一元二次方程与四边形综合题
第二十一章-一元二次方程单元综合测试题

第二十一章 一元二次方程单元综合测试题 姓名:一、 选择题(每题3分,共30分)1. 下列方程中,是关于x 的一元二次方程的是( A ). A.()()12132+=+x x B.02112=-+x xC.02=++c bx axD. 1222-=+x x x 2. 把方程)2(5)2(-=+x x x 一次项系数是( D ).A.-10B. 10C.3D. -33. 三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( C ).A .8B .8或10C .10D .8和104. 若分式22632x x x x ---+的值为0,则x 的值为( A ).A .3或-2B .3C .-2D .-3或25. 如果关于x 的一元二次方程x 2+px +3=0的一个根为x 1=52-,那么这个一元二次方程是( A ). A. x 2+1079x +3=0 B. x 2-1079x +3=0 C. x 2+1071x +3=0 D. x 2-1071x +3=0 6. 若关于x 的一元二次方程-x 2+2x -k =0有两个不相等的实数根,则k 的取值范围是( A ).A .k <1B .k >1C .k =1D .k ≥07. 将方程-x 2+4x +m 的最大值为1,则m 的值是 ( D ) .A .5B .0C .2 D. -38. 某饲料厂一月份生产饲料500吨,一至三月份生产饲料共1820吨,若二、三月份每月平均增长的百分率为x ,则有( D ).A.500(1+x)2=1820B.500(1+x)+500(1+x)2=1820C .500(1+3x)=1820 D. 500+500(1+x)+500(1+x)2=18209. 甲、乙两同学解方程x 2+px+q=0,甲看错了一次项,得根2和7,乙看错了常数项,得根1和-10,则原方程为( D ). A .x 2-9x+14=0 B .x 2+9x-14=0; C .x 2-9x+10=0 D .x 2+9x+14=0 10. 一个面积为120的矩形苗圃,他的长比宽多2米,苗圃长是( B ). A 10 B 12 C 13 D 14 二、 填空题(每题4分,共24分) 11. 的解是 X 1=0, X 2=3 .12.若x =-1,是方程的一个根,则-a+b-c= 0 _________.13. 关于x 的一元二次方程22(2)30m m x x ---+=,方程的解是___ X 1=3/4,X 2=-1____________. 14. 将方程x 2+x+1=0配方后,原方程变形为43212-=⎪⎭⎫ ⎝⎛+X .15. 如图, 某小区在宽20m ,长32m 的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m 2,则道路的宽是__ 2 m ____16. 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为__ 10 ____. 三、 用适当的方法解方程(每小题6分,共12分) 17.18.X 1=1, X 2=-1/2 X 1=2/3, X 2=-1/2四、 解答题19.某农场去年种植了10亩地的南瓜,亩产量为2000,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60 000kg ,求南瓜亩产量的增长率.(8分)设南瓜亩产量的增长率为 ,则种植面积的增长率为 .根据题意,得解这个方程,得,(不合题意,舍去).所以南瓜亩产量的增长率为20. 某水果商店以2元/千克的价格购进一批苹果,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降低价格出售。
广州中考数学 一元二次方程组 综合题

广州中考数学 一元二次方程组 综合题一、一元二次方程1.解方程:(2x+1)2=2x+1. 【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0, 则x=0或2x+1=0, 解得:x=0或x=﹣12.2.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2 【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式x =求解即可.试题解析:方程化为x 2-4x -1=0. ∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =,∴x 1=2,x 2=23.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.4.已知:关于的方程有两个不相等实数根.(1) 用含的式子表示方程的两实数根; (2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I )kx 2+(2k -3)x+k -3 = 0是关于x 的一元二次方程.∴由求根公式,得. ∴或(II ),∴.而,∴,. 由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k (k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x 1>x 2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系. 请你解答下列问题:5.将m 看作已知量,分别写出当0<x<m 和x>m 时,与之间的函数关系式;6.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.【答案】7.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析 【解析】 【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况. 【详解】解:∵90B ∠=,10AC =,6BC =, ∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=, ∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm . 【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.8.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) . (1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)t = 【解析】 【分析】(1)首先根据勾股定理计算AB 的长,再根据相似比例表示PE 的长度,再结合矩形的性质即可求得t 的值.(2)根据面积相等列出方程,求解即可. 【详解】解:(1)在Rt ABC ∆中,90,8,6C AC BC ︒∠===,10AB ∴===102//,,1068PA PE AE t PE AE PE BC AB BC AC -∴==∴== 34(102),(102)55PE t AE t ∴=-=-,当PE CF =时,四边形PECF 是矩形,3(102)5t t ∴-= 解得3011t = (2)由题意22424116825552t t =+=⨯⨯⨯整理得2t 550t -+=,解得t =52t ∴=,ABC ∆面积是PEF ∆的面积的5倍。
《一元二次方程》单元综合测试题含答案

