极限存在准则两个重要极限

合集下载

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式首先,我们来介绍极限保号公式。

设函数f(x)在点a的一些邻域内有定义,如果存在常数M>0,使得对于任意的x∈(a-h,a+h)(h>0),都有,f(x),≤M,则称M为f(x)在点a处的一个保号常数。

现在我们来证明极限保号公式:假设f(x)在其中一点a的一些邻域内有定义,并且存在常数M>0,使得对于任意的x∈(a-h,a+h)(h>0),都有,f(x),≤M。

如果limx→af(x)=L存在,那么L也满足,L,≤M。

证明:由于limx→a f(x)=L存在,那么对于任意的ε>0,存在δ>0,使得对于任意的x∈(a-h,a+h)(h>0),如果0<,x-a,<δ,那么有,f(x)-L,<ε。

现在我们取ε=M,那么存在δ>0,使得对于任意的x∈(a-h,a+h),如果0<,x-a,<δ,那么有,f(x)-L,<M。

这说明,对于任意的x∈(a-h,a+h),如果0<,x-a,<δ,那么有,f(x),=,f(x)-L+L,≤,f(x)-L,+,L,<M+,L。

我们再取任意的x∈(a-h,a+h),如果0<,x-a,<δ,那么有,f(x),≤M+,L,但是我们已经知道,在点a的一些邻域内存在保号常数M>0,使得对于任意的x∈(a-h,a+h),都有,f(x),≤M。

所以有,L,≤M。

这就是极限保号公式的证明。

接下来我们来介绍夹逼准则。

设函数f(x)、g(x)、h(x)在点a的一些邻域内有定义,并且对于任意的x∈(a-h,a+h)(h>0),都有g(x)≤f(x)≤h(x)。

如果limx→a g(x)=limx→a h(x)=L存在,那么limx→a f(x)=L也存在。

证明:对于任意的ε>0,由于limx→a g(x)=L存在,那么存在δ1>0,使得对于任意的x∈(a-h,a+h),如果0<,x-a,<δ1,那么有,g(x)-L,<ε。

高数第一章极限存在准则 两个重要极限

高数第一章极限存在准则 两个重要极限


时,

时,
lim
n
xn

a
令N max N1 , N2,
则n当 N
时, 有
由条件 (1) a yn xn zn a
即xn a ,
l故im
n
xn

a
.
2
例1. 证明
证: 利用夹逼准则 由.
n

n2
1


n2
1
2

n2
1
n


n2
n2

lim
n
n
n2 2


lim
n
1
1


n2
1

lim n
n

n2
1


n2
1
2

n2
1
n

1
3
准则1’ 函数极限存在的夹逼准则

当 x (x0 , ) 时, g(x) f (x) h(x) , 且
a
lim
n
xn
b
(m)
b ( 证明略 ) 5
例2. 设
证明数列
极限存在 . (P49)
证: 利用二项式公式(P270 ), 有
xn (1 1n)n

1

n 1!
1 n

n(n1) 2!
1 n2

n(n1)(n2) 3!
1 n3


n(n1)(nn1) n!
1 nn
11
x x0
2

极限存在准则与两个重要极限

极限存在准则与两个重要极限

极限存在准则与两个重要极限首先,我们来定义极限存在准则。

设函数f(x)在x=a的其中一去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当0<,x-a,<δ时,有,f(x)-L,<ε。

左极限:设函数f(x)在x=a的其中一左去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当a-δ<x<a时,有,f(x)-L,<ε。

右极限:设函数f(x)在x=a的其中一右去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当a<x<a+δ时,有,f(x)-L,<ε。

接下来,我们来介绍两个重要的极限存在准则。

1.夹逼准则(或夹挤准则):设函数f(x)在x=a的其中一去心邻域内有定义,且在这个去心邻域中,存在两个函数g(x)和h(x),满足g(x)≤f(x)≤h(x)。

