极限存在准则 两个重要极限

合集下载

高数第一章极限存在准则 两个重要极限

高数第一章极限存在准则 两个重要极限


时,

时,
lim
n
xn

a
令N max N1 , N2,
则n当 N
时, 有
由条件 (1) a yn xn zn a
即xn a ,
l故im
n
xn

a
.
2
例1. 证明
证: 利用夹逼准则 由.
n

n2
1


n2
1
2

n2
1
n


n2
n2

lim
n
n
n2 2


lim
n
1
1


n2
1

lim n
n

n2
1


n2
1
2

n2
1
n

1
3
准则1’ 函数极限存在的夹逼准则

当 x (x0 , ) 时, g(x) f (x) h(x) , 且
a
lim
n
xn
b
(m)
b ( 证明略 ) 5
例2. 设
证明数列
极限存在 . (P49)
证: 利用二项式公式(P270 ), 有
xn (1 1n)n

1

n 1!
1 n

n(n1) 2!
1 n2

n(n1)(n2) 3!
1 n3


n(n1)(nn1) n!
1 nn
11
x x0
2

极限存在准则与两个重要极限

极限存在准则与两个重要极限

极限存在准则与两个重要极限首先,我们来定义极限存在准则。

设函数f(x)在x=a的其中一去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当0<,x-a,<δ时,有,f(x)-L,<ε。

左极限:设函数f(x)在x=a的其中一左去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当a-δ<x<a时,有,f(x)-L,<ε。

右极限:设函数f(x)在x=a的其中一右去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当a<x<a+δ时,有,f(x)-L,<ε。

接下来,我们来介绍两个重要的极限存在准则。

1.夹逼准则(或夹挤准则):设函数f(x)在x=a的其中一去心邻域内有定义,且在这个去心邻域中,存在两个函数g(x)和h(x),满足g(x)≤f(x)≤h(x)。

若当x→a时,g(x)和h(x)的极限都是L,则函数f(x)在x=a处的极限也是L。

夹逼准则的直观意义是,如果一个函数在一些点附近被两个函数“夹住”,而这两个函数的极限是相等的,则原函数在该点也存在极限,并且极限等于夹逼的值。

2.单调有界准则:如果函数f(x)在x=a的其中一去心邻域内有定义,并且在这个去心邻域中是递增或递减的(即f’(x)≥0或f’(x)≤0),那么如果存在一个实数M,使得对于任意的x,都有f(x)≤M(或f(x)≥M),那么函数f(x)在x=a处存在极限。

单调有界准则的直观意义是,如果一个函数在一些点附近是单调递增或递减的,并且在该区间内被一个实数所界定,那么函数在该点存在极限。

这两个极限存在准则在微积分中具有重要的意义和应用。

在求解极限问题时,可以利用夹逼准则来确定极限的存在性。

而在证明一些极限存在的定理时,可以利用单调有界准则来进行证明。

总结起来,极限存在准则是用于确定函数在一些点是否存在极限的基本规则。

夹逼准则和单调有界准则是两个重要的应用极限存在准则,它们在微积分中有着广泛的应用。

微积分:极限存在准则与两个重要极限

微积分:极限存在准则与两个重要极限

02
两个重要极限
第一个重要极限
总结词
当x趋近于0时,sin(x)/x的极限为1。
详细描述
这个极限描述了正弦函数和x轴在x=0处的交点附近的相对大小关系。具体来说, 当x的值非常接近0时,sin(x)和x的大小关系近似相等。
第二个重要极限
总结词
当x趋近于无穷大时,(1+1/x)^x的极 限为e。
= 2epsilon$。最后,我们得出结论 $lim_{n to infty} a_n = L$。
极限存在准则的应用
应用场景
极限存在准则在实数序列的收敛性判断中有着广泛的应用。例如,在判断一个数列是否收敛时,我们 可以先找到一个收敛的子序列,然后利用极限存在准则判断原序列是否收敛。
应用方法
首先,我们需要找到一个收敛的子序列。这可以通过选取适当的项或通过数学变换实现。然后,利用 极限存在准则,我们可以判断原序列是否收敛。如果原序列收敛,则极限值等于子序列的极限值;否 则,原序列发散。
详细Байду номын сангаас述
这个极限描述了一个增长速度的问题。 具体来说,当x的值非常大时, (1+1/x)^x的增长速度近似等于e,这 是自然对数的底数,约等于2.71828。
两个重要极限的证明
第一个重要极限的证明
通过使用三角函数的性质和等价无穷 小替换,可以证明当x趋近于0时, sin(x)/x的极限为1。
第二个重要极限的证明
通过使用二项式定理和等价无穷大替 换,可以证明当x趋近于无穷大时, (1+1/x)^x的极限为e。
03
微积分中的其他概念
导数
导数定义
导数是函数在某一点的变化率,表示函数在 该点的切线斜率。