《一元二次方程》单元综合测试题含答案一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一样形式为________.4.假如21x-2x -8=0,则1x 的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________. 6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范畴是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x 2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ).A .a=b=cB .一根为1C .一根为-1D .以上都不对12.若分式22632x x x x ---+的值为0,则x 的值为( ).A .3或-2B .3C .-2D .-3或2 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-1 14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3)15已知α,β是方程x 2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( ).A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则那个三角形的周长是().A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x;(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.假如x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,依照该方程的特点,它的解法通常是:设x2=y,那么x4=y2,因此原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•表达了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.(1)填写统计表:年份2000 2001 2002 2003全社会用电量(单位:亿kW·h)13.33(2)依照丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a,b,c是△ABC的三条边,关于x的方程12x2b x+c-12a=0有两个相等的实数根,•方程3cx+2b=2a的根为x=0.(1)试判定△ABC的形状.(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.23.已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范畴;(2)是否存在实数a ,使方程的两个实数根互为相反数?假如存在,求出a 的值;假如不存在,说明理由.解:(1)依照题意,得△=(2a -1)2-4a 2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,假如方程的两个实数根x 1,x 2互为相反数,则x 1+x 2=-21a a=0①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x 1与x 2互为相反数.上述解答过程是否有错误?假如有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时动身,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,通过多长时刻P 、Q 两点之间的距离是10cm?25、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,同时分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时动身,运动时刻为t 秒,(1)试判定四边形BPDQ 是什么专门的四边形?假如P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么专门的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?C A BP Q D←↑ QP B D A C1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点时刻为t 秒,(1)当t为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?2、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时刻t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时刻t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标;(3)当点P 运动什么位置时,使得∠C PD=∠OAB, 且58BD BA ,求这时点P 的坐标;C BQ R A D lP答案:1.x1=3,x2=102.(5)点拨:准确把握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把1x看做一个整体.5.m≠±16.m>-112点拨:明白得定义是关键.7.0 点拨:绝对值方程的解法要把握分类讨论的思想.8.y2-5y+6=0 x1x2=,x3x4=9.x2-x=0(答案不唯独)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确把握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:明白得运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活把握因式分解法解方程的思想特点是关键.15.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的明白得和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(326x=0,x2-x+1=0,由求根公式得x1,x2.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,现在方程无解.因此原方程的解为x1=-3,x2=2.20(2)设2001年至2003年平均每年增长率为x,则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.依照题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W=(40-x )(30+2x )=-2x 2+50x+1200=-2(x 2-25x )+1200=-2(x -12.5)2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x 2x+c -12a=0有两个相等的实数根,∴判别式=)2-4×12(c -12a )=0,整理得a+b -2c=0 ①,又∵3cx+2b=2a 的根为x=0, ∴a=b ②.把②代入①得a=c ,∴a=b=c ,∴△ABC 为等边三角形. (2)a ,b 是方程x 2+mx -3m=0的两个根, 因此m 2-4×(-3m )=0,即m 2+12m=0, ∴m 1=0,m 2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去), ∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程第一满足是一元二次方程, ∴a 2≠0且满足(2a -1)2-4a 2>0,∴a<14且a ≠0. (2)a 不可能等于12. ∵(1)中求得方程有两个不相等实数根,同时a 的取值范畴是a<14且a ≠0, 而a=12>14(不符合题意) 因此不存在如此的a 值,使方程的两个实数根互为相反数.。
