按定义definition创建二叉树的说明
二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。
二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。
本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。
一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。
下面以使用链表的方式来建立二叉树为例。
1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。
```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。
```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。
```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。
数据结构(二十四)二叉树的链式存储结构(二叉链表)

数据结构(⼆⼗四)⼆叉树的链式存储结构(⼆叉链表) ⼀、⼆叉树每个结点最多有两个孩⼦,所以为它设计⼀个数据域和两个指针域,称这样的链表叫做⼆叉链表。
⼆、结点结构包括:lchild左孩⼦指针域、data数据域和rchild右孩⼦指针域。
三、⼆叉链表的C语⾔代码实现:#include "string.h"#include "stdio.h"#include "stdlib.h"#include "io.h"#include "math.h"#include "time.h"#define OK 1#define ERROR 0#define TRUE 1#define FALSE 0#define MAXSIZE 100 /* 存储空间初始分配量 */typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 *//* ⽤于构造⼆叉树********************************** */int index=1;typedef char String[24]; /* 0号单元存放串的长度 */String str;Status StrAssign(String T,char *chars){int i;if(strlen(chars)>MAXSIZE)return ERROR;else{T[0]=strlen(chars);for(i=1;i<=T[0];i++)T[i]=*(chars+i-1);return OK;}}/* ************************************************ */typedef char TElemType;TElemType Nil=''; /* 字符型以空格符为空 */Status visit(TElemType e){printf("%c ",e);return OK;}typedef struct BiTNode /* 结点结构 */{TElemType data; /* 结点数据 */struct BiTNode *lchild,*rchild; /* 左右孩⼦指针 */}BiTNode,*BiTree;/* 构造空⼆叉树T */Status InitBiTree(BiTree *T){*T=NULL;return OK;}/* 初始条件: ⼆叉树T存在。
二叉树的定义及基本操作

(所输入的数据及相应的运行结果,运行结果要有提示信息,运行结果采用截图 方式给出。)
2
① 输入界面
②输出结果
③测试式子 6*((5+(2+)*8)+3)
六、总结与体会
(调试程序的心得与体会,若实验课上未完成调试,要认真找出错误并分析原因 等。)
每次的实验,总是很受打击。不过,在这过程中,能让我发现自己的 不足,逐渐改善,这是做实验给我最大的收获。 七、程序清单(包含注释)
四、实验记录
(调试过程及调试中遇到的问题及解决办法,其他算法的存在与实践等。) ① 调试过程老是出现访问冲突的错问,通过上网查找访问冲突方面的消息,才
知道应该是指针指错地址,经过调试,最终解决了问题。 ②
调试过程中还出现了这个问题,Status CreateBiTree(BiTree T),当这样定 义时,问题就出现了,但是 Status CreateBiTree(BiTree &T)这样定义就没问题 了,这个想不通。
-
+
/
1.中缀表达式(中序遍历): a+(b*(c-d))-(e/f)
a
*e
2.前缀表达式/波兰式(前序遍历):
f
-+a*b-cd/ef
b-
3.后缀表达式/逆波兰式(后序遍历): abcd-*+ef/-
《《《《《
《 《《《《
C《《《 《 P129
cd
表达式二叉树
1
三、实验所涉及的知识点 递归函数 二叉树
输入说明
***\n"); printf("*** 请按先序输入表达式,当结点的左子树或者右
子树为空时输入‘#‘***\n");
《二叉树的概念》课件

05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。
二叉树的建立方法总结

⼆叉树的建⽴⽅法总结之前已经介绍了⼆叉树的四种遍历(如果不熟悉),下⾯介绍⼀些⼆叉树的建⽴⽅式。
⾸先需要明确的是,由于⼆叉树的定义是递归的,所以⽤递归的思想建⽴⼆叉树是很⾃然的想法。
1. 交互式问答⽅式这种⽅式是最直接的⽅式,就是先询问⽤户根节点是谁,然后每次都询问⽤户某个节点的左孩⼦是谁,右孩⼦是谁。