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限第一个极限存在准则是柯西-斯维亚切斯极限存在准则(Cauchy-Schwarz Limit Existence Criteria)。

其表述为:对于一个函数 f(x),如果对于任意的ε>0,存在一个δ>0,使得当 0<,x-a,<δ 时,总有,f(x)-f(a),<ε,则函数 f(x) 在点 a 处存在极限。

第二个极限存在准则是海涅定理(Heine's Theorem),也被称为局部有界性定理(Local Boundedness Theorem)。

其表述为:如果对于一个函数 f(x),在点 a 的一些邻域内 f(x) 有界,即存在一个常数 M>0,使得对于所有的x∈(a-δ,a+δ) 有,f(x),≤M,则函数 f(x) 在点 a 处存在极限。

这两个极限存在准则都用于判断函数在其中一点处的极限是否存在。

柯西-斯维亚切斯极限存在准则要求函数在该点的极限存在时,对于任意给定的ε>0,都能找到对应的δ>0,使得函数值与极限值的差小于ε。

而海涅定理则要求函数在该点附近有界,即函数在该点附近的函数值都不超过一些常数M。

这两个定理的应用范围和方法略有不同。

除了极限存在准则外,还有两个重要的极限:无穷小与无穷大。

无穷小是指极限趋近于零的数列或函数。

对于一个数列 {a_n},如果对于任意的正数ε>0,存在正整数 N,使得当 n>N 时,有,a_n,<ε,则该数列是无穷小。

对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=0,则该函数在点 a 处是无穷小。

无穷大则是指极限趋于无穷的数列或函数。

对于一个数列 {a_n},如果对于任意的正数 M>0,存在正整数 N,使得当 n>N 时,有,a_n,>M,则该数列是无穷大。

对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=∞(或表示为lim(x→a) ,f(x),=∞),则该函数在点 a 处是无穷大。

1.4 极限存在准则与两个重要极限

1.4 极限存在准则与两个重要极限

( A) e −2; (C ) 0;
2
§1.4 极限存在准则与两个重要极限
思考练习
选择
1 ( 1) lim x sin = ( C ). x →∞ x ( A) ∞; ( B ) 不存在; (C ) 1; ( D ) 0.
(2)lim ( 1 − x ) )
x →0 − 2 x
=( D )
( B ) ∞; ( D) e .
上页 下页 返回
U 准则Ⅰ′ 如果当 x ∈ ( x0 , δ 0 )(或 x > M )时,有 准则Ⅰ′
(1) g ( x ) ≤ f ( x ) ≤ h( x ), ( 2) x→ x g( x ) = A, x→ x h( x ) = A, lim lim
( x→∞ )
0
( x →∞ )
0
存在, 那么 lim f ( x )存在, 且等于 A.
§1.4 极限存在准则与两个重要极限
一、极限存在准则 二、两个重要极限
sin x lim =1 x→0 x
1n lim(1 + ) = e n→∞ n
上页 下页 返回
§1.4 极限存在准则与两个重要极限
一、极限存在准则
1.夹逼准则 1.夹逼准则
准则Ⅰ 满足下列条件: 准则Ⅰ 如果数列 x n , y n 及 z n 满足下列条件:
= e −2 .
上页 下页 返回
§1.4 极限存在准则与两个重要极限
例5
3− x x ) . 求 lim( x →∞ 2 − x
1 x 解 原式 = lim(1 + ) x →∞ 2− x
1 2− x 1 2 ) ⋅ (1 + ) = lim (1 + x →∞ 2− x 2− x

