሕፍቲ ባይዱ
.
P’
归纳:画轴对称图形的一般步骤: 1.定好 。 2.找准图形中的关键 。 3.作对关键 的对称 ,完成轴对称图形。 例 2 . 四 边 形 ABCD 与 四 边 形 EFGH 关 于 直 线 l 对 称 。 连 接 AC、BD ,设它们相交于点 P。怎么样找出 P 点关于 l 的对称点 Q?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学导学稿
第二章图形的轴对称
课题2.2轴对称的基本性质(第1课时)
学习目标:
1.探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。

2.鼓励学生利用轴对称的性质尝试解决一些实际问题。

3.让学生研讨活动中,进一步发展学生合作交流的能力和数学表达能力。

重点:知道关于x 轴、y 轴对称的点的坐标规律
难点:能作出关于x 轴、y 轴对称的几何图形
教学过程:
【温故知新】
1、把一个图形沿某条直线折叠后,得到一个与它全等的图形,图形的这种变化叫做 。

这条直线叫做
2、用笔尖扎重叠的纸可以得到成轴对称的两个图案。

(1)找出它的两对对应点、对称轴
(2)用测量的方法验证你找到的对应点所连线段分别被对称轴垂直平分。

3、成轴对称的两个图形中,对应点的连线被对称轴
【创设情境】
投影展示蝴蝶、风筝和飞机的图片,激趣引入。

2、提问:什么是轴对称?什么是轴对称图形?轴对称与轴对称图形有什么区别?3、点明本节课的学习目标——探索轴对称的性质。

【探索新知】
【自主探究】
实验1
把一张纸对折后扎一个小孔(如下面左图),然后展平(如下面中图),连接得到的两个小孔A 与A ',记A A '与折痕MN 的交点为O.
线段A A '与直线MN 具有怎样的位置关系?你发现了哪些等量关系?
再扎几个小孔试
试.
探索成轴对称图形的性质
实验2.
如右图,小莹扎了三个孔,把纸展平后连接各点.思考下面的问题:
(1)与ABC ∆C B A '''∆有什么关系?
(2)连接C C B B A A ''',,,它们各自与直线MN 具有怎样的位置关系?
C
B N
M A
N M A l B A
【归纳总结】
轴对称的基本性质:
交流与发现
如下图,在纸上画一条直线MN ,再在直线MN 的一侧扎一个小孔A ,
⑴不用折纸的方法你能找到小孔A 关于直线MN 的对称点的位置吗?与同学交流.
⑵你能说明你的理论依据吗?
⑶如图,你能画出与直线AB 关于直线l 成对称的线段吗?
知识点二 利用轴对称的性质作图
例1
如下图,作出ABC 关于直线MN 的对称图形
讨论交流上述各图形作法要领、注意点,并归纳画法基本步骤:
【巩固提升】
下列说法正确的是( )
A.一个图形的轴对称图形只能作一个
B .一个图形的轴对称图形有有限个
C.因为选取的对称轴不同,所以作一个图形的对称图形可以有无数个
D.不规则的。

复杂的图形不存在对称图形
【课堂小结】
谈一谈:今天你学得了哪些知识与方法?
【达标检测】
1、(1)按下列要求,作点A 关于直线l 的对称点A ’
①过点A 作AB ⊥l ,垂足为点B ;②延长AB 至A ’,使A ’B=AB.。

如图,点A ’就是点A 关于直线l 的对称点。

(2)请你作出下图中线段AB 关于直线l
的对称线段A ’B ’。

(说明:作对称线段其实就是作两个对称点就行了)。

相关文档
最新文档