代码如下(其中字符'#'代表空节点):#include <cstdio>#include <cstdlib>using namespace std;typedef struct BTNode *Position;typedef Position BTree;struct BTNode{char data;Position lChild, rChild;};BTree CreateBTree(BTree bt, bool isRoot){char ch;if (isRoot)printf("Root: ");fflush(stdin); /* 清空缓存区 */scanf("%c", &ch);fflush(stdin);if (ch != '#'){isRoot = false;bt = new BTNode;bt->data = ch;bt->lChild = NULL;bt->rChild = NULL;printf("%c's left child is: ", bt->data);bt->lChild = CreateBTree(bt->lChild, isRoot);printf("%c's right child is: ", bt->data);bt->rChild = CreateBTree(bt->rChild, isRoot);}return bt;}int main(){BTree bt;bt = CreateBTree(bt, true);LevelOrderTraversal(bt); /* 层序遍历 */return0;}2. 根据先序序列例如输⼊序列ABDH##I##E##CF#J##G##(#表⽰空),则会建⽴如下图所⽰的⼆叉树思路和第⼀种⽅式很相似,只是代码实现细节有⼀点区别,这⾥给出创建函数BTree CreateBTree(){BTree bt = NULL;char ch;scanf("%c", &ch);if (ch != '#'){bt = new BTNode;bt->data = ch;bt->lChild = CreateBTree();bt->rChild = CreateBTree();}return bt;}3. 根据中序序列和后序序列和⽅式⼆不同的是,这⾥的序列不会给出空节点的表⽰,所以如果只给出先序序列,中序序列,后序序列中的⼀种,不能唯⼀确定⼀棵⼆叉树。
数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。
二叉树结构体定义
二叉树结构体定义
二叉树是一种重要的数据结构,它由根节点、左子树和右子树组成。
在程序中,我们通常使用结构体来定义二叉树。
二叉树结构体通常包含三个成员变量:根节点指针、左子树指针和右子树指针。
其中,根节点指针指向二叉树的根节点,左子树指针指向左子树的根节点,右子树指针指向右子树的根节点。
二叉树结构体的定义如下:
```c
typedef struct TreeNode {
int val;
struct TreeNode* left;
struct TreeNode* right;
} TreeNode;
```
上述代码中,我们使用 typedef 关键字定义了一个名为TreeNode 的结构体类型。
结构体中包含了一个 int 型的 val 成员变量,以及两个指向 TreeNode 类型的指针 left 和 right。
通过定义二叉树结构体,我们可以轻松地创建二叉树,并对其进行操作。
- 1 -。
二叉树ADT
ADT BinaryTree {数据对象D:D是具有相同特性的数据元素的集合。
数据关系R:(见教材p121)基本操作P:InitBiTree(&T);操作结果:构造空二叉树T。
DestroyBiTree(&T);初始条件:二叉树T存在。
操作结果:销毁二叉树T。
CreateBiTree(&T, definition);初始条件:definition给出二叉树T的定义。
操作结果:按definition构造二叉树T。
ClearBiTree(&T);初始条件:二叉树T存在。
操作结果:将二叉树T清为空树。
BiTreeEmpty(T);初始条件:二叉树T存在。
操作结果:若T为空二叉树,则返回TRUE,否则返回FALSE。
BiTreeDepth(T);初始条件:二叉树T存在。
操作结果:返回T的深度。
Root(T);初始条件:二叉树T存在。
操作结果:返回T的根。
Value(T, e);初始条件:二叉树T存在,e是T中的某个结点。
操作结果:返回e的值。
Assign(T, &e, value);初始条件:二叉树T存在,e是T中的某个结点。
操作结果:结点e赋值为value。
Parent(T, e);初始条件:二叉树T存在,e是T中的某个结点。
操作结果:若e是T的非根结点,则返回它的双亲,否则返回"空"。
LeftChild(T, e);初始条件:二叉树T存在,e是T中的某个结点。
操作结果:返回e的左孩子。
若e无左孩子,则返回"空"。
RightChild(T, e);初始条件:二叉树T存在,e是T中的某个结点。
操作结果:返回e的右孩子。
若e无右孩子,则返回"空"。
LeftSibling(T, e);初始条件:二叉树T存在,e是T中的某个结点。
操作结果:返回e的左兄弟。
若e是T的左孩子或无左兄弟,则返回"空"。
C语言数据结构之二叉链表创建二叉树
C 语⾔数据结构之⼆叉链表创建⼆叉树⽬录⼀、思想(先序思想创建)⼆、创建⼆叉树(1)传⼀级参数⽅法(2)传⼆级参数⽅法⼀、思想(先序思想创建)第⼀步先创建根节点,然后创建根节点左⼦树,开始递归创建左⼦树,直到递归创建到的节点下不继续创建左⼦树,也就是当下递归到的节点下的左⼦树指向NULL ,结束本次左⼦树递归,返回这个节点的上⼀个节点,开始创建右⼦树,然后⼜开始以当下这个节点,继续递归创建左⼦树,左⼦树递归创建完,就递归创建右⼦树,直到递归结束返回到上⼀级指针节点(也就是根节点下),此时根节点左边⼦树创建完毕,开始创建右边⼦树,原理和根节点左边创建左右⼦树相同⼆、创建⼆叉树⼆叉树的操作通常使⽤递归⽅法,如果递归不太明⽩,建议去对此进⾏⼀下学习和练习。