若当x→a时,g(x)和h(x)的极限都是L,则函数f(x)在x=a处的极限也是L。

夹逼准则的直观意义是,如果一个函数在一些点附近被两个函数“夹住”,而这两个函数的极限是相等的,则原函数在该点也存在极限,并且极限等于夹逼的值。

2.单调有界准则:如果函数f(x)在x=a的其中一去心邻域内有定义,并且在这个去心邻域中是递增或递减的(即f’(x)≥0或f’(x)≤0),那么如果存在一个实数M,使得对于任意的x,都有f(x)≤M(或f(x)≥M),那么函数f(x)在x=a处存在极限。

单调有界准则的直观意义是,如果一个函数在一些点附近是单调递增或递减的,并且在该区间内被一个实数所界定,那么函数在该点存在极限。

这两个极限存在准则在微积分中具有重要的意义和应用。

在求解极限问题时,可以利用夹逼准则来确定极限的存在性。

而在证明一些极限存在的定理时,可以利用单调有界准则来进行证明。

总结起来,极限存在准则是用于确定函数在一些点是否存在极限的基本规则。

夹逼准则和单调有界准则是两个重要的应用极限存在准则,它们在微积分中有着广泛的应用。

微积分:极限存在准则与两个重要极限

微积分:极限存在准则与两个重要极限

02
两个重要极限
第一个重要极限
总结词
当x趋近于0时,sin(x)/x的极限为1。
详细描述
这个极限描述了正弦函数和x轴在x=0处的交点附近的相对大小关系。具体来说, 当x的值非常接近0时,sin(x)和x的大小关系近似相等。
第二个重要极限
总结词
当x趋近于无穷大时,(1+1/x)^x的极 限为e。
= 2epsilon$。最后,我们得出结论 $lim_{n to infty} a_n = L$。
极限存在准则的应用
应用场景
极限存在准则在实数序列的收敛性判断中有着广泛的应用。例如,在判断一个数列是否收敛时,我们 可以先找到一个收敛的子序列,然后利用极限存在准则判断原序列是否收敛。
应用方法
首先,我们需要找到一个收敛的子序列。这可以通过选取适当的项或通过数学变换实现。然后,利用 极限存在准则,我们可以判断原序列是否收敛。如果原序列收敛,则极限值等于子序列的极限值;否 则,原序列发散。
详细Байду номын сангаас述
这个极限描述了一个增长速度的问题。 具体来说,当x的值非常大时, (1+1/x)^x的增长速度近似等于e,这 是自然对数的底数,约等于2.71828。
两个重要极限的证明
第一个重要极限的证明
通过使用三角函数的性质和等价无穷 小替换,可以证明当x趋近于0时, sin(x)/x的极限为1。
第二个重要极限的证明
通过使用二项式定理和等价无穷大替 换,可以证明当x趋近于无穷大时, (1+1/x)^x的极限为e。
03
微积分中的其他概念
导数
导数定义
导数是函数在某一点的变化率,表示函数在 该点的切线斜率。

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限第一个极限存在准则是柯西-斯维亚切斯极限存在准则(Cauchy-Schwarz Limit Existence Criteria)。

其表述为:对于一个函数 f(x),如果对于任意的ε>0,存在一个δ>0,使得当 0<,x-a,<δ 时,总有,f(x)-f(a),<ε,则函数 f(x) 在点 a 处存在极限。

第二个极限存在准则是海涅定理(Heine's Theorem),也被称为局部有界性定理(Local Boundedness Theorem)。

其表述为:如果对于一个函数 f(x),在点 a 的一些邻域内 f(x) 有界,即存在一个常数 M>0,使得对于所有的x∈(a-δ,a+δ) 有,f(x),≤M,则函数 f(x) 在点 a 处存在极限。

这两个极限存在准则都用于判断函数在其中一点处的极限是否存在。

柯西-斯维亚切斯极限存在准则要求函数在该点的极限存在时,对于任意给定的ε>0,都能找到对应的δ>0,使得函数值与极限值的差小于ε。

而海涅定理则要求函数在该点附近有界,即函数在该点附近的函数值都不超过一些常数M。

这两个定理的应用范围和方法略有不同。

除了极限存在准则外,还有两个重要的极限:无穷小与无穷大。

无穷小是指极限趋近于零的数列或函数。

对于一个数列 {a_n},如果对于任意的正数ε>0,存在正整数 N,使得当 n>N 时,有,a_n,<ε,则该数列是无穷小。

对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=0,则该函数在点 a 处是无穷小。

无穷大则是指极限趋于无穷的数列或函数。

对于一个数列 {a_n},如果对于任意的正数 M>0,存在正整数 N,使得当 n>N 时,有,a_n,>M,则该数列是无穷大。

对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=∞(或表示为lim(x→a) ,f(x),=∞),则该函数在点 a 处是无穷大。