中考数学一元二次方程综合题附答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣12.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.3.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x . (1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值.【答案】(1) k <14;(2) k=0. 【解析】【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,代入x 1+x 2+x 1x 2-1=0,即可求出k 值.【详解】解:(1)∵关于x 的一元二次方程x 2+(2k-1)x+k 2=0有两个不等实根x 1,x 2, ∴△=(2k-1)2-4×1×k 2=-4k+1>0,解得:k <14, 即实数k 的取值范围是k <14; (2)由根与系数的关系得:x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,∵x 1+x 2+x 1x 2-1=0,∴1-2k+k 2-1=0,∴k 2-2k=0∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.4.已知关于x 的方程x 2﹣2x +m ﹣2=0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值.【答案】(1)m <3;(2)m =2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m ﹣2)>0.∴m <3;(2)∵m <3 且 m 为正整数,∴m =1或2.当 m =1时,原方程为 x 2﹣2x ﹣1=0.它的根不是整数,不符合题意,舍去;当 m =2时,原方程为 x 2﹣2x =0.∴x(x ﹣2)=0.∴x 1=0,x 2=2.符合题意.综上所述,m =2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m 的值和m 的范围是解此题的关键.5.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.6.已知关于x 的方程x 2-(m +2)x +(2m -1)=0。
一元二次方程压轴题(含答案)

一元二次方程1.(北京模拟)已知关于x的一元二次方程x2+px+q+1=0有一个实数根为2.(1)用含p的代数式表示q;(2)求证:抛物线y1=x2+px+q 与x轴有两个交点;(3)设抛物线y1=x2+px+q的顶点为M,与y轴的交点为E,抛物线y2=x2+px+q+1的顶点为N,与F,若四边形FEMN y轴的交点为的面积等于2,求p的值.2.设关于x的方程x2-5x-m2+1=0的两个实数根分别为α、β,试确定实数m的取值范围,使|α|+|β|≤6成立.3.(湖南怀化)已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.4.(江苏模拟)已知关于x的方程x2-(a+b+1)x+a=0(b≥0)有两个实数根x1、x2,且x1≤x2.(1)求证:x1≤1≤x2(2)若点A(1,2),B(12,1),C(1,1),点P(x1,x2)在△ABC的三条边上运动,问是否存在这样的点P,使a+b=54?若存在,求出点P的坐标;若不存在,请说明理由.5.(福建模拟)已知方程组⎩⎪⎪⎨⎪⎪⎧y2=4x y =2x +b有两个实数解⎩⎪⎪⎨⎪⎪⎧x =x 1y =y 1和⎩⎪⎪⎨⎪⎪⎧x =x 2y =y 2,且x 1x 2≠0,x 1≠x 2.(1)求b 的取值范围; (2)否存在实数b ,使得1x 1+1x 2=1?若存在,求出b 的值;若不存在,请说明理由.6.(成都某校自主招生)已知a ,b ,c 为实数,且满足a +b +c =0,abc =8,求c 的取值范围.7.(四川某校自主招生)已知实数x 、y 满足⎩⎪⎪⎨⎪⎪⎧x +y =3a -1x2+y 2=4a2-2a +2,求x y的取值范围.8.(福建某校自主招生)已知方程(ax +1)2=a2(1-x2)(a >1)的两个实数根x 1、x 2满足x 1<x 2,求证:-1<x 1<0<x 2<1.(答案)1.(北京模拟)已知关于x的一元二次方程x2+px+q+1=0有一个实数根为2.(1)用含p的代数式表示q;(2)求证:抛物线y1=x2+px+q 与x轴有两个交点;(3)设抛物线y1=x2+px+q的顶点为M,与y轴的交点为E,抛物线y2=x2+px+q+1的顶点为N,与y轴的交点为F,若四边形FEMN的面积等于2,求p的值.解:(1)∵关于x 的一元二次方程x2+px +q +1=0有一个实数根为2∴22+2p +q +1=0,整理得:q =-2p -5 (2)∵△=p2-4q =p2-4(-2p -5)=p2+8p +20=(p+4)2+4无论p 取任何实数,都有(p +4)2≥0∴无论p 取任何实数,都有(p+N EFM x yy y4)2+4>0,∴△>0∴抛物线y1=x2+px+q与x轴有两个交点(3)∵抛物线y1=x2+px+q与抛物线y2=x2+px+q+1的对称轴相同,都为直线x=-p2,且开口大小相同,抛物线y2=x2+px+q+1可由抛物线y1=x2+px+q沿y轴方向向上平移一个单位得到∴EF∥MN,EF=MN=1∴四边形FEMN是平行四边形由题意得S四边形FEMN=EF·|-p 2|=2,即|-p2|=2∴p=±42.(安徽某校自主招生)设关于x的方程x2-5x-m2+1=0的两个实数根分别为α、β,试确定实数m的取值范围,使|α|+|β|≤6成立.解:∵△=52-4(-m2+1)=4m2+21 ∴不论m取何值,方程x2-5x-m2+1=0都有两个不相等的实根∵x2-5x-m2+1=0,∴α+β=5,αβ=1-m2∵|α|+|β|≤6,∴α2+β2+2|αβ|≤36,即(α+β)2-2αβ+2|αβ|≤36 ∴25-2(1-m2)+2|1-m2|≤36当1-m2≥0,即-1≤m≤1时,25≤36成立∴-1≤m≤ 1 ①当1-m2<0,即m<-1或m>1时,得25-4(1-m2)≤36解得-152≤m≤152∴-152≤m<-1或1<m≤152②综合①、②得:-152≤m≤1523.(湖南怀化)已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.解:(1)∵x1,x2是一元二次方程(a -6)x2+2ax +a =0的两个实数根∴⎩⎪⎪⎨⎪⎪⎧a -6≠04a2-4a (a -6)≥0即⎩⎪⎪⎨⎪⎪⎧a ≠6a ≥0 假设存在实数a 使-x 1+x 1x 2=4+x 2成立,则4+(x 1+x 2)-x 1x 2=0∴4+-2aa -6-aa -6=0,得a =24∵a =24满足a ≥0且a ≠6 ∴存在实数a =24,使-x 1+x 1x 2=4+x 2成立(2)∵(x1+1)(x2+1)=(x1+x2)+x1x2+1=-2aa-6+aa-6+1=-aa-6∴要使(x1+1)(x2+1)为负整数,则只需a为7,8,9,124.(江苏模拟)已知关于x的方程x2-(a+b+1)x+a=0(b≥0)有两个实数根x1、x2,且x1≤x2.(1)求证:x1≤1≤x2(2)若点A(1,2),B(12,1),C(1,1),点P(x1,x2)在△ABC的三条边上运动,问是否存在这样的点P,使a+b=54?