极限存在准则 两个重要极限

极限存在准则  两个重要极限

第二个重要极限:勇气极限
勇气极限是指我们所能承受的恐惧和心理压力的极 限。了解并逐步超越这个极限,可以使我们在挑战 中变得无所畏惧。
重要性说明
1 激发潜力
了解重要极限能激发我们 内在的潜力,鼓励我们尝 试新事物并突破自身的局 限。
2 规避风险
重要极限的认识有助于我 们规避风险,避免陷入危 险和不理智的决策中。
极限存在准则:两个重要 极限
在极限存在的世界里,我们要探讨两个重要极限:极限存在准则以及第一个 和第二个重要极限。让我们一同揭开生活中最极致的部分。
极限存在准则
1
什么是极限存在准则?
极限存在准则是指在一定条件下,存在着极限情况的规律和约束。它定义了事物 的极限状态和行为。
2
为什么极限存在准则重要?

3 追求卓越
超越重要极限是追求卓越 的关键一步,让我们不断 学习、成长和创新。
实际应用
运动训练
运动训练中,了解和超越个人身体极限是提高 体能和成绩的关键。
领导能力
领导者需要超越自身能力和局限,带领团队不 断创新和突破。
创业企业
创业企业需要超越市场的竞争和资源限制,寻 找新的商业机会和创新解决方案。
科学研究
科学研究需要不断突破知识和技术的边界,发 现未知领域和新的发现。
总结和结论
极限存在准则以及两个重要极限的认识,可以帮助我们更好地理解和应对生活中的极端情况和挑战。通过超越 这些极限,我们能够实现更高的成就和创造。
极限存在准则能帮助我们了解事物的极端表现和局限,提醒我们在决策和行动中 要注意避免超越这些极限。
3
应用领域
极限存在准则广泛应用于科学研究、工程设计、金融市场和人类行为等领域,在 寻找平衡和解决问题时发挥着关键作用。

高等数学 第1章 第七节 极限存在准则 两个重要极限

高等数学 第1章 第七节 极限存在准则  两个重要极限


lim
n
x n1
lim n
6 xn ,
A
6 A,
解得 A 3或A 2,(舍去)
lim n
xn
3.
14
3.两个重要极限的应用
例6: 求 lim tan x 1
x0 x
可作为公式
lim
x
s
in u x ux
1
lim ux 0
x
解: lim tan x lim sin x 1 lim sin x lim 1 11 1 x0 x x0 x cos x x0 x x0 cos x
1 n2 1
n2
1
22
n2
1
n2
n n2 1
,
1
lim 1 0, n 2n
lim n n n2 1
lim n
n
1
1
由夹逼定理知:
n2
0 0, 10
lim n
n
1 2
1
n2
1 22
n2
1 n2
存在, 且
lim n
n
1 2
1
n2
1
22
n2
1
n2
0.
8
例2 用夹逼准则证明:
lim sin x 1.
1yn xn zn n 1,2,3,,
2
lim
n
yn
a,
lim
n
z
n
a,
则数列x
n