极限存在准则 两个重要极限

极限存在准则  两个重要极限

第二个重要极限:勇气极限
勇气极限是指我们所能承受的恐惧和心理压力的极 限。了解并逐步超越这个极限,可以使我们在挑战 中变得无所畏惧。
重要性说明
1 激发潜力
了解重要极限能激发我们 内在的潜力,鼓励我们尝 试新事物并突破自身的局 限。
2 规避风险
重要极限的认识有助于我 们规避风险,避免陷入危 险和不理智的决策中。
极限存在准则:两个重要 极限
在极限存在的世界里,我们要探讨两个重要极限:极限存在准则以及第一个 和第二个重要极限。让我们一同揭开生活中最极致的部分。
极限存在准则
1
什么是极限存在准则?
极限存在准则是指在一定条件下,存在着极限情况的规律和约束。它定义了事物 的极限状态和行为。
2
为什么极限存在准则重要?

3 追求卓越
超越重要极限是追求卓越 的关键一步,让我们不断 学习、成长和创新。
实际应用
运动训练
运动训练中,了解和超越个人身体极限是提高 体能和成绩的关键。
领导能力
领导者需要超越自身能力和局限,带领团队不 断创新和突破。
创业企业
创业企业需要超越市场的竞争和资源限制,寻 找新的商业机会和创新解决方案。
科学研究
科学研究需要不断突破知识和技术的边界,发 现未知领域和新的发现。
总结和结论
极限存在准则以及两个重要极限的认识,可以帮助我们更好地理解和应对生活中的极端情况和挑战。通过超越 这些极限,我们能够实现更高的成就和创造。
极限存在准则能帮助我们了解事物的极端表现和局限,提醒我们在决策和行动中 要注意避免超越这些极限。
3
应用领域
极限存在准则广泛应用于科学研究、工程设计、金融市场和人类行为等领域,在 寻找平衡和解决问题时发挥着关键作用。

高等数学 第1章 第七节 极限存在准则 两个重要极限

高等数学 第1章 第七节 极限存在准则  两个重要极限


lim
n
x n1
lim n
6 xn ,
A
6 A,
解得 A 3或A 2,(舍去)
lim n
xn
3.
14
3.两个重要极限的应用
例6: 求 lim tan x 1
x0 x
可作为公式
lim
x
s
in u x ux
1
lim ux 0
x
解: lim tan x lim sin x 1 lim sin x lim 1 11 1 x0 x x0 x cos x x0 x x0 cos x
1 n2 1
n2
1
22
n2
1
n2
n n2 1
,
1
lim 1 0, n 2n
lim n n n2 1
lim n
n
1
1
由夹逼定理知:
n2
0 0, 10
lim n
n
1 2
1
n2
1 22
n2
1 n2
存在, 且
lim n
n
1 2
1
n2
1
22
n2
1
n2
0.
8
例2 用夹逼准则证明:
lim sin x 1.
1yn xn zn n 1,2,3,,
2
lim
n
yn
a,
lim
n
z
n
a,
则数列x
n




在,

lim
n
xn
a.
准则1 若
1当x
U
x

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式

夹逼准则不仅说明了极限存在,而且给出了求极限的
方法.下面利用它证明另一个重要的
极限公式: lim sin x 1 x0 x
证:

x
(
0
,
2
)
时,
BD
1x
oC
A
△AOB 的面积<圆扇形AOB的面积<△AOD的面积

1 2
sin
x
1 2
x
1 2
tan
x
亦故即有
1sin sxinxxxctoa1snxx
1. 单调有界准则
数列 xn : 单调增加 x1 x2 xn xn1 ,
单调减少 x1 x2 xn xn1 ,
准则I 单调有界数列必有极限 单调上升有上界数列必有极限
说 明: 单调下降有下界数列必有极限 (1) 在收敛数列的性质中曾证明:收敛的数列一定 有界,但有界的数列不一定收敛.
1
1 1 n1 n 1
1 yn1
由于数列 yn 是单调增加的,所以数列 zn 是单调减少的.