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)由根与系数的关系得:x1+x2=a+b+1,x1x2=a∴a=x1x2,b=x1+x2-x1x2-1∵b≥0,∴x1+x2-x1x2-1≥0∴1-x1-x2+x1x2≤0∴(1-x1)(1-x2)≤0又∵x1≤x2,∴1-x1≥0,1-x2≤0 即x1≤1,x2≥1∴x 1≤1≤x 2(2)∵x 1+x 2=a +b +1,a +b =54,∴x 1+x 2=94①当点P (x 1,x 2)在BC 边上运动时则12≤x 1≤1,x 2=1∴x 1=94-x 2=9 4-1=54>1故在BC 边上不存在满足条件的Ox y 112C A B点P②当点P(x1,x2)在AC边上运动时则x1=1,1≤x2≤2取x2=54,则x1+x2=94,即a+b=5 4故在AC边上存在满足条件的点P(1,5 4)③当点P(x1,x2)在AB边上运动时则12≤x1≤1,1≤x2≤2,易知x2=2x1∵x1+x2=94,∴x1=34,x2=32又∵12<34<1,1<32<2故在AB边上存在满足条件的点(34,32)综上所述,当点P(x1,x2)在△ABC 的三条边上运动时,在BC边上没有满足条件的点,而在AC 、AB 边上存在满足条件的点,它们分别是(1,54)和(34,32)5.(福建模拟)已知方程组⎩⎪⎪⎨⎪⎪⎧y2=4x y =2x +b有两个实数解⎩⎪⎪⎨⎪⎪⎧x =x 1y =y 1和⎩⎪⎪⎨⎪⎪⎧x =x 2y =y 2,且x 1x 2≠0,x 1≠x 2.(1)求b 的取值范围;(2)否存在实数b,使得1x1+1 x2=1?若存在,求出b的值;若不存在,请说明理由.解:(1)由已知得4x=(2x+b)2,整理得4x2+(4b-4)x+b2=0∵x1≠x2,∴△>0,即(4b-4)2-16b2>0,解得b<1 2又∵x1x2≠0,∴b24≠0,∴b≠0综上所述,b<12且b≠0(2)∵x1+x2=1-b,x1x2=b2 4,∴1x1+1x2=x1+x2x1x2=4(1-b)b2=1得∴b2+4b-4=0,解得b=-2±22∵-2+22=2(2-1)>12,∴b=-2+22不合题意,舍去∴b=-2-226.(成都某校自主招生)已知a,b,c为实数,且满足a+b+c=0,abc=8,求c的取值范围.解:∵a+b+c=0,abc=8,∴a,b,c都不为零,且a+b=-c,ab=8 c∴a,b是方程x2+cx+8c=0的两个实数根∴△=c2-4×8c≥0当c <0时,c2-4×8c≥0恒成立当c >0时,得c3≥32,∴c ≥342故c 的取值范围是c <0或c ≥3427.(四川某校自主招生)已知实数x 、y 满足⎩⎪⎪⎨⎪⎪⎧x +y =3a -1x2+y 2=4a2-2a +2,求x y的取值范围.解:∵(x-y )2≥0,∴x2+y2≥2x y∴2(x2+y2)≥(x+y)2∴2(4a2-2a+2)≥(3a-1)2即a2-2a-3≤0,解得-1≤a≤3∵x y=12[(x+y)2-(x2+y2)]=12[(3a-1)2-(4a2-2a+2)]=12(5a2-4a-1)=52(a-25)2-910∴当a=25时,x y有最小值-910;当a=3时有最大值16∴-910≤x y≤168.(福建某校自主招生)已知方程(ax+1)2=a2(1-x2)(a>1)的两个实数根x1、x2满足x1<x2,求证:-1<x1<0<x2<1.证明:将原方程整理,得2a2x2+2ax +1-a2=0令y=2a2x2+2ax +1-a2,由于a >1,所以这是一条开口向上的抛物线当x =0时,y=1-a2<0,∴原方程有一个正根和一个负根 又∵x 1<x 2,∴x 1<0<x 2 又当x =1时,y=2a2+2a +1-a2=(a +1)2>0当x =-1时,y=2a2-2a +1-a2=(aO x y1-1x x)2>0-1∴-1<x1<0<x2<1。
中考数学压轴题专题一元二次方程的经典综合题附答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.3.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.4.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.5.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.6.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.7.解方程:(x 2+x )2+(x 2+x )=6.【答案】x 1=﹣2,x 2=1【解析】【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.8.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:∵)2=a ﹣b ≥0∴a +ba =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x 的最小值为 .当x <0时,x +1x 的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.【解析】【分析】(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥1x x⋅=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥1x x ⎛⎫-⋅-= ⎪⎝⎭2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++()411x x +⋅+5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥36x x⋅=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.9.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式x =求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =42±=, ∴x1=2,x 2=210.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.。
一元二次方程100道计算题练习(附答案)+一元二次方程经典练习题(6套)附带详细答案
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).23(=)2)(11应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少? 思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
一元二次方程经典练习题(6套)附带详细答案
练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=; (3)(x-a)2=1-2a+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+12k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
人教版九年级数学一元二次方程章节综合测试(有答案)