⼆叉树的操作可以分为两类,⼀类是需要改变⼆叉树的结构的,⽐如⼆叉树的创建、节点删除等等,这类操作,传⼊的⼆叉树的节点参数为⼆叉树指针的地址,这种参⼊传⼊,便于更改⼆叉树结构体的指针(即地址)。
这⾥稍微有⼀点点绕,可能需要多思考⼀下如下是⼆叉数创建的函数,这⾥我规定,节点值为整数,如果输⼊的数为-1,则表⽰结束继续往下创建⼦节点的操作。
然后我们使⽤递归的⽅法以此创建左⼦树和右⼦树为了更⽅便的使⽤⼆叉树结构体,可以使⽤ typedef 对结构体进⾏命名123456typedef struct Tree{int data; // 存放数据域struct Tree *lchild; // 遍历左⼦树指针struct Tree *rchild; // 遍历右⼦树指针}Tree,*BitTree;这⾥展⽰两种传参类型的创建⽅法,其中深意可多次参考理解,加深指针理解(1)传⼀级参数⽅法123456789101112131415161718BitTree CreateLink(){ int data; int temp; BitTree T;scanf("%d",&data); // 输⼊数据temp=getchar(); // 吸收空格if(data == -1){ // 输⼊-1 代表此节点下⼦树不存数据,也就是不继续递归创建 return NULL; }else{ T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间T->data = data; // 把当前输⼊的数据存⼊当前节点指针的数据域中printf("请输⼊%d 的左⼦树: ",data);T->lchild = CreateLink(); // 开始递归创建左⼦树192021222324printf("请输⼊%d 的右⼦树: ",data);T->rchild = CreateLink(); // 开始到上⼀级节点的右边递归创建左右⼦树return T; // 返回根节点 } }(2)传⼆级参数⽅法123456789101112131415161718192021222324252627282930BitTree CreateLink(BitTree *T) // 次数 T 为指向根节点的指针的地址{ int data; scanf("%d",&data); if(data == -1){*T=NULL; // 结束递归时,让指针当前节点的指针地址的 指针 指向NULL}else{*T = (BitTree)malloc(sizeof(Tree)); // 对指向节点指针地址的指针 分配内存 if(!(*T) ){ // *T = NULL 表⽰分配内存失败,也就是结束递归创建了 printf("内存分配失败\n");exit(-1);}(*T)->data = data; // 给节点指针地址内的数据域,存⼊数据 printf("请输⼊%d 的左⼦树: ",data); CreateLink(&(*T)->lchild); // 开始遍历左⼦树printf("请输⼊%d 的右⼦树: ",data);CreateLink(&(*T)->rchild); // 开始遍历右⼦树,遍历的思想⽂章开头处解释} }1234567891011121314#include<stdio.h>#include<stdlib.h> typedef struct Tree{ int data; // 存放数据域 struct Tree *lchild; // 遍历左⼦树指针 struct Tree *rchild; // 遍历右⼦树指针 }Tree,*BitTree;151617181920212223242526272829303132333435363738394041424344454647484950515253545556BitTree CreateLink(){int data; int temp; BitTree T; scanf("%d",&data); // 输⼊数据 temp=getchar(); // 吸收空格if(data == -1){ // 输⼊-1 代表此节点下⼦树不存数据,也就是不继续递归创建return NULL;}else{T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间 T->data = data; // 把当前输⼊的数据存⼊当前节点指针的数据域中 printf("请输⼊%d 的左⼦树: ",data); T->lchild = CreateLink(); // 开始递归创建左⼦树printf("请输⼊%d 的右⼦树: ",data);T->rchild = CreateLink(); // 开始到上⼀级节点的右边递归创建左右⼦树 return T; // 返回根节点 } } void ShowXianXu(BitTree T) // 先序遍历⼆叉树{if(T==NULL){return; } printf("%d ",T->data);ShowXianXu(T->lchild); // 递归遍历左⼦树ShowXianXu(T->rchild); // 递归遍历右⼦树} int main(){ BitTree S;printf("请输⼊第⼀个节点的数据:\n");S = CreateLink(); // 接受创建⼆叉树完成的根节点ShowXianXu(S); // 先序遍历⼆叉树 return 0; }123456789101112131415#include<stdio.h>#include<stdlib.h>typedef struct Tree{int data;struct Tree *lchild;struct Tree *rchild;}Tree,*BitTree; BitTree CreateLink(BitTree *T) // 次数 T 为指向根节点的指针的地址{ int data;16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 scanf("%d",&data);if(data == -1){*T=NULL; // 结束递归时,让指针当前节点的指针地址的指针指向NULL }else{*T = (BitTree)malloc(sizeof(Tree)); // 对指向节点指针地址的指针分配内存if(!