xn
1
1
n
n
1
1
ห้องสมุดไป่ตู้n1
n
zn
z1
4
则 2 xn 4. 综上,根据极限存在准则Ⅰ可知,数列是
收敛的.
2023年12月9日星期六
4
目录
上页
下页
返回
通常用字母 e 来表示这个极限,即
lim
n
1
1
n
)
( n 1, 2,
), 且
x1 0,
a0,

lim
n
xn
.
利用极限存在准则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限存在准则两个重要极限
【教学目的】
1、了解函数和数列的极限存在准则;
2、掌握两个常用的不等式;
3、会用两个重要极限求极限。

【教学内容】
1、夹逼准则;
2、单调有界准则;
3、两个重要极限。

【重点难点】
重点是应用两个重要极限求极限。

难点是应用函数和数列的极限存在准则证明极限存在,并求极限。

【教学设计】
从有限到无穷,从已知到未知,引入新知识(5分钟)。

首先给出极限存在准则(20分钟),并举例说明如何应用准则求极限(20分钟);然后重点讲解两个重要的极限类型,并要求学生能利用这两个重要极限求极限(40分钟);课堂练习(15分钟)。

【授课内容】
引入:考虑下面几个数列的极限
1、1000个0相加,极限等于0。

2、无穷多个“0”相加,极限不能确定。

3、,其中,,极限不能确定。

对于
2、3就需要用新知识来解决,下面我们来介绍极限存在的两个准则:
一、极限存在准则1、夹逼准则准则Ⅰ 如果数列及满足下列条件:那么数列的极限存在, 且、证:
取上两式同时成立, 当时,恒有上述数列极限存在的准则可以推广到函数的极限准则Ⅰ′ 如果当 (或)时,有那么存在, 且等于、准则 I和准则 I称为夹逼准则。

【注意】
利用夹逼准则求极限的关键是构造出与,并且与的极限是容易求的。

例1 求解:
由夹逼定理得:
【说明】
夹逼准则应恰当结合“放缩法”使用2、单调有界准则准则Ⅱ 单调有界数列必有极限、如果数列满足条件,就称数列是单调增加的;如果数列满足条件,就称数列是单调减少的。

单调增加和单调减少的数列统称为单调数列。

几何解释:例2 证明数列(重根式)的极限存在
【分析】
已知,,求。

首先证明是有界的,然后证明是单调的,从而得出结论证:
1、证明极限存在a)
证明有上界,设,则所以对任意的n,有b)
证明单调上升所以存在
2、求极限设,则,解得(舍去)所以=2
二、两个重要极限1、如右图所示,,例3 求下列极限(1)解:原极限(2)解:原极限==1()(3)解:原极限=;
2、,,;“”型
【说明】
(1)上述三种形式也可统一为模型(2)第二个重要极限解决的对象是型未定式。

例如,例4 求下列极限(1)解:原极限(2)解:原极限===
【补充】
“”型计算公式:其中时,。

证明:例5 求下列极限(1)【分析】
是幂指数函数,“”型,考虑用“”型计算公式解:====1(2)
【分析】
是幂指函数,“”型,考虑用“”型计算公式。

解:原极限。

(3)
【分析】
是幂指数函数,“”型,考虑用“”型计算公式,但它不是标准型,通过“加1减1”变成标准型。

解:原极限== 【思考题1】
设有k个正数,,…,,令={,,…,},求(“大数优先”准则)。

解:而,所以由夹逼准则:
【思考题2】
设,,求解:显然。

因为,所以数列有下界。

又因为,所以数列单调下降,即存在。

设=,则,解得,所以=
【思考题3】
求;解:原极限=
【思考题4】
求极限解:
【课堂练习】
求。

解:而,所以原极限
【内容小结】
1、夹逼准则当时,有,且=,则。

2、单调有界准则(1)单调上升有上界的数列,极限一定存在;(2)单调下降有下界的数列,极限一定存在。

3、两个重要极限(1)为弧度);(2),。

相关文档
最新文档