人教版九年级数学一元二次方程章节综合测试(有答案)(时间:60分钟 满分:100分)一、选择题(每小题2分,共32分)1.关于x 的方程3x 2-5=2x 的二次项系数和一次项系数分别是( )A .3,-2B .3,2C .3,5D .5,22.一元二次方程x 2-x +10=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定3.若方程(m -3)xm 2-7-x +3=0是关于x 的一元二次方程,则m =( )A .9B .3C .-3D .3或-34.方程x 2+x -1=0的一个根是( )A .1- 5 B.1-52C .-1+ 5D.-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是( )A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( )A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是( )A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为( )A .60元B .80元C .60元或80元D .30元 9.若2-3是方程x 2-4x +c =0的一个根,则c 的值是( )A .1B .3- 3C .1+ 3D .2+ 310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时( )A .加14B .加12C .减14D .减1211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是( )A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A.x (x -1)2=930 B.x (x +1)2=930C .x(x +1)=930D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n的值是( )A.452B.152C.152或2 D.452或2 15.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么( )A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196 D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是( )A .①②B .①③C .②③D .①②③ 二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m = ,b = .18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k = .19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是 .20.方程(x +3)2=5(x +3)的解为 . 三、解答题(共56分) 21.(9分)解方程:(1)3(2x -1)2=27;(2)2x 2+4x -1=0;(3)3(x +2)2=x 2-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根; (2)求证:不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,则▱ABCD 的周长是多少?25.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少? (2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?答案一、选择题(每小题2分,共32分)1.关于x的方程3x2-5=2x的二次项系数和一次项系数分别是(A)A.3,-2 B.3,2 C.3,5 D.5,22.一元二次方程x2-x+10=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定3.若方程(m-3)xm2-7-x+3=0是关于x的一元二次方程,则m=(C) A.9 B.3 C.-3 D.3或-34.方程x 2+x -1=0的一个根是(D)A .1- 5 B.1-52C .-1+ 5D.-1+525.若m ,n 是一元二次方程x 2-5x +2=0的两个实数根,则mn -m -n 的值是(D)A .7B .-7C .3D .-36.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为(A)A .1B .-1C .0D .-27.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的小路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m 2,求小路的宽.如果设小路的宽为x m ,根据题意,所列方程正确的是(B)A .(32+x)(20+x)=540B .(32-x)(20-x)=540C .(32+x)(20-x)=540D .(32-x)(20+x)=548.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每涨价1元,其销售量就减少10个,为了赚得8 000元的利润,商品售价应为(C)A .60元B .80元C .60元或80元D .30元 9.若2-3是方程x 2-4x +c =0的一个根,则c 的值是(A)A .1B .3- 3C .1+ 3D .2+ 310.用配方法解方程x 2+x =2,要使方程左边为x 的完全平方式,应把方程两边同时(A)A .加14B .加12C .减14D .减1211.a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B)A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为012.用因式分解法解下列方程,变形正确的是(B)A .(x +3)(x -1)=1,于是x +3=1或x -1=1B .(x -3)(x -4)=0,于是x -3=0或x -4=0C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x(x +2)=0,于是x +2=013.初三6班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为(D)A.x (x -1)2=930 B.x (x +1)2=930C .x(x +1)=930D .x(x -1)=93014.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n的值是(D)A.452B.152C.152或2 D.452或2 15.某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的增长率x 相同,那么(C)A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196 D .50+50(1+x)+50(1+2x)=19616.关于x 的方程mx 2-4x -m +5=0,有以下说法:①当m =0时,方程只有一个实数根;②当m =1时,方程有两个相等的实数根;③当m =-1时,方程没有实数根.其中正确的是(A)A .①②B .①③C .②③D .①②③ 二、填空题(每小题3分,共12分)17.若将方程x 2-6x =7化为(x +m)2=b ,则m =-3,b =16.18.已知关于x 的一元二次方程x 2+(k +2)x +2k =0,若x =1是这个方程的一个根,则k =-1.19.若关于x 的一元二次方程x 2-4x +2k =0有两个不相等的实数根,则k 的取值范围是k <2.20.方程(x +3)2=5(x +3)的解为x 1=-3,x 2=2. 三、解答题(共56分) 21.(9分)解方程:(1)3(2x -1)2=27;解:(2x -1)2=9,2x -1=3或2x -1=-3, ∴x 1=2,x 2=-1.(2)2x 2+4x -1=0;解:a =2,b =4,c =-1, b 2-4ac =16-4×2×(-1)=24>0,x =-4±264=-2±62,即x 1=-2+62,x 2=-2-62.(3)3(x +2)2=x 2-4.解:3(x +2)2-(x +2)(x -2)=0, (x +2)[3(x +2)-(x -2)]=0, x +2=0或3(x +2)-(x -2)=0, ∴x 1=-2,x 2=-4.22.(8分)已知关于x 的一元二次方程x 2-(k +2)x +k -1=0.