(*T) ){ // *T = NULL 表⽰分配内存失败,也就是结束递归创建了printf("内存分配失败\n");exit(-1);}(*T)->data = data; // 给节点指针地址内的数据域,存⼊数据printf("请输⼊%d的左⼦树: ",data);CreateLink(&(*T)->lchild); // 开始遍历左⼦树printf("请输⼊%d的右⼦树: ",data);CreateLink(&(*T)->rchild); // 开始遍历右⼦树,遍历的思想⽂章开头处解释}}void ShowXianXu(BitTree T) // 先序遍历⼆叉树{if(T==NULL){return;}printf("%d ",T->data);ShowXianXu(T->lchild); // 遍历左⼦树ShowXianXu(T->rchild); // 遍历右⼦树}int main(){BitTree *S; // 创建指向这个结构体指针地址的指针printf("请输⼊第⼀个节点的数据:\n");CreateLink(&S); // 传⼆级指针地址ShowXianXu(S);return0;}到此这篇关于C语⾔数据结构之⼆叉链表创建⼆叉树的⽂章就介绍到这了,更多相关C语⾔⼆叉链表创建⼆叉树内容请搜索以前的⽂章或继续浏览下⾯的相关⽂章希望⼤家以后多多⽀持!。
java实现二叉树的基本操作
java实现二叉树的基本操作一、二叉树的定义树是计算机科学中的一种基本数据结构,表示以分层方式存储的数据集合。
树是由节点和边组成的,每个节点都有一个父节点和零个或多个子节点。
每个节点可以对应于一定数据,因此树也可以被视作提供快速查找的一种方式。
若树中每个节点最多只能有两个子节点,则被称为二叉树(Binary Tree)。
二叉树是一种递归定义的数据结构,它或者为空集,或者由一个根节点以及左右子树组成。
如果左子树非空,则左子树上所有节点的数值均小于或等于根节点的数值;如果右子树非空,则右子树上所有节点的数值均大于或等于根节点的数值;左右子树本身也分别是二叉树。
在计算机中实现二叉树,通常使用指针来表示节点之间的关系。
在Java中,定义一个二叉树节点类的代码如下:```public class BinaryTree {int key;BinaryTree left;BinaryTree right;public BinaryTree(int key) {this.key = key;}}```在这个类中,key字段表示该节点的数值;left和right字段分别表示这个节点的左右子节点。
1. 插入节点若要在二叉树中插入一个节点,首先需要遍历二叉树,找到一个位置使得插入新节点后,依然满足二叉树的定义。
插入节点的代码可以写成下面这个形式:```public void insert(int key) {BinaryTree node = new BinaryTree(key); if (root == null) {root = node;return;}BinaryTree temp = root;while (true) {if (key < temp.key) {if (temp.left == null) {temp.left = node;break;}temp = temp.left;} else {if (temp.right == null) {temp.right = node;break;}temp = temp.right;}}}```上面的代码首先创建了一个新的二叉树节点,然后判断二叉树根是否为空,若为空,则将这个节点作为根节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作CreateBiTree(T,definition)的实现
首先要清楚逻辑上怎样唯一地确定二叉树,课堂上讲了3类方法。
下面以第一类为例。
即带空子树的先序遍历序列。
由于实验中二叉链表作为二叉树的物理结构,这样就可以确定CreateBiTree(T,definetion)的说明为
CreateBiTree(BiTree T,ElemType definition[])
这里BiTree是结点指针类型,definition是数据元素数组,这个数组无法给出数组的大小(像学C语言时,整数序列排序,sort(int a,int n))。
这个就要求输入时不要出错。
具体在菜单选择时:
case 3:
1. 输入带空子树的先序遍历序列:definition;
2. 调用CreateBiTree(T,definition)。
实现操作CreateBiTree功能,可用多个函数实现。
CreateBiTree(BiTree T,ElemType definition[]){。
调用P131的创建函数CreatBitree1
}
CreatBitree1(BiTree T,definition[](第2个参数提供结点数据definition,思考一下具体形式,甚至为了方便取数组元素,设置3个参数都可以))
{
依次输入definition的结点数据ch
根据ch的值,按教材流程处理。
}
以上是假定设计时,规定了按树的定义definition创建二叉树,提供了这个统一的使用方式,使用者按这个统一的接口使用创建操作、创建二叉树。
当然,如果直接按书上的程序,也能实现创建二叉树,也不会影响到后续的其它操作。
但是这个调用接口被自行改变了,就显得不规范。