在,

lim
n
xn
a.
准则1 若
1当x
U
x

极限存在准则与两个重要极限

极限存在准则与两个重要极限
x 5 2012 x 1006 1006 x 5 = lim(1 ) e 2012 e c x x5
c 2012
15
例20. 对第一章中的例19,若即时产生即使结算(按连 续复利计算),求银行t期末的本利和.按连续复利(将利 息记入本金,时刻结算本利和的方法)计算,实质上就是 每期的结算次数 m→∞ 时的本利和, 即
an 1 1 1 1 1 2! 3! n! 1 1 1 11 1 2 2 3 ( n 1)n 1 1 1 1 1 1 1 (1 ) ( ) ( ) 2 2 3 n1 n 1 3 3. n
故{an} 有上界, 从而 lim(1 n
tan x sin x 1 lim 3 x 0 1 sin x x sin x 1 cos x 1 1 lim x 0 x x2 cos x(1 sin x ) 2
1 1 tan x lim( ) e2 x 0 1 sin x
1
1
13
1 x2 (5). lim(cos ) . x x
r mt lim A0 (1 ) A0e rt m m
16
为使计算简化, 我们给出(不证明)上面公式的一 个对“1∞” 型非常适用的结论: 若 lim ƒ(x) = 0 , lim g(x) = ∞ 且 lim ƒ(x)g(x) = m, 则
lim[1 f ( x)]g ( x ) e m
11
例18.求下列极限
1 5 x2 (1). lim(1 ) ; x x
§2.4 极限存在准则与两个重要极限
本节先介绍极限存在准则利用它们来导出两个重 要极限. 一.极限存在准则 准则І (夹逼定理) 若 x U ( x0 , ) (或 x M ) , 均有 g(x) ≤ ƒ(x) ≤ h(x) 且 lim g(x) = lim h(x) = A, 则有 lim ƒ(x) = A.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴ {xn } 是单调递增的 ;
1 1 1 1 xn < 1 + 1 + + L + < 1 + 1 + + L + n −1 2! n! 2 2 1 = 3 − n − 1 < 3, ∴ {xn } 是有界的 ; 2 1n ) ∴ lim x n 存在. 记为lim(1 + ) = e (e = 2.71828L n→∞ n→∞ n
x → +∞
)
= lim (9
x → +∞
x
1 x x
)
1 x + 1 3
0
1 x
3 1 = 9 ⋅ lim 1 + x x → +∞ 3