(1)若方程的一个根为-1,求k 的值和方程的另一个根; (2)求证:不论k 取何值,该方程都有两个不相等的实数根. 解:(1)将x =-1代入原方程,得 1+(k +2)+k -1=0,解得k =-1.当k =-1时,原方程为x 2-x -2=0, 解得x 1=-1,x 2=2. ∴方程的另一个根为2.(2)证明:∵a =1,b =-(k +2),c =k -1, ∴b 2-4ac =[-(k +2)]2-4×1×(k -1)=k 2+8>0. ∴不论k 取何值,该方程都有两个不相等的实数根.23.(7分)有长为30 m 的篱笆,如图所示,一面靠墙(墙足够长),围成中间隔有一道篱笆的长方形花圃,当花圃的面积是72 m 2时,求AB 的长.解:设AB 的长为x m ,则BC 的长为(30-3x)m.根据题意,得 x(30-3x)=72. 解得x 1=4,x 2=6.答:AB 的长为4 m 或6 m.24.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,则▱ABCD 的周长是多少? 解:(1)∵四边形ABCD 是菱形,∴AB =AD.又∵AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根,∴b 2-4ac =(-m)2-4(m 2-14)=(m -1)2=0.∴m =1.∴当m 为1时,四边形ABCD 是菱形.当m =1时,原方程为x 2-x +14=0,即(x -12)2=0,解得x 1=x 2=12.∴菱形ABCD 的边长是12.(2)把x =2代入原方程,得 4-2m +m 2-14=0.解得m =52.将m =52代入原方程,得x 2-52x +1=0,∴方程的另一根AD =1÷2=12.∴▱ABCD 的周长是2×(2+12)=5.25.(10分)某地2016年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1 600万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少? (2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得1 280(1+x)2=1 280+1 600.解得x 1=0.5=50%,x 2=-2.5(舍去).答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%. (2)设2018年该地有a 户享受到优先搬迁租房奖励,根据题意,得 8×1 000×400+5×400(a -1 000)≥5 000 000. 解得a ≥1 900.答:2018年该地至少有1 900户享受到优先搬迁租房奖励. 26.(12分))某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)(14-10)÷2+1=3(档次). 答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x 档次的产品,根据题意,得 (2x +8)(76+4-4x)=1 080.整理,得x 2-16x +55=0.解得x 1=5,x 2=11(不合题意,舍去). 答:该烘焙店生产的是第五档次的产品.。
压轴题06二次函数与特殊四边形存在性问题(四大类型)-2023年中考数学压轴题专项训练(全
2023年中考数学压轴题专项训练压轴题06二次函数与特殊四边形存在性问题(四大类型)题型一:二次函数与平行四边形存在性问题例1.(2023•泽州县一模)综合与探究.如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与直线l交于B,C 两点,其中点A的坐标为(﹣2,0),点C的坐标为(﹣1,﹣4).(1)求二次函数的表达式和点B的坐标.(2)若P为直线l上一点,Q为抛物线上一点,当四边形OBPQ为平行四边形时,求点P的坐标.(3)如图2,若抛物线与y轴交于点D,连接AD,BD,在抛物线上是否存在点M,使∠MAB=∠ADB?若存在,请直接写出点M的坐标;若不存在,请说明理由.题型二:二次函数与矩形存在性问题例2.(2023•歙县校级模拟)如图,若二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0)、B(4,0),与y轴交于点C,连接BC.(1)求该二次函数的解析式;(2)若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在请求出点K的坐标;若不存在,请说明理由.题型三: 二次函数与菱形存在性问题例3.(2023春•沙坪坝区校级月考)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(0,1),B (4,﹣1).直线AB交x轴于点C,P是直线AB上方且在对称轴右侧的一个动点,过P作PD⊥AB,垂足为D,E为点P关于抛物线的对称轴的对应点.(1)求抛物线的函数表达式;(2)当√5PD+PE的最大值时,求此时点P的坐标和√5PD+PE的最大值;(3)将抛物线y关于直线x=3作对称后得新抛物线y',新抛物线与原抛物线相交于点F,M是新抛物线对称轴上一点,N是平面中任意一点,是否存在点N,使得以C,F,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.题型四: 二次函数与正方形存在性问题例4.(2023•前郭县一模)如图,在平面直角坐标系中,抛物线y=x2﹣4x+c与y轴相交于点A(0,2).(1)求c的值;(2)点B为y轴上一点,其纵坐标为m(m≠2),连接AB,以AB为边向右作正方形ABCD.①设抛物线的顶点为P,当点P在BC上时,求m的值;②当点C在抛物线上时,求m的值;③当抛物线与正方形ABCD有两个交点时,直接写出m的取值范围.一.解答题(共20小题)1.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.2.(2023春•沙坪坝区校级月考)如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于点B(﹣4,0),点C(8,0),与y轴交于点A.点D的坐标为(0,4).(1)求二次函数的解析式及点C的坐标.(2)如图1,点F为该抛物线在第一象限内的一动点,过E作FE∥CD,交CD于点F,求EF+√55DF的最大值及此时点E的坐标.(3)如图2,在(2)的情况下,将原抛物线绕点D旋转180°得到新抛物线y',点N是新抛物线y'上一点,在新抛物线上的对称轴上是否存在一点M,使得点D,E,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的坐标,并写出其中一个点M的求解过程.3.(2023•武清区校级模拟)在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于A(﹣4,0),B(2,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)抛物线上是否存在点Q,且满足AB平分∠CAQ,若存在,求出Q点坐标;若不存在,说明理由;(3)点N为x轴上一动点,在抛物线上是否存在点M,使以B,C,M,N为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,说明理由.4.(2023春•承德县月考)已知二次函数y=14x2−32x−4与x数轴交于点A、B(A在B的左侧),与y轴交于点C,连接BC.发现:点A的坐标为,求出直线BC的解析式;拓展:如图1,点P是直线BC下方抛物线上一点,连接PB、PC,当△PBC面积最大时,求出P点的坐标;探究:如图2,抛物线顶点为D,抛物线对称轴交BC于点E,M是线段BC上一动点(M不与B、C两点重合),连接PM,设M点的横坐标为m(0<m<8),当m为何值时,四边形PMED为平行四边形?5.(2023春•梅江区校级月考)如图,在平面直角坐标系中,△AOC绕原点O逆时针旋转90°得到△DOB,其中OA=1,OC=3.(1)若二次函数经过A、B、C三点,求该二次函数的解析式;(2)在(1)条件下,在二次函数的对称轴l上是否存在一点P,使得P A+PC最小?若P点存在,求出P点坐标;若P点不存在,请说明理由.(3)在(1)条件下,若E为x轴上一个动点,F为抛物线上的一个动点,使得B、C、E、F构成平行四边形时,求E点坐标.6.(2022秋•云州区期末)综合与探究如图,二次函数y=ax2+bx+4的图象经过x轴上的点A(6,0)和y轴上的点B,且对称轴为直线x=7 2.(1)求二次函数的解析式.(2)点E位于抛物线第四象限内的图象上,以OE,AE为边作平行四边形OEAF,当平行四边形OEAF 为菱形时,求点F的坐标与菱形OEAF的面积.(3)连接AB,在直线AB上是否存在一点P,使得△AOP与△AOB相似,若存在,请直接写出点P坐标,若不存在,请说明理由.7.(2023春•开福区校级月考)【定义】对于函数图象上的任意一点P(x,y),我们把x+y称为该点的“雅和”,把函数图象上所有点的“雅和”的最小值称为该函数的“礼值”.根据定义回答问题:(1)①点P(9,10)的“雅和”为;(直接写出答案)②一次函数y=3x+2(﹣1≤x≤3)的“礼值”为;(直接写出答案)(2)二次函数y=x2﹣bx+c(bc≠0)(3≤x≤5)交x轴于点A,交y轴于点B,点A与点B的“雅和”相等,若此二次函数的“礼值”为1﹣b,求b,c的值;(3)如图所示,二次函数y=x2﹣px+q的图象顶点在“雅和”为0的一次函数的图象上,四边形OABC 是矩形,点B的坐标为(5,﹣3),点O为坐标原点,点C在x轴上,当二次函数y=x2﹣px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023春•无锡月考)在平面直角坐标系中,O为坐标原点,二次函数y=ax2﹣2ax﹣3a(a>0)的图象分别与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,过点B作BC的垂线交对称轴于点M,以BM、BC为邻边作矩形BMNC.(1)求A、B的坐标;(2)当点N恰好落在函数图象上时,求二次函数的表达式;(3)作点N关于MC的对称点N',则点N'能否落在函数图象的对称轴上,若能,请求出二次函数的表达式;若不能,请说明理由.9.(2022秋•开福区校级期末)若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、矩形、菱形、正方形”中,一定不是“美丽四边形”的有;②若矩形ABCD是“美丽四边形”,且AB=1,则BC=;(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC,为直径,AP=2,PC=8,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣2,0),C(1,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为6√3,若二次函数y=ax2+bx+c (a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.10.(2022秋•南关区校级期末)在平面直角坐标系中,二次函数y=x2﹣2x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣2,3)在图象G上,求n的值.(2)当n=﹣1时.①若O(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为2,最小值为﹣2,直接写出k的取值范围.(3)当以A(﹣2,2),B(﹣2,﹣1),C(1,﹣1),D(1,2)为顶点的矩形ABCD的边与图象G有且只有3个公共点时,直接写出n的取值范围.11.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B (x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=3 4.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=1a2+165c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=−b a,x1x2=ca”.此关系通常被称为“韦达定理”.12.(2023春•南关区月考)已知抛物线y=−12x2+bx+c(b、c是常数)的顶点B坐标为(﹣1,2),抛物线的对称轴为直线l,点A为抛物线与x轴的右交点,作直线AB.点P是抛物线上的任意一点,其横坐标为m,过点P作x轴的垂线交直线AB于点Q,过点P作PN⊥l于点N,以PQ、PN为边作矩形PQMN.(1)b=,c=.(2)当点Q在线段AB上(点Q不与A、B重合)时,求PQ的长度d与m的函数关系式,并直接写出d的最大值.(3)当抛物线被矩形PQMN截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P的坐标.13.(2023春•南关区校级月考)在平面直角坐标系中,抛物线y =﹣x 2+bx +c (b 、c 是常数)经过点A (﹣1,0)和点B (3,0).点P 在抛物线上,且点P 的横坐标为m . (1)求b 、c 的值;(2)当△P AB 的面积为8时,求m 的值;(3)当点P 在点A 的右侧时,抛物线在点P 与点A 之间的部分(包含端点)记为图象G ,设G 的最高点与最低点的纵坐标之差为h ,求h 与m 之间的函数关系式;(4)点Q 的横坐标为1﹣3m ,纵坐标为m +1,以PQ 为对角线构造矩形,且矩形的边与坐标轴平行.当抛物线在矩形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,直接写出m 的取值范围.14.(2023•九台区校级一模)在平面直角坐标系中,已知抛物线y =x 2﹣2ax ﹣a (a 为常数). (1)若点(2,﹣1)在抛物线上. ①求抛物线的表达式;②当x 为何值时y 随x 的增大而减小?(2)若x ≤2a ,当抛物线的最低点到x 轴的距离恰好是1时,求a 的值;(3)已知A (﹣1,1)、B(−1,2a −12),连结AB .当抛物线与线段AB 有交点时,该交点为P (点P 不与A 、B 重合),将线段PB 绕点P 顺时针旋转90°得到线段PM ,以PM 、P A 为邻边构造矩形PMQA .当抛物线在矩形PMQA 内部(包含边界)图象所对应的函数的最大值与最小值的差为32时,直接写出a 的值.15.(2023•靖江市校级模拟)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+32,以PQ、QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时.直接写出m的取值范围.16.(2022秋•临朐县期末)如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C 在x轴的负半轴,抛物线y=ax2+bx+c的对称轴x=2,且过点O,A.(1)求抛物线y=ax2+bx+c的解析式;(2)若在线段OA上方的抛物线上有一点P,求△P AO面积的最大值,并求出此时P点的坐标;(3)若把抛物线y=ax2+bx+c沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点B.直接写出平移后的抛物线解析式.17.(2023•道外区一模)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+c经过点A (﹣4,0),点C(0,6),与x轴交于另一点B.