1 3x ⋅x
= 9⋅e = 9
∴ lim cos x = 1,
x→0
∴ lim(1 − cos x ) = 0,
x→0
又 Q lim 1 = 1,
x→0
sin x ∴lim = 1. x→0 x
例3
1 − cosx . 求 lim 2 x→0 x
x 2sin2 2 lim 2 x→0
解: 原式 =
x
1 sin = lim x 2 x→0 2
1 令t= , x
x→0
1t lim(1 + x) = lim(1 + ) = e. x→0 t →∞ t
1 x
1 x
lim(1 + x) = e
例.
解: 令 t = −x, 则
t →∞
lim(1+ 1)−t t
1
= lim
t →∞
1 说明 :若利用 lim (1+ φ( x))φ( x) = e, 则
(n = 1,2,3L )
n→∞
(2) lim yn = a, limzn = a,
的极限存在, 那么数列 xn的极限存在, 且 lim xn = a.
证 Q yn → a ,
zn → a ,
n→∞
∀ ε > 0, ∃N 1 > 0, N 2 > 0, 使得
当 n > N 1时恒有 y n − a < ε,
当 x ≥ 1 时,
有 [ x ] ≤ x ≤ [ x ] + 1,
1 [ x] 1 x 1 [ x ]+ 1 (1 + ) ≤ (1 + ) ≤ (1 + ) , [ x] + 1 x [ x] 1 [ x ]+ 1 1 [ x] 1 ) ) ⋅ lim (1 + ) = e, 而 lim (1 + = lim (1 + x → +∞ x → +∞ x → +∞ [ x] [ x] [ x] 1 [ x] lim (1 + ) x → +∞ [ x] + 1 1 [ x ]+ 1 1 −1 ) ) = e, = lim (1 + ⋅ lim (1 + x → +∞ x → +∞ [ x] + 1 [ x] + 1 1 x ∴ lim (1 + ) = e. x→+∞ x
类似地, 类似地
1 1 xn+1 = 1 + 1 + (1 − )+L n+1 2! n−1 1 1 2 )(1 − )L(1 − ) + (1 − n! n+1 n+ 2 n+1 n 1 1 2 (1 − )(1 − )L(1 − ). + n+1 n+2 n+1 ( n + 1)!
显然 x n + 1 > x n ,
又 Q x1 = 3 < 3, 假定 x k < 3, x k + 1 = 3 + x k< 3 + 3 < 3,
∴ lim x n 存在.
n→∞
2 lim x n + 1 = lim ( 3 + x n ), n→ ∞ n→∞
2 Q x n+1 = 3 + x n , x n+1 = 3 + x n ,
. 则Ⅱ 准 Ⅱ 单调 界数列 则 有 必有 极限
单调数列
几何解释: 几何解释
x1 x 2 x 3x n x n + 1
A
M
x
例2
证明数列 xn = 3 + 3 + L + 3 ( n重根
∴ {xn } 是单调递增的 ;
式)的极限存在 . 证 显然 x n + 1 > x n ,
∴ {xn } 是有界的 ;
即 xn − a < ε 成立 ,
∴ lim x n = a .
n→ ∞
上述数列极限存在的准则可以推广到函数的极限
则 ′ 果 准 Ⅰ 如 当x ∈Uδ ( x0 )(或x > M )时 有 ,
0
(1) g( x) ≤ f ( x) ≤ h( x), (2) x→x g( x) = A, x→x h( x) = A, lim lim
φ ( x)→∞
原式
1 )−x −1 = lim (1+ −x −x→∞
[
]
= e−1
例5
求 lim(1 + 2 x) .
x →0
1 x
例6
3 + x 2x ) . 求 lim ( x→∞ 2 + x
求 lim( 3 − 2 x )
x →1 3 x −1
例7
1 sin x 例8 求 lim x →∞ ln(1 + x ) − ln x
( x→∞)
0
( x→∞)
0
末 那 lim f ( x)存 , 且 于A. 在 等
x→ x→x0 ( x→∞)
称为夹逼准则 准则 I和准则 I'称为夹逼准则 和 称为夹逼准则. 注意: 利用夹逼准则求极限关 注意: 键是构造出yn与zn ,
并且yn与zn的极限是容易求的.
例1 求 lim (
n→ ∞
∴ sin x < x < tan x ,
π 上式对于 − < x < 0也成立 . 2
sin x 即 cos x < < 1, x
当 0 < x < 时, 2
π
x x 2 x2 0 < cos x − 1 = 1 − cos x = 2 sin 2 < 2( ) = , 2 2 2
x2 Q lim = 0, x→0 2
x 2
1 2 = 2 ⋅1
2
例4
arcsin x 求 lim . x →0 x
解: 令 t = arcsinx, 则 x = sint , 因此
t 原式 = lim t →0 sin t
sin t t
=1
2.单调有界准则 单调有界准则
如果数列 xn满足条件
x1 ≤ x 2 L ≤ x n ≤ x n + 1 ≤ L , 单调增加 x1 ≥ x 2 L ≥ x n ≥ x n + 1 ≥ L , 单调减少
09高数 高数
第六节 极限存在准则 两个重要极限
重点与难点
掌握两个重要极限公式的特点和运用他 们求极限的方法; 运用单调有界法则证明极限存在;
一、极限存在准则 1.夹逼准则 夹逼准则
准则Ⅰ 满足下列条件: 准则Ⅰ 如果数列 xn , yn及 zn满足下列条件:
(1) yn ≤ xn ≤ zn
n→∞
1 + 13 1 − 13 (舍去 舍去) , A= 舍去 解得 A = 2 2 1 + 13 . ∴ lim x n = n→∞ 2
A 2 = 3 + A,
(2) 定义
1 x lim(1 + ) = e x→∞ x 1n lim(1 + ) = e n→∞ n
1 设 x n = (1 + ) n n n 1 n( n − 1) 1 n( n − 1)L( n − n + 1) 1 = 1+ ⋅ + ⋅ 2 +L+ ⋅ n 1! n 2! n n! n 1 1 1 1 2 n−1 = 1 + 1 + (1 − ) + L + (1 − )(1 − )L(1 − ). 2! n n! n n n
ห้องสมุดไป่ตู้
其他几个重要极限: 其他几个重要极限
log a (1 + x ) lim = lim log a (1 + x )1 / x = 1 / ln a x →0 x →0 x
ln(1 + x ) =1 x →0 x lim
a −1 lim = ln a (令 : u = a x − 1) x→0 x
x
令 t = − x,
1 x 1 −t 1 t ) ∴ lim (1 + ) = lim (1 − ) = lim (1 + x → −∞ t → +∞ t → +∞ x t t −1 1 t −1 1 ) (1 + ) = e. = lim (1 + t → +∞ t −1 t −1
1 x ∴ lim(1 + ) = e x→∞ x
二、两个重要极限
B
(1)
C
sin x lim =1 x→0 x
π
o
x
D
A
设单位圆 O , 圆心角 ∠AOB = x , (0 < x < ) 2
相关文档
最新文档