(1)求抛物线的解析式;(2)点D为第一象限抛物线上一点,连接AD,BD,设点D的横坐标为t,△ABD的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点P为第四象限抛物线上一点,连接P A交y轴于点E,点F在线段BC上,点G在直线AD上,若tan∠BAD=12,四边形BEFG为菱形,求点P的坐标.18.(2023春•九龙坡区校级月考)如图,在平面直角坐标系中,抛物线y=12x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴于点C,连接BC,D为抛物线的顶点.(1)求该抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,过P作PE⊥BC于点E,过P作PF⊥x轴于点F,交直线BC于点G,求PE+PG的最大值,以及此时点P的坐标;(3)将抛物线y=12x2+bx+c沿射线CB方向平移,平移后的图象经过点H(2,﹣1),点M为D的对应点,平移后的抛物线与y轴交于点N,点Q为平移后的抛物线对称轴上的一点,且点Q在第一象限.在平面直角坐标系中确定点R,使得以点M,N,Q,R为顶点的四边形为菱形,请写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.(2023•安徽一模)如图,在平面直角坐标系中,抛物线C 1:y =−14x 2+bx +c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0),点D 的坐标为(0,4).(1)求该二次函数的表达式及点C 的坐标;(2)若点F 为该抛物线在第一象限内的一动点,求△FCD 面积的最大值;(3)如图2,将抛物线C 1向右平移2个单位,向下平移5个单位得到抛物线C 2,M 为抛物线C 2上一动点,N 为平面内一动点,问是否存在这样的点M 、N ,使得四边形DMCN 为菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.20.(2023•九台区一模)在平面直角坐标系中,抛物线y =x 2+bx +c (b 、c 是常数)经过点(﹣2,﹣1),点(1,2).点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形POMN ,PQ =2|m |,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式;(2)若点B 是抛物线上一点,且在抛物线对称轴右侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当BC =6时,求点B 的坐标;(3)若m <0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三第一、第二章专题训练(三)
1、 (7分)已知a 、b 、c 满足0235)8(2
=-+-+-c b a
求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
2、如图,在ABC ∆中,ο90,40,
4110=∠==C m BC m AB ,点P 从点A 开始沿AC 边向点C
以s m 2的速度匀速移动,同时另一点Q 由C 点开始以s m 3的速度沿着CB 匀速移动,几秒时,PCQ ∆的面积等于2
450m ?
3.如图,ABC ∆中,0
90=∠C ,cm AC 12=,cm BC 6=,点P 从点C 开始沿CA 边以s cm /2的速
度向点A 移动,点Q 从点B 开始沿BC 边以1s cm /的速度向点C 移动,如果点P 、Q 同时出发,用)
(s t 表示移动的时间(60≤≤t ),那么:
(1)当t 为何值时,PQC ∆的面积为28cm ; (2)PQC ∆的面积能达到210cm 吗?为什么?
(3)是否存在某一时刻t ,使PQC ∆与ABC ∆相似?若存在,试求出t 的值; 若不存在,请说明理由。
P
Q C
B
A
4、正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F 。
如图1,当点P 与点O 重合时,显然有DF =CF .
⑴如图2,若点P 在线段AO 上(不与点A 、O 重合),PE ⊥PB 且PE 交CD 于点E 。
①求证:DF =EF ;
②写出线段PC 、PA 、CE 之间的一个等量关系,并证明你的结论; ⑵若点P 在线段OC 上(不与点O 、C 重合),PE ⊥PB 且PE 交直线CD 于点E 。
请完成图3并判断⑴中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明)
5、已知:如图,在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:CF AB ;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,请说明理由.
6、某商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,如果每件提价1元出售,其销售量就减少20件.现在要获利12000元,且销售成本不超过24000元,问这种服装销售单价应定多少为宜?这时应进多少件服装?
F
E
D
C
B
A
图1 图2
图3
7、如图,正方形ABCD边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H.
(1)求证:①△BCG≌△DCE;②B H⊥DE.
(2)当点G运动到什么位置时,BH垂直平分DE?请说明理由.
8、如图所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B 出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).
(1)设△DPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,四边形PCDQ是平行四边形?
(3)求出当t为何值时,PD=PQ
(4)是否存在点P和Q,使得DQ=PD ?若存在,求t的值;若不存
在,说明理由。
9、如图,在平面直角坐标系中,四边形ABCO是正方形,C点的坐标是(4, 0).
(1)写出A,B两点的坐标;
(2)若E是线段BC上一点,且∠AEB=60°,沿AE折叠正方形ABCO,折叠
后B点落在平面内F点处.请画出F点并求出它的坐标;
A
B
C
D
E
F G H
10、如图-5所示,某校计划将一块形状为锐角三角形ABC 态环境改造.已知△ABC 的边BC 长120米,高AD 长80米.分割成△AHG 、△BHE 、△GFC 和矩形EFGH 四部分(如图-4).其中矩形的一边EF 在边BC 上.其中两个顶点H 、G 分别在边AB 、AC 上.现计划在△上种草,在△BHE 、△GFC 上都种花,在矩形EFGH 上兴建喷泉.当FG 米时,种草的面积与种花的面积相等?
11、如图,E 是矩形ABCD 边BC 中点,P 是AD 边上一动点,PF ⊥AE ,PH ⊥DE 。
(1)当矩形ABCD 的长与宽满足什么条件时,四边形PHEF 是矩形?请予以证明。
(2)在(1)中,动点P 运动到什么位置时,矩形PHEF 变为正方形?为什么?
13、如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上.设F 、H 分别是B 、D 落在AC
上的两点,E 、G 分别是折痕CE 、AG 与AB 、CD 的交点.(1)求证:四边形AECG 是平行四边形; (2)若AB =4cm ,BC =3cm ,求线段EF 的长. (3)如果矩形ABCD 满足 (请 填上一个能使结论成立的条件),那么四边形AECG 是菱形.不需证明
14ABCD 中,对角线AC 与BD 交于点O ,E 、F 、G 分别为AO CD 中点,AC=2AD 。
(1)求证CF ⊥BD 。
(2)证明△EFG 是等腰三角形。
C。